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A Coincidence-Based Test for Uniformity Given Very
Sparsely Sampled Discrete Data

Liam Paninski

Abstract—How many independent samples N do we need from a
distribution p to decide that p is �-distant from uniform in an L sense,

jp(i) � 1=mj > �? (Here m is the number of bins on which the
distribution is supported, and is assumed known a priori.) Somewhat
surprisingly, we only need N� � m to make this decision reliably
(this condition is both sufficient and necessary). The test for uniformity
introduced here is based on the number of observed “coincidences”
(samples that fall into the same bin), the mean and variance of which
may be computed explicitly for the uniform distribution and bounded
nonparametrically for any distribution that is known to be �-distant from
uniform. Some connections to the classical birthday problem are noted.

Index Terms—Convex bounds, hypothesis testing, minimax.

I. INTRODUCTION

We look at a rather basic problem: how many independent and identi-
cally distributed (i.i.d.) samplesN are required to decide that a discrete
distribution p, supported on m points, is nonuniform in an L1 sense?
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More precisely, how large must the sample size N be so that we may
test between the null hypothesis

H0 : pi � 1=m

and the nonparametric alternative

HA :

m

i=1

jp(i)� 1=mj > �

with error approaching zero? We will be interested in the sparse case
m� N , where the classical chi-square theory does not apply.

This question has seen a great deal of analysis in both the computer
science [1], [2] and statistics [8] literature; in particular, there are ob-
vious connections to the “birthday problem” [5], [7] and related tech-
niques for entropy estimation [12]. In fact, our analysis makes essential
use of a version of the so-called “birthday inequality,” which states that
coincident birthdays are least likely when birthdays are uniformly dis-
tributed [3], [6], [11]. The symmetry of the uniform distribution plays
a key role here.

It turns out that the uniformity testing problem is easy, in the sense
that we may reliably detect departures from uniformity with many
fewer samples N than bins m. In fact, it turns out that the condition
N�2m�1=2 ! 1 guarantees the consistency of a fairly simple test
based on the number of “coincidences,” samples that fall into the same
bin. Thus, for fixed �, we only really need about N � p

m samples.
This is similar in spirit to the recent observation that estimating the
entropy of discrete distributions is easy [13] (in that case, N = cm
for any c > 0 suffices, and hence, by a subsequence argument in fact
slightly fewer than � m samples are required to estimate the entropy
on m bins). Thus, it is much easier to test whether a distribution is
uniform than to actually estimate the full distribution (this requires
N � m samples, as is intuitively clear and as can be made rigorous
by a variety of methods, e.g., [4], [14]).

In addition, we prove a lower bound implying that N must grow at
least as quickly as ��2m1=2 to guarantee the consistency of any test
(not just the coincidence-based test introduced here); with fewer sam-
ples, any test will fail to detect the nonuniformity of at least one distri-
bution in the alternate class HA.

II. UPPER BOUND

Our uniformity test will be based on “coincidences,” that is, bins i
for which more than one sample is observed. Alternatively, we may
look at K1, the number of bins into which just one sample has fallen;
for N fixed, K1 is clearly directly related to the negative number of
coincidences. The basic idea, as in the birthday inequality, is that devi-
ations from uniformity necessarily lead to an increase in the expected
number of coincidences, or equivalently, a decrease in E(K1).

To see this, we may directly write out the expectation of K1 under a
given p, using linearity of expectation

Ep(K1) =

m

i=1

N

1
pi(1� pi)

N�1:

In the uniform case, pi � 1=m and

Eu(K1) = N
m� 1

m

N�1

: (1)

Now we will compare these two expectations by computing the
difference

Eu(K1)�Ep(K1)

= N
m� 1

m

N�1 m

i=1

pi 1� m

m� 1
(1� pi)

N�1

:

After some approximations and an application of Jensen’s inequality,
we have the following key lower bound on E(K1) in terms of the dis-
tance from uniformity �:

Lemma 1:

Eu(K1)� Ep(K1) � N2�2

m
[1 +O(N=m)]; 8 p 2 HA:

(A technical note: as noted above, we restrict our attention to the
“sparse” regime N = o(m), where direct estimation of the underlying
distribution p is not feasible [4], [14].)

