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Incorporating Naturalistic Correlation Structure Improves
Spectrogram Reconstruction from Neuronal Activity in the
Songbird Auditory Midbrain
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Birdsong is comprised of rich spectral and temporal organization, which might be used for vocal perception. To quantify how this
structure could be used, we have reconstructed birdsong spectrograms by combining the spike trains of zebra finch auditory midbrain
neurons with information about the correlations present in song. We calculated maximum a posteriori estimates of song spectrograms
using a generalized linear model of neuronal responses and a series of prior distributions, each carrying different amounts of statistical
information about zebra finch song. We found that spike trains from a population of mesencephalicus lateral dorsalis (MLd) neurons
combined with an uncorrelated Gaussian prior can estimate the amplitude envelope of song spectrograms. The same set of responses can
be combined with Gaussian priors that have correlations matched to those found across multiple zebra finch songs to yield song
spectrograms similar to those presented to the animal. The fidelity of spectrogram reconstructions from MLd responses relies more
heavily on prior knowledge of spectral correlations than temporal correlations. However, the best reconstructions combine MLd re-
sponses with both spectral and temporal correlations.

Introduction
Understanding the neural mechanisms that subserve vocal per-
ception and recognition remains a fundamental goal in auditory
neuroscience (Eggermont, 2001; Theunissen and Shaevitz, 2006).
The songbird has emerged as a particularly useful animal model
for pursuing this goal because its complex vocalizations are used
for communication (Catchpole and Slater, 1995; Gentner and
Margoliash, 2002). Behavioral experiments have shown that
songbirds can discriminate between similar, behaviorally rele-
vant sounds (Lohr and Dooling, 1998; Shinn-Cunningham et al.,
2007) and use song for establishing territorial boundaries (Peek,
1972; Godard, 1991) and in mate preference (O’Loghlen and
Beecher, 1997; Hauber et al., 2010). Although the ethological
importance of songbird vocalizations is well known, the neural
basis underlying vocal recognition remains unknown.

The idea that song is processed by neurons that selectively
respond to features of the song’s time-varying amplitude spec-
trum (spectrogram) has been quantified by modeling neuro-

nal responses using spectrotemporal receptive fields (STRFs)
(Eggermont et al., 1983; Decharms et al., 1998; Theunissen et
al., 2000; Sen et al., 2001; Woolley et al., 2006; Calabrese et al.,
2010). These models can successfully predict neuronal re-
sponses to novel stimuli with a high degree of accuracy. In
particular, neurons in the auditory midbrain region, the mes-
encephalicus lateral dorsalis (MLd), have STRFs that can be
categorized into independent functional groups that may
function in detecting perceptual features in song such as pitch,
rhythm, and timbre (Woolley et al., 2009). Midbrain re-
sponses from single and multiple neurons have also been used,
without the STRF model, to discriminate among conspecific
songs (Schneider and Woolley, 2010).

These results provide compelling evidence that zebra finch
auditory midbrain neurons are tuned to specific spectrotemporal
features that could be important for song recognition. Here, we
test whether responses encode enough information about song so
that an “ideal observer” of MLd spike trains could reconstruct
song spectrograms. This method of assessing the information
about stimuli preserved in neural responses by reconstructing the
stimulus is well studied (Hesselmans and Johannesma, 1989; Bi-
alek et al., 1991; Rieke et al., 1995, 1997; Mesgarani et al., 2009;
Koyama et al., 2010; Pillow et al., 2011), and some of the earliest
applications have been in the auditory system. Hesselmans and
Johannesma (1989) created coarse reconstructions of a grass frog
mating call, represented using a transformation known as the
Wigner coherent spectrotemporal intensity density, using neural
responses from the frog auditory midbrain. Rieke et al. (1995)
used stimulus reconstruction to show that auditory nerve fibers
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in the frog encode stimuli with naturalistic amplitude spectra
more efficiently than broadband noise, and Mesgarani et al.
(2009) previously used stimulus reconstruction to study the ef-
fects of behavioral state on responses properties of ferret auditory
cortex.

Like most natural sounds, zebra finch songs have highly
structured correlations across frequency and time, statistical
redundancies that the nervous system might use for perceiving
sound (Singh and Theunissen, 2003). To test how these statis-
tical redundancies could be used in song recognition, we asked
whether reconstructions based on MLd responses, and a novel
generalized linear model (GLM) of these responses (Calabrese
et al., 2010), improve when responses are combined with prior
knowledge of correlations present across zebra finch songs.
We tested whether the fidelity of spectrogram reconstructions
from MLd responses relies more heavily on prior knowledge of
spectral correlations rather than temporal correlations, and
we examined how the filtering properties of MLd neurons
affect reconstruction. Finally, we compared spectrogram re-
constructions under a generalized linear model of responses to
reconstructions based on the more common method of linear
regression.

