
 doi:10.1152/jn.00830.2010 106:361-373, 2011. First published 27 April 2011;J Neurophysiol
Srdjan Ostojic
driven by fluctuating inputs
Interspike interval distributions of spiking neurons

You might find this additional info useful...

51 articles, 19 of which can be accessed free at:This article cites 
 http://jn.physiology.org/content/106/1/361.full.html#ref-list-1

including high resolution figures, can be found at:Updated information and services 
 http://jn.physiology.org/content/106/1/361.full.html

 can be found at:Journal of Neurophysiologyabout Additional material and information 
http://www.the-aps.org/publications/jn

This infomation is current as of July 1, 2011.
 

American Physiological Society. ISSN: 0022-3077, ESSN: 1522-1598. Visit our website at http://www.the-aps.org/.
(monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2011 by the 

 publishes original articles on the function of the nervous system. It is published 12 times a yearJournal of Neurophysiology

 on July 1, 2011
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org/content/106/1/361.full.html#ref-list-1
http://jn.physiology.org/content/106/1/361.full.html
http://jn.physiology.org/


Interspike interval distributions of spiking neurons driven by
fluctuating inputs

Srdjan Ostojic
Center for Theoretical Neuroscience, Columbia University, New York, New York; Laboratoire de Physique Statistique, Centre
National de la Recherche Scientifique, Université P et M Curie, Université Paris-Diderot, Ecole Normale Supérieure,
Paris, France

Submitted 30 September 2010; accepted in final form 25 April 2011

Ostojic S. Interspike interval distributions of spiking neurons
driven by fluctuating inputs. J Neurophysiol 106: 361–373, 2011. First
published April 27, 2011; doi:10.1152/jn.00830.2010.—Interspike
interval (ISI) distributions of cortical neurons exhibit a range of
different shapes. Wide ISI distributions are believed to stem from a
balance of excitatory and inhibitory inputs that leads to a strongly
fluctuating total drive. An important question is whether the full range
of experimentally observed ISI distributions can be reproduced by
modulating this balance. To address this issue, we investigate the
shape of the ISI distributions of spiking neuron models receiving
fluctuating inputs. Using analytical tools to describe the ISI distribu-
tion of a leaky integrate-and-fire (LIF) neuron, we identify three key
features: 1) the ISI distribution displays an exponential decay at long
ISIs independently of the strength of the fluctuating input; 2) as the
amplitude of the input fluctuations is increased, the ISI distribution
evolves progressively between three types, a narrow distribution
(suprathreshold input), an exponential with an effective refractory
period (subthreshold but suprareset input), and a bursting exponential
(subreset input); 3) the shape of the ISI distribution is approximately
independent of the mean ISI and determined only by the coefficient of
variation. Numerical simulations show that these features are not
specific to the LIF model but are also present in the ISI distributions
of the exponential integrate-and-fire model and a Hodgkin-Huxley-
like model. Moreover, we observe that for a fixed mean and coeffi-
cient of variation of ISIs, the full ISI distributions of the three models
are nearly identical. We conclude that the ISI distributions of spiking
neurons in the presence of fluctuating inputs are well described by
gamma distributions.

excitation-inhibition balance; integrate-and-fire model; Hodgkin-
Huxley-like model

NEURONS IN VIVO EMIT ACTION potentials in an irregular manner
(Softky and Koch 1993; Bair et al. 1994; Holt et al. 1996;
Shinomoto et al. 1999; Compte et al. 2003; Maimon and Assad
2009). In contrast, neuronal activity recorded in cortical slices
in vitro is regular and highly reproducible, suggesting that
neuronal firing is inherently deterministic rather than stochastic
(Mainen and Sejnowski 1995; Holt et al. 1996). Explaining the
origin of irregular activity in vivo has been the focus of a
number of studies in the last two decades, and theoretical
(Shadlen and Newsome 1994, 1998; Tsodyks and Sejnowski
1995; Vreeswijk and Sompolinsky 1996; Amit and Brunel
1997; Troyer and Miller 1997) as well as experimental results
(Destexhe et al. 2001, 2003; Shu et al. 2003; Haider et al. 2006)
suggest that irregular firing arises from a highly fluctuating

drive generated by a balance between excitatory and inhibitory
synaptic inputs to the neurons.

Balanced synaptic inputs are a general mechanism to gen-
erate irregular firing, yet it is debated to what extent this
mechanism reproduces the details of the statistics of cortical
spike trains (Shinomoto et al. 1999; Sakai et al. 1999). Irreg-
ular firing in vivo is often thought of as a Poisson process, but
a close examination of experimental recordings reveals a large
variety of interspike interval (ISI) statistics. Here we focus on
the shapes of ISI distributions, which have been found to range
from narrow to bursting (Bair et al. 1994; Compte et al. 2003;
Maimon and Assad 2009). It is not clear that fluctuating inputs
to the neurons are sufficient to account for the full range of
observed ISI distributions. The amount of fluctuations in the
input can be modulated by the details of the balance between
excitation and inhibition, and a range of ISI distributions can
be produced in this manner. However, reproducing a particular
shape might require specific neuronal properties in addition to
the fluctuating input. Understanding what range of ISI distri-
butions is spanned when input fluctuations are varied is there-
fore an important issue when interpreting experimental data.

In this study, we systematically examine the shape of ISI
distributions generated by spiking neuron models receiving
fluctuating inputs. Using analytical tools for the leaky inte-
grate-and-fire (LIF) model, we first show that for long ISIs the
distribution decays exponentially independently of the param-
eters of the input. As the amplitude of input fluctuations is
increased at a given output firing rate, the corresponding
exponential tail describes a larger and larger portion of the ISI
distribution, up to a point where bursting appears and progres-
sively takes over the ISI distribution. At a fixed firing rate, the
ISI distribution of a LIF neuron progressively evolves between
three regimes corresponding to an increasing value of the ISI
coefficient of variation (CV) : 1) a narrow distribution for low
input fluctuations; 2) an exponential distribution with an effec-
tive refractory period at intermediate input fluctuations; and
3) an exponential distribution with bursts for high input fluc-
tuations. In contrast, varying the mean ISI only marginally
affects the shape of the ISI distribution, which thus approxi-
mately depends only on the CV. In view of these properties, we
argue that the range of ISI distributions spanned by varying the
fluctuating input can be described to a first approximation by
the family of gamma distributions. Numerical simulations
show that these findings hold also for the exponential integrate-
and-fire (EIF) model and a Hodgkin-Huxley-type conductance-
based model; the full ISI distributions of the three models lie
very close to each other if the first two moments are fixed.
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MATERIALS AND METHODS

Integrate-and-Fire Models

Integrate-and-fire models are simplified models of neurons in
which action potentials (APs) are generated solely from the underly-
ing dynamics of the membrane potential (Gerstner and Kistler 2002).
We used generalized integrate-and-fire models, with dynamics given
by (Fourcaud-Trocmé et al. 2003):

cm

dV

dt
! "gLV # gL$!V" # I!t" (1)

where the membrane potential V is determined with respect to the
resting potential of the cell, cm ! 1 %F/cm2 is the membrane
capacitance, gL ! 50 %S/cm2 is the leak conductance, "(V) is a spike
generating current, and I is the total current elicited by synaptic inputs
to the neuron.

We studied two different versions of the integrate-and-fire model.
LIF model. In this model, "(V) ! 0, there is no spike-generation

current and an AP is emitted when the membrane potential crosses a
fixed threshold value Vth. The membrane potential is subsequently
reset to a value Vr after a refractory period &rp. The values used in the
simulations were Vth ! 20 mV, Vr ! 10 mV, and &rp ! 2 ms.