Proof: Making the abbreviation

f(pi) = pi 1� m

m� 1
(1� pi)

N�1

we have

Eu(K1)� Ep(K1) = N
m� 1

m

N�1 m

i=1

f(pi): (2)

The function f(x) has a fairly simple form: f(0) = 0, f(1=m) = 0,
f(x) < 0 for 0 < x < 1=m, f(x) is monotonically increasing for
x > 1=m, and f(x) ! x as x becomes large. However, f(x) is not
convex. To develop a lower bound on Eu(K1)�Ep(K1), we develop
a convex lower bound on f(x), valid for all x 2 [0; 1] when N � m

f(x) � g(jx � 1=mj) + f 0(1=m)(x� 1=m)

with

g(z)

=
f(z+1=m)�f 0(1=m)z; z2 [0; 1=N�1=m]

f(1=N)+(z+1=m�1=N)�f 0(1=m)z; o.w.

This lower bound on f(�) looks more complicated than it is: for values
of x close to 1=m, where f(x) is convex, we have simply reflected
f(x) about the point 1=m and added a line in order that the reflected
function is smooth. For x > 1=N , we have replaced f with a linear
lower bound of slope 1 (the limiting slope for f(x) for large x). Here
the point x = 1=N is chosen as the solution of the equation

f 0(x) = 1; 1=m < x < 1;

this solution exists uniquely when m > N . The derivative f 0(1=m) is
easily computed as

f 0(1=m) = (N � 1)=(m� 1)

and similarly, we may directly compute f 0(1=N) = 1. The key is that
g(jzj) is convex, symmetric, and strictly increasing in its argument z;
see Fig. 1 for an illustration.

Now we subtract off the line and then apply Jensen. First, we have,
for any constant c

i

[f(pi)� c(pi � 1=m)] =
i

f(pi)�
i

c(pi � 1=m)

=
i

f(pi)� c
i

pi � 1

=
i

f(pi);

in particular, we have that

i

f(pi) �
i

g(jpi � 1=mj) + f 0(1=m)(pi� 1=m)

=
i

g(jpi � 1=mj):
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Fig. 1. Illustration of the convex lower bound on the function f(p) in (2). The right panel is just a zoomed-in version of the left panel. N = 20; m = 50.

Now Jensen implies

1

m
i

g(jpi � 1=mj) � g
1

m
i

jpi � 1=mj � g(�=m)

where the last inequality is by the fact that g is increasing and p 2 HA.
Thus, we find that

i

f(pi) � mg(�=m)

and therefore

Eu(K1)�Ep(K1) � Nm
m� 1

m

N�1

g(�=m):

Now we need to look at g(�). Near 0, g(�) behaves like a quadratic
matched to f at the point 1=m

g(z) =
A

2
z2 + o(z2); z ! 0

with

A =
�2f(x)

�x2 x=1=m

=
m

m� 1

N�1

2(N � 1)(1� x)N�2

� (N � 1)(N � 2)x(1� x)N�3

x=1=m

=2N +O(N2=m):

Thus, we have

Eu(K1)� Ep(K1) � Nm
m� 1

m

N�1

� [N +O(N2=m)]
�2

m2
+ o

�2

m2

=
N2�2

m
[1 +O(N=m)];

which completes the proof.

On the other hand, we may bound the variance of K1 under p as
follows.

Lemma 2:

V arp(K1) � Eu(K1)�Ep(K1) +O(N2=m):

Proof: It is not difficult to compute V arp(K1) exactly

V arp(K1)

= Ep(K1)�Ep(K1)
2 +N(N � 1)

i 6=j

pipj(1� pi � pj)
N�2:

However, we found it inconvenient to bound this formula directly. In-
stead, we use the Efron–Stein inequality [17]

V ar(S) �
1

2
E

N

j=1

(S � S(i))2

where S is an arbitrary function of N independent random variables
(RVs) xi and

S(i) = S(x1; x2; . . . ; x
0
i; . . . ; xN )

denotes S computed with x0i substituted for xi, where x0i is an i.i.d.
copy of xi. We will apply this inequality to S = K1, with xi the
independent samples from p.

Since we are dealing with i.i.d. samples here, by symmetry we may
write

1

2
E

N

j=1

(S � S(i))2

=
N

2
Efx g �p

i�i;j�m

pipj 1(ni = 0 \ nj > 0)

+ 1(nj = 0 \ ni > 0)

= N
i;j

pipjPfx g �p(ni = 0 \ nj > 0)

= N
i;j

pipj(1� pi)
N�1 1� 1�

pj
1� pi

N�1

= N
i;j

pipj (1� pi)
N�1 � (1� pi � pj)

N�1

� N

m

j=1

pj 1� (1� pj)
N�1

= Eu(K1)� Ep(K1) +N 1�
m� 1

m

N�1

= Eu(K1)� Ep(K1) +O(N2=m):

(Here ni denotes the number of samples observed to have fallen in bin
i after N � 1 samples have been drawn, the second-to-last equality
follows from (2), and the inequality uses the fact that (1� y)n � (1�
y � x)n is a decreasing function of y for n > 1, x 2 [0; 1], and
0 < y < 1� x.)