Materials and Methods
All procedures were in accordance with the National Institutes of Health
and Columbia University Animal Care and Use policies. Thirty-six adult
male zebra finches (Taeniopygia guttata) were used in this study.

Electrophysiology
The surgical and electrophysiological procedures used have been de-
scribed elsewhere (Schneider and Woolley, 2010). Briefly, zebra finches
were anesthetized 2 d before recording with a single injection of 0.04 ml
of Equithesin. After administration of lidocaine, each bird was placed in
a stereotaxic holder with its beak pointed 45° downward. Small openings
were made in the outer layer of the skull, directly over the electrode
entrance locations. To guide electrode placement during recordings, ink
dots were applied to the skull at stereotaxic coordinates (2.7 mm lateral
and 2.0 mm anterior from the bifurcation of the sagittal sinus). A small
metal post was then affixed to the skull using dental acrylic. Each bird
recovered for 2 d after surgery.

Before electrophysiological recording, each bird was anesthetized with
three injections of 0.03 ml of 20% urethane, separated by 20 min. All
experiments were performed in a sound-attenuating booth (IAC) where
the bird was placed in a custom holder 23 cm away from a single speaker.
Recordings were made from single auditory neurons in the MLd using
either glass pipettes filled with 1 M NaCl (Sutter Instruments) or tung-
sten microelectrodes (FHC) with a resistance between 3 and 10 M�
(measured at 1 kHz). The duration of the recording sessions ranged from
4 to 15 h. Awake recording sessions were no longer than 6 h. For a
single animal, awake recordings were performed over a period of
approximately 2 weeks. Electrode signals were amplified (1000�) and
filtered (300 –5000 Hz; A-M Systems). A threshold discriminator was
used to detect potential spike times. Spike waveforms were up-
sampled four times off-line using a cubic spline function, and action
potentials were separated from nonspike events by cluster sorting the
first three principal components of the action potential waveforms
(custom software, Matlab). The number of neurons used in the anal-
ysis varied from 1 to 189.

Auditory stimuli
Stimuli consisted of a set of 20 different adult male zebra finch songs
sampled at 48,828 Hz and frequency filtered between 250 and 8000 Hz.
Each song was presented, in a pseudorandom order, 10 times at an aver-
age intensity of 72 dB sound pressure level. Song duration ranged from
1.62 to 2.46 s, and a silent period of 1.2 to 1.6 s separated the playback of
subsequent songs. All songs were unfamiliar to the bird from which
recordings were made.

Bayesian decoding
In the Bayesian framework, the spectrogram decoding problem is equiv-
alent to determining the posterior probability distribution, p(s�n, �), for
observing a spectrogram, s, given the measured neural responses, n, and
parameters, �. In principle, the posterior contains all available informa-
tion about s. We use different statistics from this distribution (for exam-
ple, the mode or mean) to reconstruct the particular stimulus presented
to the animal.

The encoding model specifies the likelihood, p(n�s, �), which assigns
probabilities to spike trains given the stimulus and parameters. The pos-
terior distribution is related to the encoding model by Bayes’ rule:

p�s�n, � � �
p�n�s, � � p�s�

p�n�� �
, (1)

where p(s) is the prior distribution over song spectrograms. Here, we
reconstruct song spectrograms using single and multiple neurons and
different prior distributions (see below, Birdsong priors) that systemati-
cally add information about the birdsong spectrotemporal statistics.

Encoding model
For a population of N midbrain neurons, we model the number of spikes
fired by neuron i at time t by a random variable nit, where i can range
from 1 to N, and t from 1 to T. We must assume that neurons are
conditionally independent given the stimulus since we recorded cells one
by one. Under this assumption, the likelihood in Equation 1 is given by
the following:

p�n�s, � � � �
t�1

T �
i�1

N

p�nit�s, �, ni1, . . . , ni,t�1�. (2)