EIF model. In this model, the spike generation current is exponen-
tial:

$!V" ! 'T exp#V " Vth

'T
$ . (2)

Once the membrane potential crosses the threshold Vth, it diverges to
infinity in finite time. This divergence represents the firing of an AP.
Following the divergence, the membrane potential is reset to a value
Vr after a refractory time &rp. The parameter #T quantifies the
sharpness of the AP initiation. The parameter values used in most of
this study were #T ! 1 mV [a typical value for pyramidal cells (Badel
et al. 2008)], Vth ! 10 mV, Vr ! 3 mV and &rp ! 2 ms.

Conductance-Based Model

The Wang-Buzsáki (WB) model is a modified Hodgkin-Huxley
model (Wang and Buzsáki 1996). The dynamics of the membrane
potential are given by

cm

dV

dt
! "IL " INa " IK " I!t" (3)

where cm is the membrane capacitance (cm ! 1 %F/cm2), IL ! gL(V $
VL) is the leak current (gL ! 0.1 mS/cm2; VL ! $65 mV), INa !
gNam3h(V $ VNa) is the sodium current, IK ! gKn4(V $ VK) is the
delayed rectifier potassium current, and I(t) is the total synaptic input
current.

The activation of the sodium current is assumed to be instanta-
neous:

m!V" !
(m!V"

(m!V" # )m!V" , (4)

while the kinetics of the gating variables h and n are given by:

dx

dt
! (x!V"!1 " x" " )x!V"x , (5)

with x ! h, n.
The functions (x and )x are given by:

am!V" !
0.1!V # 35"

1 " exp%"0.1!V # 35"& )m!V"
! 4 exp%"!V # 60" ⁄ 18& (6)

ah!V" ! 0.35 exp%"!V # 58" ⁄ 20& )h!V"
!

5

1 # exp%"0.1!V # 28"& (7)

an!V" !
0.05!V # 34"

1 " exp%"0.1!V # 34"& )n!V"
! 0.625 exp%"!V # 44" ⁄ 80& (8)

The maximum conductance densities and reversal potentials are:
gNa ! 35 mS/cm2, VNa ! 55 mV, gK ! 9 mS/cm2, and VK !
$90 mV.

Current-Based Inputs to the Neurons

In most of this study, we used current-based inputs to the neurons.
We assumed that the inputs to the neurons consist of a sum of large
number of synaptic inputs, each individual synaptic input being of
small amplitude. We therefore used the diffusion approximation
(Tuckwell 1988) and represented the total input as a Gaussian random
processes parametrized by its mean % and SD *, so that in Eq. 1

I!t" ! cm% # cm*'&m+!t" , (9)

where &m ! cm/gl is the membrane time constant (&m ! 10 ms) and +
is a gaussian process of zero mean, unit variance, and correlation time
&n. Note that both % and * are in units of mV. In particular, for the LIF
model % corresponds to the mean membrane potential of the neuron
in absence of threshold.

The parameters % and * are effective parameters that can be related
to the properties of synaptic inputs. For instance, in the case of
Poisson presynaptic neurons and fast postsynaptic currents, we have
(Brunel and Hakim 1999)

% ! NEJEvE # NIJIvI (10)

*2 ! NEJE
2vE # NIJI

2vI (11)

where NE and NI are the numbers of excitatory and inhibitory
synapses, JE and JI (with JI % 0) are the peak values of excitatory and
inhibitory postsynaptic currents, and vE and vI are the firing rates of
excitatory and inhibitory presynaptic neurons. As % scales linearly
with the number of presynaptic inputs while * scales as the square
root of the number of inputs, fluctuations in the input are large only if
inhibitory and excitatory inputs balance in such a way that % and * are
of the same order of magnitude.

In most of this study we considered fast synaptic inputs, in which
case + is a white-noise process, i.e., &n ! 0. When &n & 0, +(t) was
generated using

&n

d

dt
+ ! "+ # ,!t" , (12)

where ,(t) is a white noise process.

Conductance-Based Inputs to the Neurons

Numerical simulations were performed to verify that the results
obtained for current-based inputs under the diffusion approximation
hold also in the more realistic case of conductance-based synapses of
finite amplitude.

The inputs to the neurons consisted of a barrage of excitatory and
inhibitory synaptic inputs, so that the total input current is given by:

I!t" ! ge!t"!V " Ee" # gi!t"!V " Ei" (13)

where Ee and Ei are the reversal potentials of excitatory and
inhibitory synapses and ge(t) and gi(t) are synaptic conductances
given by
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ge!t" ! cmae(
k

-!t " tk
!e"", gi!t" ! cmai(

k
-!t " tk

!i"" . (14)

where tk
(e) and tk

(i) are the times of excitatory and inhibitory synaptic
inputs, respectively. The synaptic strength is measured by the dimen-
sionless parameters ae and ai, and the synaptic decay times are
instantaneous.

The diffusion approximation holds also for conductance-based
synaptic inputs (Richardson 2004). Within the diffusion approxima-
tion, the difference between a conductance-based input and a current-
based input is, however, merely a rescaling of the membrane time
constant (Richardson 2004).

In terms of synaptic parameters, the mean % of the effective total
input, its SD *, and the effective membrane time constant &m are given
by (Richardson 2004):

% !
aeveEe # aiviEi

gL ⁄ cm # veae # viai
, (15)

*2 ! ae
2ve!% " Ee"2 # ai

2vi!% " Ei"2, (16)

&m !
gL

cm
# veae # viai, (17)

where ve and vi are the total rates of excitatory and inhibitory synaptic
inputs.

The domain of validity of the diffusion approximation was exam-
ined by varying the strength of excitatory synapses over an order of
magnitude while keeping the mean and CV of the firing constant. The
mean firing rate and the CV are determined by the three parameters %,
*, and &m, while the synaptic inputs are specified by four parameters
ae, ai, ve, and vi. The excitatory synaptic weight can therefore be
varied while keeping %, *, and &m fixed. However, the range within
which ae can be varied is in practice limited by the constraints that ai,
ve, and vi be positive. To obtained the desired mean and CV of the
firing, we therefore also varied the value of the reset potential. The
parameters used in the simulations are displayed in Table 1.

Description of the Dynamics

In most of this study, we used a mathematical description of the
membrane potential dynamics to analyze the ISI distribution of the
LIF neuron. As we are interested in the dynamics between two APs,
we consider an initial condition where at time t ! 0 the neuron has
just emitted an AP and its membrane potential lies at the reset value
Vr. We then follow the dynamics until the membrane potential crosses
the threshold, at which point the membrane potential is reset to Vr, and
a new “trial” begins. The fluctuating input current is a stochastic
process independent from trial to trial.

The ISI distribution is equivalent to the distribution of times when
the membrane potential crosses the threshold. Instead of directly
studying the first passage time distribution, here we adopt a comple-

mentary approach and focus on the stochastic dynamics of the mem-
brane potential in presence of an absorbing boundary condition at the
threshold Vth. We then introduce the probability density P(V, t) for the
corresponding stochastic variable to reach V at time t [see Risken
(1984) and Tuckwell (1988)] starting from Vr at time 0. For simplicity,
in RESULTS we refer to P(V, t) as the membrane potential distribution.

The initial condition imposes

P!V, 0" ! -!V " Vr" . (18)

Once the trajectory crosses the threshold at time T, it does not
contribute to P(V, t) for t ' T so that P(V, t) ! 0 for V . Vth and in
particular

P!Vth, t" ! 0. (19)

The probability of emitting a spike at time T, i.e., the ISI distribu-
tion, is given by the probability current through the threshold at time
T (Tuckwell 1988)

PISI!T" ! "
*2

2&m

/ P

/V)Vth

. (20)

Note that because of the absorbing boundary condition at Vth, the
probability density P(V, t) obeys

*"0

Vth P!V, t"dV # *0

t
PISI!&"d& ! 1, (21)

where the second term on the left hand side is the probability of having
emitted a spike before time t. In particular Eq. 21 implies that ($)

Vth P(V, t)
dV % 1.

The dynamics of the distribution P(V, t) obey the Fokker-Planck
equation (Risken 1984):

&m

/ P

/ t
! L*P+ (22)

where L is a linear partial differential operator that depends on the
neuronal model, and &m is the membrane time constant of the neuron.