Now we may construct our test for H0 versus HA: we reject H0 if

T � Eu(K1)�K1 = N
m� 1

m

N�1

�K1 > T�

for some threshold T�.
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Theorem 3: The size of this test is

Pu(T � T�) = O
N2

mT 2
�

:

The power is greater than

Pp(T � T�) � 1�
Eu(K1)�Ep(K1) +O(N2=m)

(Eu(K1)� Ep(K1)� T�)2

uniformly over all alternatives p 2 HA. If

N2�4=m!1

then the threshold T� may be chosen so that the size tends to zero and
the power to one, uniformly over all p 2 HA (i.e., this condition is
sufficient for the test to be uniformly consistent). For example

T� = N2�2=2m

suffices.
We should note that the above bounds are based on a simple appli-

cation of Chebyshev’s inequality and therefore are by no means guar-
anteed to be tight.

Proof: We have that Eu(T ) = 0 and Vu(T ) = O(N2=m) (by
Lemma 2), and therefore, by Chebyshev, the size is bounded by

Pu(T � T�) = O
N2

mT 2
�

:

For the power, we have that

Pp(T < T�) =Pp (T �Ep(T ) < T� � Ep(T ))

�
Ep(T ) +O(N2=m)

(Ep(T )� T�)2

again by Lemma 2.
Now, by Lemma 1, it is clear that for the size to tend to zero and the

power to tend to one, it is sufficient that the “z-score”

N2�2=m

(N2=m+N2�2=m)1=2
=

N2�4=m

1 + �2

1=2

tends to infinity. Since 0 < � � 2, and �4=(1+ �2) � �4 for � 2 [0; 2],
the proof is complete.

III. LOWER BOUND

The preceding theorem states that N2�4=m ! 1 is a sufficient
condition for the existence of a uniformly consistent test of H0 versus
HA. The following result is a converse.

Theorem 4: If N2�4 < m log 5, then no test reliably distinguishes
H0 from HA; more precisely, for any test with critical region B and
size bounded away from one, the minimum power

inf
p2H B

p(x)dx

remains bounded away from one.
Proof: It is a well-known [9], [10], [16] consequence of the clas-

sical Neyman–Pearson theory that no uniformly consistent test exists
if the L1 distance

u(~x)�
q2H

q(~x)d�(q)
1

is bounded away from 2 for any � 2 P(HA), withP(HA) the class of
all probability measures onHA, and k�k1 denoting the L1 norm on the
sample space ~x 2 f1; . . . ; mgN equipped with the counting measure.

We develop this bound for one particular tractable mixing measure
�. (We make no claims that this measure will lead to optimal bounds.)
Assume that m is even. (An obvious modification applies if m is odd.)
We choose q randomly according to the following distribution �(q):
choose m=2 independent Bernoulli RVs zj 2 f�1; 1g (i.e., z samples
uniformly from the corners of them=2-dimensional hypercube). Given
fzjg, set

q(i) =
(1 + �zi=2)=m; i even
(1� �z(i+1)=2)=m; i odd.

Such a q will be a probability measure satisfying the equality ku �
qk1 = � (and, therefore, lie on the boundary of the alternate hypoth-
esis class HA) with probability one, assuming � � 1. We let Q(~x) =
q(~x)d�(q) denote the resulting probability measure. Similar mixing

measures have appeared, e.g., in [16]; this mixture of indistinguishable
distributions technique is a fundamental idea in the minimax density
estimation literature.

To compute the corresponding bound, we use the elegant (albeit
somewhat involved) method outlined in Pollard’s “Asymptopia” min-
imax notes [15].

1) First, we substitute a more manageable L2 bound for the L1 norm

kQ� uk1 � kQ� uk2:

2) Next, we write out the likelihood ratio

Q = 2�m=2

z2f�1;1g

Qz

with

dQz

du
(~x) =

N

j=1

(1 +G(xj ; z))

where G(xj ; z) = �zj=2 or ��z(j+1)=2, depending as j is even
or odd, respectively. Note that

EuG(xj ; z) = 0

for all j, z. Define

�(~x) �
dQ

du
(~x)

= 2�m=2

z

1 +

N

j=1

G(xj ; z)

+
j>j

G(xj ; z)G(xj ; z) + � � �

the sums ending with the N -fold product.
3) Now we expand the L2 norm

kQ� uk22 =Eu(�� 1)2

(�� 1)2 =2�m

z;z

1 +
j

G(xj ; z)