We discretize time into bins of width dt and model the conditional dis-
tribution for nit given the spectrogram, spike-history up to time t, and
parameters, � as Poisson:

p�nit�s, �, ni1, . . . , ni,t�1� � exp�� ritdt�
�ritdt�nit

nit!
, (3)

where rit is the instantaneous firing rate of the ith neuron at time t. The
rate rit is given as the output of a GLM. The GLM and its application to
neural data have been described in detail previously (Brillinger, 1988;
McCullagh and Nelder, 1989; Paninski, 2004; Truccolo et al., 2005;
Calabrese et al., 2010), and we give only a brief overview. The GLM for
rit applies a nonlinearity (we use an exponential) to a linear mapping
of input stimuli. As discussed previously by Calabrese et al. (2010),
the model’s ability to predict spikes slightly improves with this non-
linearity. In addition, the exponent prevents the model firing rate
from taking on negative values and allows us to tractably fit the model
to experimental data. The linear mapping is characterized by bi, a
stimulus-independent parameter that models baseline firing; ki,
which will be referred to as the STRF as it performs a linear mapping
of stimulus to response; and a “spike-history” filter, hi(�), which
allows us to model neuronal effects such as firing-rate saturation,
refractory periods, and/or bursting behavior. Even though the GLM
conditional distribution, p(nit�s, �, ni1,…, ni,t �1), is Poisson, the joint
spike train, ni1, …, ni,T, does not follow a Poisson process because of
the feedback from the spike-history filter. This procedure for map-
ping stimuli onto neural responses is schematized in Figure 1, which
shows STRFs derived from data and shows simulated spike responses
produced by the GLM.

Denoting the spectrogram by s( f, t) ( f indicates the spectral bin num-
ber, and t denotes the temporal bin number), the firing rate rit is modeled
as follows:

rit � exp�bi � �
f ��0

F�1 �
���0

M�1

ki� f �, ���s� f �, t � ��� � �
j�1

J

hi� j�ni,t�j�,

(4)
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where F is the total number of frequency bins
in the spectrogram, M is the maximal lag time
of the STRF, and J is the maximal lag time of the
spike-history filter. Unless explicitly stated
otherwise, spectrograms were temporally
binned at 3 ms with 35 linearly spaced fre-
quency bins (F � 35) from 400 to 6000 Hz. The
power density of all spectrograms is log trans-
formed so that units of power are expressed in
decibels. We set M � 7 (21 ms) and J � 10 (30
ms). Model parameters, �i � {bi, ki, hi} for i �
1…N are fit from MLd responses to conspecific
song using L1-penalized maximum likelihood
(Lee et al., 2006). See Calabrese et al. (2010) for
full details about the penalized fitting
procedures.

Birdsong priors
Equation 1 shows that song reconstruction de-
pends on p(s), the prior distribution of power
spectral densities present in spectrograms. We
test how song reconstruction depends on prior
distributions that have the same spectrotem-
poral covariations present in song. We used
several Gaussian priors because these distribu-
tions depend only on the covariance and mean.
Other distributions might lead to better recon-
structions by providing information about
higher-order statistics in song, but are much
more complicated to fit and optimize over. All
Gaussians had the same frequency dependent
mean, but each had its own covariance matrix.
All prior parameters were computed using the
same songs as those used to collect the data (see
above, Auditory stimuli). These songs appear
to be sufficient to estimate the prior parameters
under the Gaussian models presented below.
Estimating the prior parameters for more complicated models may re-
quire more data, which can be obtained by using more bird songs than
the ones used to collect the neural data. Each song is reconstructed with a
prior whose parameters are estimated from all songs in the data set, except
the one being reconstructed. The prior mean, �̂f, was found by assuming
temporal stationarity of song and computing the empirical average power
density across all temporal bins in the song data set.

Noncorrelated Gaussian prior. To measure how well a population of
midbrain neurons alone could reconstruct the spectrogram, we used a
minimally informative prior. The least informative prior we used is an
uncorrelated Gaussian:

p�s� � �
f�1

F �
t�1

T
1

�2��̂f
2

exp ���s� f, t� � �̂f �2

2�̂ f
2 � , (5)

where �̂f is the empirical average power density discussed above, and �̂f
2

is the empirical variance of songs in our data set at each frequency bin f.
This prior does not provide information about spectral and/or temporal
correlations in song. The prior variance is estimated by the empirical
variance of songs in our data set. Figure 2 shows a histogram of spectro-
gram power density values across all spectrogram bins in the song data set
(blue dots) and a univariate Gaussian with mean and variance equal to
those found in the data.