For generalized integrate-and-fire models receiving a white noise
current input, the Fokker-Planck operator L depends on a single
variable, the membrane potential V, and reads (Fourcaud-Trocmé et
al. 2003)

L*f+ !
/

/V
*V $ % $ $,V-+ f .

*

2

/2

/V2f (23)

where "(V) is the spike-generating function (see Eq. 2).
It can be shown (Risken 1984) that the operator L with the

absorbing boundary condition f(Vth) ! 0 (see Eq. 19) is autoadjoint
and negative definite, so that its eigenvalues are real and strictly
negative, i.e., its eigenfunctions 1i obey

L*1i+ ! $2i1i (24)

with 2i ' 0.
The eigenfunctions 1i form a complete set on which the membrane

potential distribution P(V, t) can be expanded. In this eigenbasis, the
formal solution of the Fokker-Planck equation reads

P!V, t" ! (
i

(i1i!V"e"2it ⁄&m (25)

where the coefficients (i are set by the initial condition of Eq. 18 and
can be determined using the completeness equation for the eigenfunc-
tions 1i. The ISI distribution is then obtained by combining Eqs. 20
and 25, and is given by a sum of decaying exponentials [for an
alternative derivation, see Ricciardi and Sato (1988)]:

PISI!T" ! "
*

2&m
(

i
(i/V1i!Vth"e"2it ⁄&m. (26)

Table 1. Values of parameters used in numerical simulations of the
leaky integrate-and-fire model with conductance-based synaptic inputs

CV Condition ae ai ve, kHz vi, kHz Vr, mV

0.2 1/ 0.0001 0.014 336 2.90 $5
0.2 5/ 0.0005 0.011 67.3 3.49 $5
0.2 10/ 0.001 0.0088 33.6 4.68 $5
0.8 1/ 0.005 0.076 8.69 1.39 10
0.8 5/ 0.01 0.050 4.34 2.12 10
0.8 10/ 0.05 0.024 0.73 4.54 5
1.2 1/ 0.005 0.59 6.13 0.20 15
1.2 5/ 0.01 0.55 3.06 0.21 15
1.2 10/ 0.05 0.08 0.66 1.33 15

CV, coefficient of variation; ae and ai, dimensionless parameters; ve and vi, total rates
of excitatory and inhibitory synaptic inputs; Vr, membrane potential reset value.
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As the eigenvalues (2i) are strictly positive, the distribution P(V, t)
does not reach a steady state but instead decays asymptotically to zero
for large t. Moreover, if a finite gap is present between the smallest
(dominant) eigenvalue 21 and the next (subdominant) eigenvalue 22,
the dynamics are dominated by a single exponential for large t:

P!V, t" + (111!V"e"21t ⁄&m, (27)

PISI!T" + "
*

2&m
(1/V1i!Vth"e"2iT⁄&m. (28)

At long times the membrane potential distribution P(V, t) thus
factorizes in a product of a time-independent function 11(V), and an
exponential decay term e$21t/&m. The time-independent function
11(V) is called a quasistationary distribution in the mathematical
literature (Collet et al. 1995). In RESULTS, we refer to it as the resting
distribution of membrane potentials and we denote it by P1(V) !
11(V).

Eigenvalue Decomposition of the Fokker-Planck Operator

LIF model. Writing y ! (V $ %)/*, yr ! (Vr $ %)/* and yth !
(Vth $ %)/*, the Fokker-Planck operator L is given by

L*f+ !
1

2

/2

/y2 f .
/

/y
,yf- (29)

For a given 2, the equation

L*1i+ ! $2i1i (30)

admits only one solution (up to a proportionality constant) 12(y) that
is integrable on ($), yth). It decreases exponentially fast [like y 2

exp($y2)] as y ¡ ) and can be expressed as a linear combination of
confluent hypergeometric functions (Brunel and Hakim 1999):

12!y" ! '3

N!2"4#1 # 2

2 $M%!1 " 2" ⁄ 2, 1 ⁄ 2, "y2& (31)

# '3

N!2"4#2

2$
2yM%1 " 2 ⁄ 2, 3 ⁄ 2, "y2& . (32)

where M[a, b, c] is the confluent hypergeometric function (Abramow-
itz and Stegun 1970), and N(2) ensures ,12512- ! 1.

The boundary condition 12(yth) ! 0 determines the eigenvalues,
which are strictly positive and form a discrete set {2i} (Ricciardi and
Sato 1988). In the following, we therefore write 1i 0 12i

. The 1i are
normalized so that ,1i51j- ! -ij.

Expanding the membrane potential distribution P(y, t) on the
complete set formed by the functions {1i}, we write

P!y, t" ! (
i

(i1i!y"e"2it ⁄&m. (33)

The coefficients (i are determined by the initial condition, which,
from the completeness relation for the set {1i}, implies (i !

eyr
2
1i!yr".
In the limit of vanishing firing rate obtained for % ¡ $), i.e., yth ¡ ),

the LIF dynamics become equivalent to the harmonic oscillator, so that
the eigenvalues take integer values 2i ¡ i $ 1 (up to terms exponentially
small in yth

2 ), and, 1i ¡ Hi$1/N(2), where Hi is the ith Hermite polyno-
mial. In particular, since H1(y) ! 2y, 12(yr) is proportional to yr, and
changes sign for yr ! 0, i.e., Vr ! %. This approximation is however,
accurate only for very low firing rates (v % 1 Hz).

EIF model. For the EIF model, to our knowledge the eigenfunc-
tions of the Fokker-Planck operator cannot be written explicitly.

Instead, we integrate the eigenvalue equation numerically using the
method introduced in (Richardson 2007).

The eigenvalue equation is

L*1+ ! $2i1 (34)

with

L*f+ !
/

/V.V $ % $ #T exp#V $ Vth

#T
$/f .

*

2

/2

/V2f. (35)

Introducing the probability density J defined by

&mJ!V" ! .% " V # 'T exp#V " Vth

'T
$/1 "

*2

2

/

/V
1. (36)

the eigenvalue equation, a second-order differential equation, can be
transformed into a system of first order equations:

/

/V
J1 ! 21 (37)

*2

2

/

/V
1 ! .% " V # 'T exp#V " Vth

'T
$/1 " &mJ1 (38)

This system of equation can be integrated by choosing Vmin % Vr
and Vmax ' Vth, and integrating the system of equations from Vmin to
Vmax. The initial condition is 1(Vmin) ! 1 and J(Vmin) ! 0, corre-
sponding to the constraint that J(V) decays exponentially for V ¡ $).
The result of this numerical integration is the value of 1(Vmax). The
location of zeros of 1(Vmax) as a function of 2 determines the
eigenvalues we are looking for.

Approximating the ISI Distribution

The full ISI distribution can be approximated by truncating the sum
of exponentials in Eq. 26 and keeping only the sum PISI

(n) of the first n
terms (Alili et al. 2005). Increasing the number of terms improves the
approximation at short intervals. However, for some parameters, the
finite sum can take negative values for short intervals, therefore, we
impose PISI

(n)(T) ! 0 for T % T0, where T0 is the largest zero of 1i ! 0
n

(i/V 1i(Vth) e$2it/&m.
The approximation we use is therefore

PISI
!n" ! 0

0 for T 6 T0

"
*

2&m
(i!0

n (i/V1i!Vth"e"2it ⁄&m for T 7 T0
.

Memory of the Previous Spike

The memory tmem of the previous spike is defined as the time at
which the dominant term in PISI

(n)is larger by an order of magnitude
than any other term:

tmem ! maxi71

&m

2i " 21
log10

(i/V1i!Vth"
(1/V11!Vth"

. (39)

The maximum is needed because the subdominant term vanishes close
to the transition from refractory firing to bursting, while higher order
terms do not.