+
j>j

G(xj ; z)G(xj ; z
0) + � � � :
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Because of the independence of xj and z, and the fact that G has
zero mean, we may cancel all of the terms that are not products of
the form

Hj(z; z
0) � EuG(xj ; z)G(xj ; z

0) =
2�2

m

m=2

i=1

v(zi; z
0

i)

with v(zi; z0i) = 1 if zi = z0i and v(zi; z0i) = �1 otherwise. So
we have

Eu(�� 1)2 =2�m

z;z j

Hj(z; z
0)

+
j>j

Hj(z; z
0)Hj (z; z

0) + � � �

=2�m

z;z j

(1 +Hj(z; z
0))� 1:

4) The above term may be regarded as an average over two i.i.d. RVs
z and z0

Eu(�� 1)2 = Ez;z

j

(1 +Hj(z; z
0))� 1:

5) Now we use log(1 + t) � t

j

(1 +Hj(z; z
0)) � exp

j

Hj(z; z
0) :

6) Finally, we compute

Ez;z exp
j

Hj(z; z
0)

=
1

2
exp

2N�2

m
+

1

2
exp �2N�2

m

m=2

and use the bound

1

2
(exp(u) + exp(�u)) � exp

u2

2

to obtain

Ez;z exp
j

Hj(z; z
0) � exp

N2�4

m
:

Putting everything together

kQ� uk1 � exp
N2�4

m
� 1

1=2

:

Thus, if N2m�1�4 is not sufficiently large, then kQ�uk1 is bounded
away from 2, and no uniformly consistent test exists.

An Alternate Lower Bound

The preceding result provides a quantitative, nonasymptotic lower
bound on the error probability, but the bound is loose and the result
becomes useless for a fixed � if N2=m becomes too large. It is worth
deriving a simpler, asymptotic result to handle this case of large but
bounded N2=m.

Theorem 5: If N2=m remains bounded, then no test reliably distin-
guishes H0 from HA.

Proof: The proof here is much more direct. We write out the ratio
of marginal likelihoods, using the same uniform-hypercube mixture

prior on HA as above. Letting ni denote the number of samples ob-
served to have fallen into the ith bin, we have

L(~njHA)

L(~njH0)
=E~z

i=2;4;...;m

(1� zi=2�)
n (1 + zi=2�)

n

=
i=2;4;...m

E(1� zi=2�)
n (1 + zi=2�)

n

=
i=2;4;...m

(1 + �)n (1� �)n

+ (1 + �)n (1� �)n =2

=
i=2;4;...m

(1� �2)m (1� �)d + (1 + �)d =2

=
i=2;4;...m

(1� �2)m 1 +
di
2

�2 +
di
4

�4 + � � �

where we have abbreviated mi = min(ni; ni�1) and di =
jni � ni�1j, and used the independence of zj . (We interpret d

k
as 0

whenever di < k.)
Now note that the above multiplicands are greater than one only if

di � 2, and less than one only if mi � 1. And, since the number of
“two-bin coincidences”—pairs of bins into which two or more sam-
ples have fallen—is bounded in probability if N = O (

p
m), the like-

lihood ratio is bounded in probability as well, implying that the error
probability of any test is bounded away from zero, and the proof is
complete. Finally, it is worth noting that the expected numbers of the
events (mi = 1; di = 0) and (mi = 0; di = 2) scale together, leading
(after an expansion of the logarithm and a cancellation of the �2 terms)
to exactly the N2�4=m scaling we observed previously.
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Bayesian Analysis of Interference Cancellation for
Alamouti Multiplexing

Songsri Sirianunpiboon, A. Robert Calderbank, Fellow, IEEE, and
Stephen D. Howard

Abstract—Space–time codes built out of Alamouti components have
been adopted in wireless standards such as UMTS, IEEE 802.11n, and
IEEE 802.16, where they facilitate higher data rates through multiplexing
of parallel data streams and the addition of two or more antennas at
the receiver that perform interference cancellation. This correspondence
provides new theoretical insight into different algorithms for interference
cancellation through a Bayesian analysis that expresses performance as a
function of signal-to-noise ratio (SNR) in terms of the “angles” between
different space–time coded data streams.

Index Terms—Alamouti code, Bayesian analysis, decoding algorithms,
interference cancellation, Quaternion arithmetic, space-time block codes.