Spectrally correlated Gaussian prior. Next we measured how well
spectrograms can be reconstructed when midbrain neuronal re-
sponses are combined with prior knowledge of spectral correlations
across multiple conspecific songs. To do this we used a Gaussian prior
whose covariance matrix depended only on frequency. Writing the
covariance in spectrogram power between one time and frequency
bin, {t, f }, and another, {t�, f �}, as C({t, f }, {t�, f �}), this prior covari-
ance is written as follows:

C��t, f 	, �t�, f �	� � 
� f, f ��	�t � t��, (6)

where 	() is the Dirac delta function. The prior distribution is given by
the following:

p�s� � �
t�1

T
1

�2��
F

2�
�
1

2

exp���s�. ,t� � �̂�T
�1�s�. , t� � �̂�

2 �,

(7)

where we use s(., t) to denote the column vector of power density
across frequencies at time t. The 
 matrix is empirically fit from
example songs:


� f, f �� �
1

Nt � 1�
n�1

Nt

�s� f, n� � �̂ f��s� f �, n� � �̂ f ��, (8)

where Nt is the total number of time bins in the data set. The value of Nt can
be different from that of T, because T refers to the number of time-bins in the
spectrogram being reconstructed, whereas Nt is the number of time bins in
the entire data set used for training. For the data set used here, Nt � 13,435.
Figure 3A (top) plots the 
 matrix. The spectral correlations averaged across
all songs are larger at higher frequencies.

Temporally correlated Gaussian prior. To measure how well songs can
be reconstructed when midbrain responses are combined with prior
knowledge of temporal correlations across conspecific songs, we recon-
structed spectrograms with a prior containing temporal correlations but
no spectral correlations:

C��t, f 	, �t�, f �	� � CT�t, t��	� f � f ��. (9)

The prior distribution is given by the following:

Figure 1. Encoding model and parameters. In the encoding model, each neuron is modeled with a spectrogram filter
(STRF) and postspike filter that captures stimulus-independent spiking properties. The stimulus is temporally convolved
and frequency multiplied with the STRF and then exponentiated to obtain the instantaneous firing rate used for generating
spikes. The spikes are convolved with the post-spike filter and used in the model as a feedback signal that affects future
spike generation.
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p�s� � �
f � 1

F
1

�2��
T

2 �CT�
1

2

exp�� �s� f, .� � �̂f�
TCT

�1�s� f, .� � �̂f�

2 �,

(10)

where s( f, .) denotes the column vector of power density across time at
frequency bin f.

We estimated the covariance matrix CT by modeling the temporal
changes in power density at a given frequency bin f as a stationary, order
p, autoregressive (AR) process:

s�� f, t� � s� f, t� � �̂ f, (11)

s�� f, t� � �
i � 1

p

ais�� f, t � i� � �̂�
t, (12)

where the constant terms ai and �̂� are model coefficients, and 
t is a white
noise, Gaussian random variable with unit variance. We used the covariance
of this AR process instead of the empirical temporal covariance matrix to
construct CT. This is beneficial because it allowed us to approximate song
correlations with far fewer parameters. Without an AR model, the number of
nonzero values in the matrix CT

�1 would grow quadratically with T, the
temporal size of the spectrogram. This is troubling because each matrix
element must be estimated from data, and therefore the amount of data
required for accurately estimating CT

�1 grows with T. The inverse covariance

matrix, CT
�1, under an AR model is given by the square of a sparse Toeplitz

matrix, A (Percival and Walden, 1993):

A � �
1 0 0 0 0 0

a1
· · · 0 0 0 0

·
·
·

a1
· · · 0 0 0

ap
· · ·

· · ·
· · · 0 0

·
·
·

· · ·
· · · a1 1 0

0 0 ap · · · a1 1

	 , (13)

CT
�1 �

ATA

�̂�2 . (14)

As seen in Equation 14, when we estimate the correlations using an AR
model, the number of nonzero values in the matrix CT

�1 depends only on
the parameters ai and �̂� and, importantly, is independent of T. Thus the
amount of data required to accurately estimate CT

�1 using an AR model is
independent of T. To fit the AR coefficients, we used the Burg method to
minimize the sum of squares error between the original and AR model
power density (Percival and Walden, 1993). We combined the temporal
changes across all songs and spectral bins to fit the AR coefficients. Figure
3A (bottom) compares the correlations of a 26 order ( p � 26) AR model
with empirical temporal correlations, averaged across songs and spectral
bins. There is a trade-off between increasing the order of the AR model
for obtaining good fits to the birdsong correlation function and the mem-
ory required to store the inverse covariance matrix/computational time to
reconstruct spectrograms. We set p � 26 because lower-order models did
not do a sufficient job of capturing the dip and rise present in the correlation
function visible between 0 and 100 ms (Fig. 3A). Note that we do not show a
covariance matrix because an AR process assumes that the covariance be-
tween time points t and t� depends only on the absolute difference or lag time
between the points CT(t, t�) � CT(�t � t��); i.e., all necessary information is
contained in the correlation function. It is clear from Figure 3A that the
temporal correlation function of the AR model closely matches the empirical
correlation function found directly from the data.