Spike-Train Autocorrelation Function

The autocorrelation function of a spike train is defined as

A!t" !
1

Tv2*0

T
d&,!n!&" " v"!n!& # t" " v"- (40)

where
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n!t" ! (
j!1

p

-!t " tj" (41)

is a time series representing a spike train.

The Fourier transform Ã!8" of the autocorrelation function, also

called the power-spectrum, is related to the Fourier transform P̃ISI
!8" of the ISI distribution via (Gerstner and Kistler 2002)

Ã!8" ! vRe# 1 # P̃ISI!8"
1 " P̃ISI!8"$ . (42)

For the LIF model, P̃ISI!8" is known analytically (Tuckwell 1988), so
the autocorrelation function A(t) in time can be determined with the
help of the fast Fourier transform (Ostojic et al. 2009).

RESULTS

Stochastic Dynamics of the Membrane Potential

We consider a single neuron receiving a barrage of back-
ground synaptic inputs due to the spontaneous activity of the
presynaptic network, as typically observed in vivo (Anderson
et al. 2000; Destexhe et al. 2001, 2003). Instead of taking into
account individual synaptic inputs, we represent their com-
pound effect as an ongoing fluctuating input to the neuron.
Indeed, if the amplitudes of individual synaptic inputs are
small, the compound input current resulting from many syn-
aptic inputs can be represented by a Gaussian stochastic pro-
cess in time (Stein 1965, 1967; Tuckwell 1988). In most of this
study, we adopt this diffusion approximation, which is a good
description of the activity in many cortical areas (Anderson et al.
2000; Destexhe et al. 2001, 2003), although not all (DeWeese and
Zador 2006). We moreover consider a stationary situation in
which the mean and SD of the compound input do not vary in
time. The values of this mean and SD depend on the conduc-
tances and reversal potentials of inhibitory and excitatory syn-
apses as well as on the firing rates of presynaptic cells (Rich-

ardson 2004). If inhibitory and excitatory inputs are approxi-
mately balanced, the SD of the compound input can be large
compared with its mean. Here we explore the effects of such a
fluctuating input by varying directly the mean and SD of the
effective compound input rather than the parameters of the
presynaptic inputs.

The neuron receiving the fluctuating current is represented
either as a generalized integrate-and-fire neuron or a WB
conductance-based neuron (see MATERIALS AND METHODS). Our
aim is to study the distribution of ISIs produced by these
models. We therefore examine the dynamics of the membrane
potential between two APs, starting from the reset due to the
previous AP, to the time when the membrane potential crosses
the threshold for AP generation. We call such a period of time
a trial. As the background synaptic inputs arrive at random
times, the precise trajectory of the membrane potential is
different on every trial. We therefore examine the statistics
over many such trials.

Independently of the details of the neuronal model, if the mean
input current % is far above threshold, the membrane potential
dynamics are close to deterministic. The membrane potential
crosses the threshold at approximately the same time in every trial,
and the firing is close to periodic (see Fig. 1A, i). In contrast, if the
mean input current % is below threshold, the membrane potential
will follow stochastic dynamics, and the threshold-crossing times
are widely distributed as shown in Fig. 1B, ii–iii (Troyer and
Miller 1997).

To study the distribution of ISIs produced by different levels
of fluctuating inputs, we use analytic tools that we combine
with numerical simulations. Averaging over many trials, the
distribution of ISIs is equivalent to the distribution of times at
which the membrane potential crosses the threshold for the first
time. In the mathematical literature, this is a well-studied
quantity called the first-passage time distribution. In particular,
the ISI distribution for the LIF neuron receiving a white-noise
input is equivalent to the first-passage time distribution of the

Fig. 1. Membrane potential dynamics in presence of fluctuating inputs and the interspike interval (ISI) distribution. A: illustration of membrane potential
trajectories between 2 action potentials for the leaky integrate-and-fire (LIF) model receiving a white-noise input. Dynamics start at the reset potential (Vr) and
stop when the membrane potential crosses the threshold Vth. A, i–iii: 3 traces corresponding to independent realizations of the input. Orange histograms depict
the resting distribution of membrane potentials P1(V) (see text), which the membrane potential explores at times larger than the convergence time tmem, indicated
by the vertical lines. B: corresponding ISI distributions, i.e., the distributions of times when the membrane potential crosses the threshold [PISI(T)]. Black curve
represents the analytical approximation of the ISI distribution obtained from a sum of 11 exponentials. Red curve represents the exponential decay at the dominant
rate v1 at long ISIs. From left to right, the SD of the fluctuating input is increased, while the mean is adjusted to keep the mean firing rate constant at 30 Hz.
Ai and Bi: coefficient of variation (CV) ! 0.22. Aii and Bii: CV ! 0.75. Aiii and Biii: CV ! 1.2. For A, ii and iii, and B, ii and iii, a sum of 2 exponentials is
sufficient for a good approximation of the ISI distribution.

365INTERSPIKE INTERVAL DISTRIBUTIONS OF SPIKING NEURONS

J Neurophysiol • VOL 106 • JULY 2011 • www.jn.org

 on July 1, 2011
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org/


Ornstein-Uhlenbeck process and has been extensively investi-
gated (Tuckwell 1988; Ricciardi 1977).

Instead of directly studying the first passage time distribu-
tion, here we adopt a complementary approach and focus on
the membrane potential distribution P(V, t), which directly
determines the ISI distribution (see MATERIALS AND METHODS).
The dynamics of this distribution obey the Fokker-Planck
equation, which is essentially the counterpart of the membrane
potential equation: the membrane potential equation describes
the dynamics in the absence of background synaptic inputs,
while the Fokker-Planck equation describes the stochastic
dynamics in the presence of fluctuating inputs. The Fokker-
Planck equation is very general and can be written for any
neuronal model receiving a diffusive input. However, analyz-
ing the Fokker-Planck equation is in practice difficult if the
dynamics depend on variables other than the membrane poten-
tial, such as the conductances of various channels. For that
reason, we first concentrate on integrate-and-fire models of a
single variable, the LIF and EIF models, receiving an input
uncorrelated in time. In a second stage, we use numerical
simulations to verify that the findings obtained for these mod-
els are valid also for a conductance-based neuronal model with
several dynamical variables, for fluctuating inputs correlated in
time, and for full conductance-based synaptic inputs.

Resting State and Exponential Tail of the ISI Distribution

A mathematical analysis of the membrane potential dy-
namics reveals that, under very general conditions, the ISI
distribution of integrate-and-fire models can be written as
sums of decaying exponentials (see MATERIAL AND METHODS

for details):

PISI!T" ! (
i

)ie
"viT. (43)

Here &m is the membrane potential, vi are decay rates corre-
sponding to eigenvalues of the Fokker-Planck equation, and )i
are constant coefficients.

From Eq. 43, it is apparent that for large ISIs the distribution
decays exponentially, a property generically observed in ex-
perimental data. Indeed if the smallest (dominant) decay rate v1
and the next (subdominant) decay rate v2 are separated by a
finite difference, for t large the dynamics are dominated by a
single exponential:

PISI!T" + )1e"viT. (44)

From the point of view of membrane potential dynamics, the
origin of this exponential decay can be traced back to the fact
that for sufficiently long times since the previous spike, the
membrane potential converges to a resting distribution. The
resting distribution is a direct counterpart of the resting poten-
tial reached by the membrane potential in absence of noise: for
a subthreshold input, in absence of noise the membrane poten-
tial converges to a fixed resting potential %, while in presence
of noise the membrane potential explores a resting distribution
around %. Once that distribution is reached the probability that
the membrane potential crosses the threshold is constant in
time and the firing becomes a Poisson process. This mathe-
matical description is fully consistent with the intuitive picture
of Troyer and Miller (1997), who proposed that the membrane
potential dynamics can be divided in two epochs, an initial
transient where the dynamics are governed by postspike effects

and a resting state at long times in which all memory from the
previous AP has been lost.