I. INTRODUCTION

Information-theoretic analysis by Foschini [1] and by Telatar [2]
shows that multiple antennas at the transmitter and receiver enable
high rate wireless communication. Space–time codes, introduced by
Tarokh et al. [3], improve the reliability of communication over fading
channels by correlating signals across different transmit antennas. The
most famous space–time block code (STBC) was discovered by Alam-
outi [4] and the reason for broad commercial interest in this code is
that both coherent and noncoherent detection are remarkably simple.
It is possible to separate the data streams transmitted from the two an-
tennas using only linear processing at the receiver. This means that the
end-to-end complexity of signal processing is essentially the same as
single-antenna systems.

The Alamouti code also facilitates higher data rates through multi-
plexing of parallel data streams and the addition of a second antenna
at the receiver that performs interference cancellation. Data rates of
4 bits/s/Hz have been demonstrated for several wireless channels

Manuscript received October 12, 2006; revised April 11, 2008. Current
version published September 17, 2008. The work of S. Sirianunpiboon was
supported by the Australian Defence Science and Technology Organization
(DSTO) long range research fellowship. The work of A. R. Calderbank
was supported in part by the National Science Foundation under Grant
0701226 and by the Air Force Office of Scientific Research under MURI
Grant AFOSR-FA9550–05–1–0443. The material in this correspondence was
presented in part at IEEE Information Theory Workshop, Bergen, Norway, July
2007.

S. Sirianunpiboon and S. D. Howard are with the Defence Science and Tech-
nology Organization, PO Box 1500, Edinburgh 5111, Australia (e-mail: songsri.
sirianunpiboon@dsto.defence.gov.au; stephen.howard@dsto.defence.gov.au).

A. R. Calderbank is with Electrical Engineering and Mathematics, Princeton
University, Princeton, NJ 08544 USA (e-mail: calderbk@math.princeton.edu).

Communicated by H. Boche, Associate Editor for Communications.
Color versions of Figures 1–3 in this correspondence are available online at

http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2008.929012

including UMTS, GSM EDGE, IEEE 802.11n, and IEEE 802.16 (see
[5]). In each case, the algebraic structure of the space–time block
code makes it possible to implement end-to-end receiver functionality
without going beyond the capabilities of digital signal processors
(DSPs) used in second-generation cellular technology. Our Bayesian
analysis of interference cancellation provides new theoretical insight
and is able to predict performance of different detection algorithms as
a function of signal-to-noise ratio (SNR). For transmission schemes
involving multiplexing a number of independent Alamouti coded
transmissions we find for a given overall SNR, the performance is
dominated by the channel volume which depends on the complete
channel only through the “angles” between the component Alamouti
channels.

II. INTERFERENCE CANCELLATION OF MULTIPLE ALAMOUTI SCHEMES

The encoding rule for the Alamouti space–time block code is de-
scribed by a 2 � 2 matrix

(c1; c2)!
c1 c2

�c�2 c�1
(1)

where the columns represent different time slots, the rows represent
different antennas, and the entries are the symbols to be transmitted.
The signals (r1; r2) received over two consecutive time slots are given
by

r1

�r�2
=

h1 h2

�h�2 h�1

c1

c2
+

n1

n2
(2)

where h1; h2 are the path gains from the two transmit antennas to the
mobile, and the noise samples n1; n2 are independent samples of a
zero-mean complex Gaussian random variable with zero mean and co-
variance 2�2. The structure of the Alamouti code induces a structure
on the channel. For any complex channel vector (h1; h2) the induced
channel matrix is

(h1; h2)! H =
h1 h2

�h�2 h�1
: (3)

The space of matrices
h1 h2

�h�2 h�1
with (h1; h2) varying over 2

form a representation of the quaternions.
Consider two co-channel users, each using the Alamouti code. Let

ccc = (c1; c2)
T and sss = (s1; s2)

T be the codewords transmitted by
the first and second users, respectively; rrr1 = (r11;�r

�

12)
T and rrr2 =

(r21;�r
�

22)
T are the received signal vectors, where the components

of rrri are the signals received at the antenna i over two consecutive
symbols periods. We have

rrr1 =H1ccc+G1sss+ nnn1

rrr2 =H2ccc+G2sss+ nnn2 (4)

where H1 and H2 are the channel matrices from the first user to the
first and second receive antennas, respectively, and the matrices G1

and G2 are the channel matrices from the second user to the first and
second receive antennas, respectively. The vectors nnn1 and nnn2 are com-
plex Gaussian random variables with zero mean and covariance 2�2I2,
where In is n � n identity matrix.

Rewrite (4) as

rrr = Hccc+Gsss+ nnn (5)

where

rrr = (rrr1; rrr2)
T
; H = (H1;H2)

T and G = (G1; G2)
T
:
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