Gaussian prior with spectrotemporal correlations. Finally, we measured
how well songs can be reconstructed when midbrain responses are com-
bined with the spectral and temporal correlations across conspecific
songs. To do this, we reconstructed songs using a Gaussian prior with
covariance equal to the separable product of the previously described AR
covariance matrix and the 
 matrix:

C��t, f 	, �t�, f �	� � �
� f, f �� CT��t � t���. (15)

The factor � is set so that the marginal variance of C({t�, f �}, {t�, f �}) is
matched to the average variance of the song spectrograms, 
f �̂f

2.
The prior distribution is given by the following:

p�s� �
1

�2��
FT

2 �C�
1

2

exp �� �s� � �̂�TC �1�s� � �̂�

2 �. (16)

Equation 15 shows that C has a particular block structure in which each
element of the 
 matrix is multiplied by the CT matrix. This structure is
known as a Kronecker product and leads to computational advantages
when manipulating the C matrix. For example, the inverse matrix C �1

also has a Kronecker product form. This is particularly advantageous
because we can use this fact to compute the required matrix multiplica-
tion C �1(s� � �̂) in a time that scales linearly with the dimension T
[O(F 3T ) instead of the usual O((FT )3) time]. To do so, we must con-
struct the spectrogram vector s� so that same time-frequency bands are
contiguous, s� � [s(., 1), s(., 2) ,…, s(., T )]T.

The matrix C does not exactly match the correlations in birdsong
because it assumes that spectral and temporal correlations can be
separated. Using a separable covariance matrix and our AR model is
beneficial because we do not need to estimate and store the full
(FT ) � (FT ) covariance matrix, a task that becomes infeasible as we
increase the number of time bins in our reconstruction. Importantly,
we wanted to find reconstruction algorithms that could be performed

Figure 2. Least informative prior: uncorrelated Gaussian distribution. A, An example spectrogram
with power spectral density indicated by color. B, Normalized histogram of power spectral density
valuesacrossallsongsandspectrogrambins(bluedots).Themeanandvarianceofthesepowervalues
is used to construct a Gaussian prior (black line) that confines estimated values of power spectral
density to regions found in actual song spectrograms. C, To visualize the information provided by the
prior, a sample spectrogram drawn from this prior is plotted. This prior does not provide information
on spectrotemporal correlations in spectrograms, as demonstrated by this sample.

Ramirez et al. • Song Correlations Improve Spectrogram Decoding J. Neurosci., March 9, 2011 • 31(10):3828 –3842 • 3831



in a computationally efficient manner. As
discussed below, the separability approxima-
tion allows us to reconstruct spectrograms in
a manner that is much more efficient than
using a nonseparable matrix. To examine the
validity of the separability assumption, we
computed an empirical covariance matrix,
Ĉ( f, f �, �t � t��) without assuming
separability:

Ĉ� f, f �, �� �
1

Nt
�
i�1

Nt�����1

�s� f, i� � �̂ f�

� �s� f �, i � �� � �̂ f =�, (17)

where Nt is again the total number of time
bins in the data set. In Figure 3B (middle,
True covariance) we plot the matrix Ĉ and
compare it with the separable matrix used in
this study (Fig. 3B, bottom, Approximate co-
variance). Each lag, �, can be thought of as an
index for an F � F frequency matrix. For
example, the top in Figure 3B plots these F �
F matrices when the lag equals zero. The ma-
trix C and its separable approximation plot
these F � F matrices, one for each lag, next to
each other. The two matrices fall to zero
power at the same rate and are closely
matched near zero lags. The separable ap-
proximation has less power in the off-
diagonal frequency bands at intermediate
lags, but overall the separable approximation
is fairly accurate.