For the LIF model, the decay rates and coefficients in Eq. 43,
as well as the resting state, can be computed analytically (Alili
et al. 2005). Details of the computation are provided in MATE-
RIALS AND METHODS, and Fig. 1 displays an illustration of the
convergence to the resting state. The LIF model in the presence
of fluctuating inputs possesses only two independent parame-
ters, which we choose to be the mean % and SD * of the
membrane potential. We examined the dominant decay rate
and resting membrane potential distribution while systemati-
cally varying % and *. To allow for a direct comparison
between models, we parametrized the results by the mean
firing rate v and CV of the ISI distribution, rather than % and
*, as the two sets of parameters (v, CV) and (%, *) are related
by a one-to-one mapping (Vilela and Lindner 2009b). More
precisely, we increase the amplitude * of input fluctuations,
while keeping v fixed by decreasing %. This is equivalent to
increasing the CV at fixed firing rate.

The value of the dominant decay rate v1 and the shape of the
resting distribution are tightly related, as the dominant decay
rate represents the rate at which the membrane potential
crosses the threshold while exploring the resting distribution.
Consequently, the more the resting distribution is concentrated
near the threshold, the larger the dominant decay rate.
Figure 2A displays v1 as a function of the CV of the firing for
three different values of the mean firing rate v, while Fig. 2B
displays the resting distribution for v ! 30 Hz and three values
of the CV . Both the dominant decay rate and the resting
distribution depend on the level of input fluctuations. For weak
input fluctuations (small values of the CV), the weight of the
resting distribution is concentrated near the threshold Vth ! 20
mV, and correspondingly the dominant decay rate is large. As
the CV increases, the maximum of the resting distribution
shifts away from the threshold and v1 decreases. The position
of the maximum is approximately given by the value of %, the
effective resting potential that is determined by the mean of
the fluctuating input (see Eq. 9 in MATERIALS AND METHODS).
Interestingly, the dominant decay rate rescaled by the mean
firing rate appears to depend only on the value of the CV and
not on the value of the mean firing rate v itself (Fig. 2A).

Fig. 2. Dominant decay rate and resting state. A: ratio between the dominant
decay rate v1 and the firing rate v of the neuron, as a function of the CV of the
firing. As the CV is increased by increasing the SD * of the fluctuating input,
v is kept fixed by decreasing the mean input %. Different symbols correspond
to different mean firing rates v [v ! 10 Hz (crosses), v ! 30 Hz (pluses), and
v ! 50 Hz (circles)]. Different colors correspond to different spiking models.
B: distribution P1 of the membrane potential in the resting state of the LIF
model (maximum normalized to 1) for v ! 30 Hz and 3 different values of the
CV: CV ! 0.22 (% ! 20.2 mV, * ! 0.5 mV); CV ! 0.75 (% ! 16.6 mV, * !
5 mV); and CV ! 1.2 (% ! 6.22 mV, * ! 14 mV). Dashed vertical lines
indicate the values of %.
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Moreover, v1/v is approximately a power-law function of CV
with an exponent close to $1.2.

Shape of the Full ISI Distribution

Having described the ISI distribution for long ISIs, we now
turn to the shape of the full distribution. Equation 43 shows
that the full ISI distribution can be approximated by a sum of
exponentials, the coefficients and decay rates of which can be
calculated without any fitting parameters. Here we describe the
results obtained from this approximation for the LIF model.

For weak input fluctuations (Fig. 1Bi, CV ! 0.22), the ISI
distribution is narrowly distributed around its mean ,T- !
1⁄v, and the dominant exponential decay describes only the
steep tail of the distribution. Including additional exponentials
improves the approximation at short intervals. However, as the
firing is close to periodic, the actual ISI distribution vanishes at
short intervals, a behavior that cannot be reproduced with a
finite sum of exponentials. We therefore set the analytical
approximation of the ISI distribution to zero at short intervals
(see MATERIALS AND METHODS).

As the amplitude of input fluctuations is increased (while
keeping the mean firing rate constant by decreasing the mean
input), the ISI distribution becomes broader and the dominant
exponential decay describes an increasingly large portion of
the full ISI distribution. For intermediate input fluctuations
(Fig. 1Bii, CV ! 0.75), PISI (T) displays a broad maximum and
is well described by a sum of just two exponentials. The
behavior at long intervals is well captured by the dominant
exponential decay. At short intervals, the dominant approxi-
mation overestimates the ISI distribution, due to refractory
effects. These refractory effects are purely due to the reset, as
the effective refractory period is much larger than the absolute
refractory period of the neuron, its actual value being depen-
dent on the level of noise. This refractory period is taken into
account by the subdominant exponential, the coefficient of
which is negative.

For strong input fluctuations (Fig. 1Biii, CV ! 1.2), the
qualitative behavior of the ISI distribution changes. The ISI
distribution becomes monotonically decaying, and at short
times the single exponential approximation underestimates the
true distribution. This observation indicates that the probability
of firing per unit time is larger right after the previous spike
than at longer times since the previous spike. In other words,
the neuron tends to fire in burst due to the strongly fluctuating
input (Barbieri and Brunel 2007; Vilela and Lindner 2009a).
Including a second exponential takes into account this bursting,
and the coefficient of this subdominant term is now positive.
The transition from refractory firing to bursting thus takes
place when the coefficient of the subdominant term changes
signs, which approximately happens when the effective resting
potential % crosses below the reset potential Vr. The emergence
of bursting can therefore be explained by the observation that
for strong input fluctuations; the maximum of the resting
distribution lies below the reset potential (cf. Fig. 2B). Intui-
tively, if the reset is above the mean of the resting distribution
of membrane potential, then immediately following a spike the
membrane potential becomes closer to threshold than it would
be on average, enhancing the likelihood of a short ISI than one
would expect from the average firing rate.

In the intuitive picture of stochastic membrane potential
dynamics proposed by Troyer and Miller (1997), the degree of
irregularity of the firing is determined by the relative amount of
time spent in the postspike transient regime and the resting
distribution: the faster the resting state is reached, the more
variable the firing. Our approximation of the ISI distribution
allows us to actually compute the time needed to reach the
resting distribution. We call this time the memory tmem of the
previous AP. Plotting this time as a function of the input
fluctuations complements the intuitive picture and provides an
additional characterization of the ISI distribution as it quanti-
fies the range of ISIs in which the distribution is dominated by
a single exponential.

Figure 3 represents the memory time tmem in units of the
mean ISI ,T- ! 1⁄v, as a function of the CV of the ISI
distribution, for different values of the mean firing rate v.
While one might intuitively expect that tmem decreases mono-
tonically as the SD of input fluctuations is increased (as does
the dominant decay rate, see Fig. 1A), this is not the case. As
the CV is progressively increased, tmem first decreases as
expected but eventually reaches a minimum. This first branch
corresponds to periodic and refractory firing. In that parameter
range tmem lies close to the maximum of the ISI distribution
(Fig. 1B), and as the amplitude of input fluctuation is increased
(while decreasing the mean input % to keep the firing rate
constant) the ISI distribution is increasingly dominated by a
single exponential. The location of the minimum of tmem is
given by the point where the coefficient )2 of the subdominant
exponential vanishes, which happens approximately when the
effective resting potential % crosses the reset potential Vr. An
intuitive explanation is that when the reset potential is close to
the peak of the resting distribution (as is the case when the reset
potential is close to the effective resting potential) one expects
the time to relax to the resting distribution to be minimal. As
the CV is further increased beyond the location of the mini-
mum, tmem increases, reflecting the larger contribution of the
subdominant term, and the increasing tendency of the neuron
to fire in bursts. Note that the regime of increasing tmem and
burst firing was not anticipated from the intuitive picture of
Troyer and Miller. Interestingly, the minimum of tmem lies at a
CV %1, so that for unit CV the firing of the neuron is not
Poisson but rather bursting.