To visualize the information about song
provided by this prior, Figure 3C (bottom)
shows a sample spectrogram drawn from this
Gaussian. The differences between this sam-
ple and a typical song spectrogram (top) are
attributable to the separable approxima-
tion to the song covariance matrix and the
Gaussian prior model for the distribution
of song spectrograms. Comparing the two-
dimensional power spectra (also called the
modulation spectra) of song spectrograms
and of this prior is another method for as-
sessing the effects of assuming a separable
matrix. Figure 3D shows that the prior dis-
tribution lacks the peak across spectral mod-
ulations at temporal modulations close to
zero, but otherwise has a similar spectrum.

Hierarchical model prior. One clear failure of
the previous prior models is that real songs have silent and vocal periods.
We can capture this crudely with a two-state model prior. This prior consists
of a mixture of two correlated Gaussian priors and a time-dependent, latent,
binary random variable, qt, that infers when episodes of silence and vocaliza-
tion occur. We refer to this model as the hierarchical prior. One of the
Gaussian distributions has mean power and spectral covariance determined
by only fitting to the silent periods in song, whereas the other has mean
power and spectral covariance fit to the vocalization periods. The two cova-
riance matrices are shown in Figure 4B (top).

Vocalization periods and silent episodes are extracted from the spec-
trogram data set by using a slightly ad hoc method that works well for our
purposes here. A hard threshold is placed on the total power density
summed across spectral bins, a variable we call yt, and on the power
density variance, �̂t

2, across spectral bins:

yt � �
f�1

F

s� f, t�, (18)

�̂t
2 �

1

F � 1�
f�1

F � s� f, t� �
yt

F�
2

, (19)

qt � �1 �vocalization period� yt � q1*, �̂t
2 � q2*,

0 (silent period) otherwise.
(20)

Figure 4 A shows an example spectrogram and associated state transitions
found using the above thresholding procedure, with q*1 set to one stan-
dard deviation below the mean power density in the song and q*2 set to an
empirically determined value of 90 dB 2.

We model qt as a Markov process and fit the transition matrix using
maximum likelihood with training data found by taking state transitions
from real song. The data set used here consisted of 13,435 state samples. This
procedure leads to the transition rates displayed in Figure 4B (bottom).
Temporal correlations come from the AR model covariance matrix (de-
scribed above) and from the temporal correlations induced by the Mark-
ovian model for q. Modeling qt as a Markov process captures features of state

Figure 3. Spectrotemporaly correlated Gaussian prior. A, The spectrotemporal covariance matrix is modeled as separa-
ble in frequency and time. The frequency component is the spectral covariance matrix (top). The temporal component is
fully described by the temporal autocorrelation function in song spectrogram power density (bottom, red line). The prior
uses an approximation to this function using an autoregressive model (blue line). B, The full spectrotemporal covariance
matrix is a concatenation of several spectral covariance matrices, like those shown in the top, each corresponding to the
covariance at a different temporal lag. The bottom, Approximate Covariance, plots the separable covariance matrix, and the
middle, True Covariance, plots the nonseparable covariance matrix. C, Top, An example spectrogram used in determining
song statistics for constructing the Gaussian prior. Bottom, Sample spectrogram drawn from the Correlated Gaussian prior.
D, Two-dimensional power spectra, also called the modulation power spectra (MPS), for song spectrograms (top) and for
the prior (bottom); the prior does a good job of capturing information about spectrotemporal modulations except at joint
regions of high spectral modulations and temporal modulations near zero.
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transitions found in song and allows us to decode spectrograms using well-
known algorithms (see below, Song reconstructions). However, by using a
Markov model we assume that state durations are exponentially distributed,
which only approximates the distribution of durations found in birdsong.

A sample from this prior is shown in Figure 4C. The differences be-
tween vocal and silent periods are more clearly pronounced in this sam-
ple than that of the correlated Gaussian prior (Fig. 3A). Because of the
large differences in spectral correlations between vocal and silent pe-
riods, samples from this model also show spectral correlations closer
to those found in song.