Fig. 3. Memory time tmem of the previous spike in the LIF model, in units of
the mean ISI ,T- ! 1⁄v, for 3 different values of the mean firing rate v (v is kept
fixed as the CV is varied).
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So far we have examined the shape of the ISI distribution as
the CV is increased at fixed firing rate v. The effect of the firing
rate on the shape of the ISI distribution is displayed in Fig. 4,
where we show the distribution of ISIs rescaled by the mean
ISI ,T- ! 1⁄v, for several values of v. For a fixed CV, varying
the mean firing rate affects only weakly the shape of the
distribution: for large firing rates, the rescaled distributions are
almost indistinguishable, while at small v the deviations be-
come more noticeable. While the dominant decay rate appears
to be essentially independent of the firing rate (see Fig. 2),
subdominant terms depend more strongly on v.

Our analysis shows that for a given set of parameters for the
fluctuating input, the ISI distribution is never exactly exponen-
tial. However, as the mean firing rate v is decreased the
memory time decreases, so that the full ISI distribution be-
comes closer and closer to an exponential, but it becomes
rigorously exponential only in the limit v ¡ 0 (Nobile et al.
1985), and the convergence to this limit is rather slow. Indeed
Fig. 3 shows that for a mean firing rate of v ! 10 Hz the
convergence time can still be significant while for a Poisson
distribution it is vanishingly small.

Comparison with the Gamma Distribution

We have identified three main features of the family of ISI
distributions of spiking neurons in presence of fluctuating
inputs: 1) the distribution decays exponentially for large inter-
vals; 2) as the CV is increased, the distribution progressively
evolves from narrow to refractory-exponential to bursting-
exponential; and 3) the shape of the ISI distribution is approx-
imately independent of the firing rate. These properties are
very similar to those of gamma distributions, a two-parameter
family of distributions with probability densities given by

9(,)!T" !
)(

4!("T("1exp!")T" (45)

where 2(() is Euler’s gamma function. For these distributions,
the CV is equal to 1/( so that gamma distributions are close to
periodic for ( very large, refractory exponential for ( ' 1 and
bursting exponential for ( % 1. As gamma distributions are
often used to fit experimentally determined ISI distributions
(Miura et al. 2007; Maimon and Assad 2009), it is important to
understand how gamma distributions compare with the family
of ISI distributions of spiking neurons.

For the ISI distribution of spiking neurons, we have ob-
served that the dominant decay rate v1, the mean firing rate v
and the coefficient of variation are related approximately via
v1/v ! CV$1.2 (cf. Fig. 2A). For the gamma distributions, v1 !
), v ! )/(, and CV ! 1/(; hence, v1/v ! CV$2. The two
scaling relationships are comparable, but the exponents are
clearly different. While the two families of distributions are
qualitatively similar, our analysis shows that they are mathe-

matically distinct. A direct comparison between the distribu-
tions however, shows that at fixed mean and CV, ISI distribu-
tions of spiking neurons deviate only weakly from gamma
distributions (see Fig. 4), as the two families of distributions
have similar asymptotics. We therefore conclude that gamma
distributions provide a natural first approximation to ISI dis-
tributions of spiking neurons.

ISI distributions Are Approximately Independent of the
Neuronal Model

The analysis of the LIF model identified a progression
between three types of ISI distributions as the input fluctua-
tions are increased at a fixed firing rate: 1) a narrow distribu-
tion, 2) an exponential with an effective refractory period, and
3) an exponential with bursts. Here we examine whether these
three types of distributions are also present in more biophysi-
cally realistic spiking models. One possible concern is that
some aspects of the firing statistics of the LIF neuron could
originate from the hard threshold used to generate spikes in that
model and that more realistic models might lead to ISI distri-
butions of different shapes.

We first consider the EIF model, in which APs are initiated
by a sodium-like, exponential conductance (Fourcaud-Trocmé
et al. 2003). Compared with the LIF model, the EIF model
includes one additional parameter, the spike-sharpness #T,
which allows it to produce APs with a range of different
shapes. Fits to experimental data (Badel et al. 2008) indicate
that for pyramidal cells #T 3 1 mV, while the Hodgkin-Huxley
model corresponds to #T 3 3.5 mV (Fourcaud-Trocmé et al.
2003), and the LIF model is recovered for #T ! 0.

The EIF model is a one-dimensional model, so its dynamics
can be analyzed with the help of the Fokker-Planck equation.
Similarly to the LIF model, the ISI distribution can be written
as a sum of exponentials, and the corresponding decay rates
can be computed numerically using the method introduced by
Richardson (2004) (see MATERIALS AND METHODS). This compu-
tation confirms that a gap is present between the dominant and
the subdominant decay rate, implying that at long times the
dynamics converge to a resting state and the ISI distribution
decays exponentially with a rate c1. For a given mean firing
rate v and a given CV, the values of the dominant decay rate v1
for the EIF model are approximately equal to those of the LIF
model, as shown in Fig. 2A. Numerical simulations in fact
show that for a given v and CV the full ISI distributions of the
LIF and EIF model are very similar to each other (Fig. 5).
These observations hold independently of the value of the
spike sharpness parameter #t.

We next turn to the WB model, a Hodgkin-Huxley like
conductance-based model (Wang and Buzsáki 1996). It has
been previously found that the f-I curve and the linear response
function of the WB model can be reproduced by an EIF model
with appropriately chosen values of the spike initiation param-

Fig. 4. Scale invariance of the ISI distribution and compar-
ison with the gamma distribution. A-C: distribution of ISIs
rescaled by the mean ISI ,T- for a given CV and 3 different
values of the mean firing rate. A: CV ! 0.2. B: CV ! 0.8.
C: CV ! 1.2. For comparison, A-C also show the gamma
distributions (Eq. 45) for the corresponding value of
the CV.
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eter #t, reset potential Vr, and refractory time &rp (Fourcaud-
Trocmé et al. 2003). Here we examined the ISI distribution of
the WB model receiving a white-noise input. For given values
of the mean firing rate v and CV, the ISI distribution of the WB
model closely overlaps those of the LIF and EIF model (see
Fig. 5). The most apparent difference is seen at short ISIs in the
bursting regime (see Fig. 5Aiii): due to a different postspike
reset mechanism in the WB model compared with the inte-
grate-and-fire models, the distributions are different for ISIs
shorter than 5 ms. While the ISI distributions of the WB model
and the fitted EIF model could have been expected to be
similar, it is somewhat surprising that the ISI distribution of the
WB model is so close to the LIF model and EIF model with
sharper spikes, as the firing rate dynamics of these models
differ significantly (Fourcaud-Trocmé et al. 2003; Ostojic and
Brunel 2011).

Our results strongly suggest that the first two moments
essentially determine the full ISI distribution independently of
the model considered. This implies that the analytic results
obtained for the LIF model extend directly to the EIF and WB
model. In particular, these models also exhibit an exponential
decay of the ISI distribution at long times due to the loss of
memory of the previous spike, and the shape of the full ISI
distributions depends approximately only on the value of
the CV.

It should be noted that the finding that the ISI distributions
depend weakly on the model implies that the spike-train
autocorrelation functions are also very similar for the three
models. The ISI distributions and the autocorrelation functions
are indeed directly related (see MATERIALS AND METHODS). A
direct comparison between the autocorrelation functions of the
LIF, EIF, and WB models indeed confirms that they are very
close to each other (see Fig. 5). This observation complements
the earlier finding that the power spectra of the LIF model, the
non-leaky IF model, and the quadratic integrate-and-fire model
are very similar for given values of the mean firing rate v and
CV (Vilela and Lindner 2009a). Note also that the autocorre-
lation functions display qualitatively different features in the
three firing regimes that we have distinguished: in the regular
firing regime the autocorrelation is oscillatory (Fig. 5Bi); in the
refractory-exponential regime the autocorrelation has a dip at
short intervals (Fig. 5Bii); and in the bursting-exponential
regime the autocorrelation has a bump at short intervals (Fig.
5Biii).