Song reconstructions
Most of our reconstructions will be given by the spectrogram matrix that
maximizes the log of the posterior distribution (the MAP estimate). Sub-
stituting Equations 2 and 3 into Equation 1, the objective function that
we maximize is then as follows:

L�s, � � � log p�s�n, �� � �
i�1

N �
t�1

T

log p�nit�s, �, ni1, . . ., ni,t�1� � log p�s�

� const (21)

� �
i�1

N �
t�1

T

nit log rit � ritdt � log p�s�

� const, (22)

where N is the total number of neurons used in
decoding, � refers to the encoding model pa-
rameters, rit is the firing rate for the ith neuron
at time t (computed via Eq. 4), and p(s) denotes
the prior distribution. We write the term log
p(n��) as “const” because it is constant with
respect to the stimulus. In general, MAP esti-
mates are found by searching over probabilities
for all combinations of power density in a spec-
trogram and determining the most probable
configuration. This task can be extremely com-
putationally difficult as the number of spectral
and temporal bins in the estimate grows. How-
ever, this problem is computationally tractable
using standard Newton–Raphson (NR) opti-
mization methods with the likelihood and
prior distributions discussed above (Paninski
et al., 2009; Pillow et al., 2011). In general, NR
optimization computes the optimal configura-
tion in a time that is on the order of d 3 [written
as O(d 3)], where d is the dimensionality of the
quantity being optimized (in our case, d �
FT ). This is because the rate-limiting step in
NR optimization is the time required to solve a
linear equation involving the matrix of second
derivatives of the objective function, L, in
Equation.21, which requires O(d 3) time in
general. The likelihood and AR model used
here yield sparse, banded Hessian matrices,
which reduces the time for optimization to
O(F 3T ) (Paninski et al., 2009; Pillow et al.,
2011). This speedup is critical since the dimen-
sionality of the decoded spectrograms is ap-
proximately d � 7000.

Song reconstructions under the hierarchical
prior are created using the posterior mean,
E[s�n]. The posterior mean is an optimal statis-
tic to use for reconstruction as it is the unique
estimate that minimizes the averaged squared
error between the reconstruction and pre-
sented spectrogram. Using a Gaussian prior,
we decoded spectrograms with the MAP esti-
mate because it is computationally efficient

and because E[s�n] 
 MAP in this case (Ahmadian et al., 2011; Pillow et
al., 2011). It is easier to compute E[s�n] using Markov chain Monte Carlo
(MCMC) sampling when we decode using the hierarchical prior. The
idea behind MCMC sampling is that if we can generate samples from the
posterior distribution we can use these samples to estimate the mean
(Robert and Casella, 2005). It is difficult to sample directly from the
posterior distribution using the hierarchical prior described above. How-
ever, it is possible to generate samples from the joint distribution, p(s, q�n,
�), which can then be used to estimate E[s�n] (q again refers to the vocal-
ization state). By definition E[s�n] is given by the following multidimen-
sional integral:

E�s�n� � � p�s�n,� �sds (23)

� �
q1�0

1

. . . �
qT�0

1 � p�s,q1, . . . , qT�n,� �sds. (24)

Figure 4. Most informative prior: hierarchical model with a two-state hidden variable that infers whether the spectrogram is in
a vocalization or silent period. These periods have different statistical properties not captured by a single Gaussian prior. The state
variable determines which spectral covariance matrix and mean the prior uses to inform reconstructions. A, Example spectrogram
overlaid with vocalization and silent states (black line). B, Top left, Spectral covariance matrix used during vocal periods. Top right,
Spectral covariance matrix used for silent periods. Bottom, Prior information of transition rates between silent and vocal periods
determined from song spectrograms. C, Sample spectrogram drawn from this prior; the sharp transitions in song statistics during
vocal and silent periods better match song spectrograms.
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The relationship in Equation 24 shows how E[s�n] is related to the joint
distribution. We do not compute the sum in Equation 24 directly but
instead use samples from the joint distribution p(s, q�n, �) to evaluate
E[s�n]. The details are given in the appendix.

Simulating STRFs
We also examined how our results depended on the spectral filtering
properties of the STRF. We compute MAP estimates using simulated
STRFs that have no spectral blur, no history dependence and peak fre-
quency locations sampled from a distribution fit to real STRFs. This
distribution was empirically constructed by creating a histogram of
spectral bins at which STRFs obtained their maximal value. Denoting
the ith neuron’s filter at frequency bin f and temporal lag � by k�if�, our
simulated STRFs take the following form:

k�if� � a�i	 f,f �i	�0, (25)

where 	ij is the Kronecker delta function. We choose the values of a�i and
the new encoding model bias parameters, b�i, to obtain model responses
whose first and second moments are approximately matched to those of
the true responses. For each neuron, we use k and b to compute the linear
mapping:

xit � bi � �
f ��0

F�1 �
���0

M�1

ki� f �, ���s� f �, t � ���. (26)

Then we compute the median, x̃i, and absolute median deviation, �xi � x̃i�
across time of xi. Given x̃i and �xi � x̃i�, we algebraically determine values
of a�i and b�i which yield equivalent linear medians and absolute median
deviations when convolved with the input spectrogram s. In other words,
we solve the following linear equations for a�i and b�i:

x̃i � b�i � a�is̃ f �i, (27)

�xi �̃ x̃i� � �a�i
sf �i �̃ s̃ f �i�. (28)

Spike trains generated using simulated STRFs with parameters fit as de-
scribed previously have first and second moments approximately
matched to spikes generated from real STRFs (see Fig. 10 B, compare
raster plots, middle, bottom).