Effects of Correlated Noise

So far we have examined the ISI distributions only for white
noise inputs, i.e., in the limit of very fast synaptic timescales.
Finite synaptic timescales lead to fluctuating inputs that are
correlated in time, and previous studies have found that such
correlations can qualitatively change the dynamics (Brunel et
al. 2001; Fourcaud and Brunel 2002; Moreno-Bote and Parga
2004, 2006; Schwalger and Schimansky-Geier 2008). In par-
ticular, because of temporal correlations in the inputs, the firing
is no longer a renewal process and consecutive ISIs can be
correlated (Schwalger and Schimansky-Geier 2008), an effect
we do not investigate here.

Here we examine to what extent the results we obtained in
the case of uncorrelated inputs extend to the more realistic case
of a Gaussian stochastic process with a finite correlation time
&n. In that situation, the Fokker-Planck equation depends on
two variables, and the boundary conditions become complex
(Brunel et al. 2001; Fourcaud and Brunel 2002). The limit of
large correlation times has been studied analytically (Schwal-
ger and Schimansky-Geier 2008), and it has been found that in
this case the ISI distribution decays as a power-law for large
ISIs. That behavior, however, dominates only for very large
correlation times (&n ' 100 &m, where &m is the membrane time
constant). Here we focus on shorter correlation times corre-
sponding to synaptic filtering. We determined the ISI distribu-
tion for different models using numerical simulations.

Figure 6 displays the ISI distributions for the LIF, EIF, and
WB models for two different values of the input correlation
time, &n ! 6 ms and &n ! 12 ms. Correlated noise modifies the
ISI distributions with respect to the case of white-noise inputs,
and the precise shape of the ISI distributions depends on the
value of the input correlation time &n. Yet, for a given &n, the
main results obtained in the uncorrelated situation hold: 1) for
long ISIs, the ISI distribution becomes exponential; 2) as the
CV of the firing is increased at fixed firing rate, the ISI
distribution progressively evolves from a narrow distribution to
a refractory exponential and finally to a bursting exponential;
and 3) for given firing rate v and CV, the ISI distributions of
the LIF, EIF, and WB models lie very close to each other.

Effects of Conductance-Based Synaptic Inputs

The results presented in this study are based on the assump-
tion that the compound effect of many synaptic inputs can be
represented as a fluctuating input current to the neuron. This
assumption is expected to be correct if the amplitude of

Fig. 5. Comparison of the firing statistics obtained from
different neural models. A: ISI distributions. B: autocorre-
lation functions. Results for the LIF model, the exponential
integrate-and-fire (EIF), and the Wang-Buzsáki (WB)
model are shown in different colors. In A, i–iii, and B, i–iii,
the functions are compared at equal mean firing rate v and
CV. Ai and Bi: v ! 30 Hz, CV ! 0.2. Aii and Bii: v ! 30
Hz, CV ! 0.8. Aiii and Biii: v ! 30 Hz, CV ! 1.2. In Aiii,
to exclude effects due to different reset mechanisms in the
different models, the distributions are normalized by the
sum over ISIs '5 ms.
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individual postsynaptic currents is small with respect to the
threshold of the neuron. In addition to the influx of current,
synaptic inputs also lead to an increase of the membrane
conductance. In the case of a constant barrage of weak synaptic
inputs, it has been argued that the effect of this conductance
increase can be correctly taken into account simply by decreas-
ing the effective membrane time constant of the neuron (Rich-
ardson 2004), and this is the approximation we used.

To examine the validity of these approximations, we per-
formed numerical simulations of a LIF neuron receiving con-
ductance-based excitatory and inhibitory synaptic inputs (Rich-
ardson 2004; Burkitt 2001). We varied the peak conductances
of the synapses and the firing rates of the presynaptic neurons
in such a way as to obtain a postsynaptic firing rate of 30 Hz
and three different levels of postsynaptic firing variability
corresponding to CV ! 0.2, 0.8, and 1.2 as in Figs. 1, 5, and
6. This essentially amounts to using four synaptic parameters
to fix the three parameters corresponding to the mean and SD
of the equivalent fluctuating input and the effective time
constant, leaving one degree of freedom, which we chose to be
the conductance of excitatory synapses. We therefore deter-
mined the ISI distributions corresponding to fixed mean and
CV but three different strengths of excitatory synapses varying
over an order of magnitude (denoted by 1/, 5/, and 10/) and
corresponding to unitary excitatory postsynaptic potentials
varying approximately from 0.01 to 0.1 mV. For some of the
parameter values, the diffusion approximation is not quantita-
tively correct, in that the values of the mean and SD of the
fluctuating input computed from the synaptic parameters do not
predict the correct firing rate and CV. Nevertheless, for fixed
mean firing rate and CV, the three parameter sets lead to
indistinguishable ISI distributions that are perfectly reproduced
with a model receiving a fluctuating input current (see Fig. 7).

An interesting implication of conductance-based synapses is
that the mean and SD of the equivalent fluctuating current are
constrained by the requirement that synaptic conductances
must be positive. For fixed neural parameters, this constraint

induces a limit on how irregular the firing of the postsynaptic
neuron can be (Chance et al. 2002). However, the maximal
attainable value of the CV depends on the neural parameters
such as the reset and the threshold, as these parameters effec-
tively set the relevant scale of fluctuation and determine
whether an input is subreset [see also, Troyer and Miller
(1997)]. In conclusion, while for neurons receiving current-
based inputs the values of the reset and threshold potential play
no role for the range of possible ISI distributions, this is not
true for neurons with conductance-based inputs.

DISCUSSION

In this study, we systematically examined how fluctuating
inputs resulting from a balance between excitation and inhibi-
tion shape the distribution of ISIs produced by spiking neuron
models. Using analytical tools for the LIF model, we showed
that the ISI distribution can be accurately approximated by a
sum of exponentials. For long ISIs, the distribution generically
displays an exponential decay, corresponding to the fact that
the membrane potential distribution converges to a resting
distribution. The behavior at shorter ISIs depends on the
magnitude of the fluctuating input and progressively evolves
between three classes of features. If the mean input is suprath-
reshold and the fluctuations are weak, the ISI distribution is
dominated by the effects of periodicity in the firing and is in
consequence narrow and close to a Gaussian. If the mean input
is between threshold and reset values, the ISI distribution is
dominantly exponential but exhibits refractory effects at short
intervals. If the mean input is below reset, the ISI distribution
is dominantly exponential, with an increased tendency to fire at
short intervals since the previous spike. Fluctuating inputs lead
only to these three possible shapes of ISI distributions, the
actual shape being determined by the CV of the ISIs and
independent of the mean firing rate. The ISI distributions of
LIF neurons are therefore well approximated by gamma dis-
tributions.

Fig. 6. Influence of temporal correlations in the input
on the ISI distributions for different neural models.
Fluctuating input is a gaussian stochastic process
with a correlation time &n. A: &n ! 6 ms. B: &n ! 12
ms. Results for the LIF, EIF, and WB model are
shown in different colors. In A, i-iii, and B, i-iii, the
ISI distributions for the different models are com-
pared at equal mean firing rate v and CV. Ai and Bi:
v ! 30 Hz, CV ! 0.2. Aii and Bii: v ! 30 Hz, CV !
0.8. Aiii and Biii: v ! 30 Hz, CV ! 1.2. Insets: ISI
distributions on a log-linear scale to clearly show the
exponential decay at long ISIs.

Fig. 7. Influence of conductance-based synaptic inputs on
ISI distributions for the LIF model. In i-iii, the ISI distri-
butions for the different models are compared at equal
mean firing rate v and CV. i: v ! 30 Hz, CV ! 0.2. ii: v !
30 Hz, CV ! 0.8. iii: v ! 30 Hz, CV ! 1.2. Each pair
of v and CV was produced using 3 different values of
the excitatory synaptic conductance (5/ and 10/ stand
for excitatory conductances 5 and 10 times larger than
in the 1/ case). Full sets of parameters are given in
Table 1.
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Numerical simulations show that the properties of the ISI
distributions identified for the LIF model also hold for other
spiking neuron models such as the EIF model and a Hodgkin-
Huxley type conductance-based model. In addition, we ob-
served that the full ISI distributions were essentially identical
for the three models at equal mean firing rate and ISI CV, so
that the first two moments seem to determine the full ISI
distribution for a large class of models. These findings are
moreover independent of whether the fluctuating input is mod-
eled as white or correlated noise and of whether synapses are
current or conductance based.

Comparison with Previous Studies

The ISI distributions of model neurons have been the subject
of a large number of previous works. In a pioneering study,
Gerstein and Mandelbrot (1964) modeled the membrane po-
tential dynamics as a random walk and found that the ISI
distribution exhibits a power-law behavior. The model they
examined corresponds to an integrate-and-fire model without
leak. This model can be studied with the mathematical tools we
used for the LIF model. However, in absence of a leak current,
the ISI distribution cannot be written as a discrete sum of
exponentials because the spectrum of the Fokker-Planck oper-
ator is continuous and no gap is present around the dominant
decay rate. In contrast, as soon as a confining potential is
present, such as a leak or even simply a lower bound on the
membrane potential (Fusi and Mattia 1999), the spectrum
becomes discrete, and our results hold.

In the mathematical literature, the study of ISI distributions
is part of the large class of first-passage problems. In particular,
the ISI distribution of the LIF model is equivalent to the
first-passage time distribution of the Ornstein-Uhlenbeck pro-
cess and has been extensively studied (Tuckwell 1988). Most
of these studies directly examined the first-passage time dis-
tribution, the Laplace transform of which is known analytically
(Siegert 1951), and focused on the moments of the ISI distri-
bution. Ricciardi and Sato (1988) noted that the first-passage
time distribution can be written as a sum of exponentials, the
exponents being the poles of the Laplace transform of the
distribution. Studying the ISI distribution with the help of
the Fokker-Planck equation for the membrane potential dy-
namics allowed us to appreciate that this property is valid not
only for the LIF model but for a much larger class of models.
To our knowledge, only one study related the ISI distribution to
the eigenvalues of the Fokker-Planck equation for the membrane
potential dynamics (Alili et al. 2005), but the authors did not
systematically examine the effects of the fluctuating input on the
shape of the ISI distribution.

In recent years, several studies have examined dynamics of
integrate-and-fire neurons using a similar mathematical method
to ours, eigen-decompositions of the Fokker-Planck equation
(Knight et al. 2000; Knight 2000; Mattia and Giudice 2002,
2004). While these studies exploited the same tool as we did,
they addressed questions related to rate dynamics rather than
ISI statistics. When studying rate dynamics, the boundary
conditions in the Fokker-Planck equation need to take into
account the reset following the firing of an action-potential [see
e.g., Brunel and Hakim (1999)], while this is not the case for
first-passage statistics. Because the boundary conditions are
different, the spectrum of the Fokker-Planck operator is differ-

ent in the cases of rate dynamics and first-passage distributions.
In particular, in the case of first-passage distribution, the
spectrum is always real and positive, while for rate dynamics
eigenvalues can take on complex values.

Interpreting Experimental Data

We have shown that the family of gamma distributions is a
natural first approximation to the range of ISI distributions
spanned by varying the parameters of the fluctuating inputs to
the neurons. Gamma distributions have been used to fit ISI
distributions measured from cortical neurons (Barbieri et al.
2001; Miura et al. 2007; Maimon and Assad 2009), which
clearly indicates that the ISI distributions produced by spiking
neuron models correspond closely to experimental findings. In
particular, Miura et al. (2007) used dynamic clamp to inject
fluctuating conductance-based inputs to neurons in cortical
slices and found that the ISI distributions were well described
by gamma distributions in direct agreement with our predic-
tions. However, in that study the authors found only gamma
distributions with ( ' 1 (see Eq. 45), i.e., they did not observe
bursting exponential distributions, while in vivo recordings
lead to distributions with both ( ' 1 and ( % 1 (Maimon and
Assad 2009). We predict that gamma distributions with ( % 1
should be observed for subreset inputs, a range presumably not
explored by Miura et al. (2007).

In many experimental recordings, the number of ISIs re-
corded for a given cell is not sufficient to construct a full
histogram. Several previous studies have therefore focused on
the moments of the ISI distribution rather than the full distri-
bution and attempted to fit various models to experimental data
(Tuckwell 1988; Lansky and Radil 1987; Inoue, Sato, and
Ricciardi 1995; Shinomoto, Sakai, and Funahashi 1999; Sakai,
Funahashi, and Shinomoto 1999). In a particularly extensive
study, Shinomoto et al. (1999) computed the CV and skewness
coefficient (equivalent to the third moment of the ISI distribu-
tion) for '600 spike trains and compared them with the values
that can be obtained from the LIF model receiving an uncor-
related fluctuating input current. They numerically found that
the CV and skewness coefficient (SK) of the LIF model cannot
be varied independently but are instead constrained to a very
narrow region of the CV $ SK plane. This observation is in
agreement with our finding that the value of CV essentially
determines the shape of the ISI distribution. Moreover, al-
though not explicitly shown by Shinomoto et al. (1999), the
region in the CV $ SK plane spanned by the LIF model is very
close to the line SK ! 2CV that corresponds to the gamma
distribution. Examining the experimental values of the CV and
skewness coefficient, the authors conclude that the LIF model
with white noise inputs does not fully account for experimental
data, as a number of experimental points deviate from the
region in the CV $ SK plane spanned by the LIF model. It
should, however, be noted that '90% of experimental points
lie close to the LIF region. Moreover, in a later study the
authors showed that including a correlation time in the fluctu-
ating input allows the LIF model to account for all experimen-
tal data points (Sakai, Funahashi, and Shinomoto 1999).

Recent experimental reports have suggested that the typical
shape of ISI distributions vary systematically between different
cortical areas (Shinomoto et al. 2005, 2009; Maimon and
Assad 2009). In particular, Maimon and Assad (2009) used
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gamma distributions to fit the ISI distributions recorded in a
primate neocortex in vivo and found that the average value of
the parameter ( of the distribution (see Eq. 45) appears to vary
systematically between cortical areas, the firing being more
regular (larger () going from the visual to motor areas. An
important question is whether the different types of ISI distri-
butions may reflect different levels of intrinsic fluctuations in
different cortical areas, corresponding to different details of
excitation-inhibition balance in the network activity. The three
types of ISI distributions we have found as the amount of noise
are varied in spiking models resemble strikingly the cortical
distributions found in (Maimon and Assad 2009). The obser-
vation that the magnitude of input fluctuations, rather than the
details of the spike generation mechanism, determine the shape
of the ISI distribution suggest that different amounts of net-
work-generated noise in the different areas may be sufficient to
explain the differences between ISI distributions in different
cortical areas (Maimon and Assad 2009). In our models, the
scale of intracellular fluctuations is set by the distance between
threshold and reset, a parameter that might vary between
different types of neurons. Teasing apart the effects of input
fluctuations and cellular properties may therefore be difficult in
extracellular recordings.

In this study, we have examined spiking models that fire
only sodium-type spikes. While these models fire in bursts
when the input fluctuations are large and the mean input is
subreset, we found that they lead only to unimodal ISI distri-
butions. In contrast, bimodal ISI distributions have been ob-
served in some experimental studies (Bair et al. 1994; Compte
et al. 2003) [but very rarely in Maimon and Assad (2009)].
Preliminary results indicate that bimodal distributions can be
obtained by introducing a calcium-like conductance, the sim-
plest model with such a conductance being the integrate-and-
fire-or burst neuron (Smith et al. 2000). A calcium-like con-
ductance leads to broad calcium spikes which trigger bursts of
sodium APs, similar to the Poisson bursting model (Bair et al.
1994). Other types of mechanisms, such as subthreshold reso-
nance, might also lead to bimodal ISI distributions (Engel et al.
2008). An additional possibility is that some aspects of the
recorded ISI distributions are due to nonstationarities, an im-
portant experimental confound.
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