Optimal linear estimator
We compare our estimates with the optimal linear estimator (OLE) (Bi-
alek et al., 1991; Warland et al., 1997; Mesgarani et al., 2009). In brief, this
model estimates the spectrogram by a linear filter gift, which linearly
maps a population of spike responses nit to a spectrogram estimate ŝ( f, t):

n�it � nit �
1

T�
j

T

nij, (29)

ŝ� f, t� � �
i � 1

N �
j � 0

��1

gifjn�it � j �
1

T�
j

T

ŝ� f, j�, (30)

where N is again the total number of neurons used in decoding, and � is
the maximal lag used in the decoding filter. The mean subtracted spike
response is denoted by n� and is used to ensure that the OLE and spec-
trogram have the same means. The function g is found by minimizing the
average, mean-squared error between s� and the spectrogram s at each
frequency bin. The solution to this problem (Warland et al., 1997; Mes-
garani et al., 2009) is given by the following:

gf � Cnn
�1Cns� f �, (31)

where Cnn denotes the auto-covariance of neural responses, and Cns(f)

denotes the cross-covariance of the response with the temporal changes
in bin f of the spectrogram. The amount of data required to accurately
estimate the matrices Cnn and Cns( f) increases as the filter length and the
number of neurons used in the estimation increases. We did not imple-
ment any regularization on the matrices Cnn and Cns( f) to deal with this

problem (see Pillow et al., 2011 for further discussion). As is customarily
done (Theunissen et al., 2001), we assume stimuli and responses are
stationary so that temporal correlations between two points in time, say
t and t�, depend only on the distance or lag between these points, t � t�.
We compute the covariances up to a maximal lag of 18 ms using spectro-
grams with time binned into 3 ms intervals with 35 linearly spaced fre-
quency bins from 250 to 8000 Hz. These values were chosen in an attempt
to maximize OLE performance.

Measuring reconstruction accuracy
The quality of reconstructions is measured using the signal-to-noise ratio
(SNR), which is defined as the variance in the original spectrogram di-
vided by the mean-squared error between the original and estimated
spectrograms. Each song is reconstructed four times using the responses
to different presentations of the same song. Since there are 20 songs in the
data set, we obtain 80 different samples of mean-squared error between
the estimated spectrograms and original. The mean-squared error is es-
timated by averaging these estimates together. The estimator’s stability is
measured using the SE, which is the sample standard deviation of these
estimates divided by the square root of our sample size (80). Songs were
reconstructed using different numbers of neurons. The neurons used for
reconstruction were chosen by randomly sampling without replacement
from the complete data set of neural responses.

We also examined reconstruction quality in the Fourier domain. For
each prior used, we computed the coherence between the estimated spec-
trogram and the original. The coherence between the original spectro-

gram, S, and the reconstructed spectrogram, Ŝ, is defined as

C�
1, 
2� �
�RS,Ŝ �
1,
2��

�RS,S�
1,
2� RŜ, Ŝ�
1,
2��
1

2

, (32)

RXY �
1,
2� � �
u���

� �
m���

�

exp �� i2�u
1�exp�� i2�m
2�

cov�X�u, m�Y�0, 0�	 (33)

The cross-spectral density function, R, for each reconstruction-
spectrogram pair was estimated using Welch’s modified periodogram
method with overlapping segments (Percival and Walden, 1993). For
each pair, the spectrograms were divided into segments that overlap by
25% and whose length, L, was one-eight the number of time bins in the
spectrogram. Within each segment, we computed a modified periodo-
gram of the following form:

X̂�
1, 
2� � �
u�1

U �
m�1

U

exp�� i2�u
1�exp�� i2�m
2�h �u, m�X�u, m�

(34)

R̂XY�
1,
2� �
X̂�
1,
2�Ŷ*�
1,
2�

�
u�1

N �
m�1

N

h2�u, m�

, (35)

where Y* denotes the complex conjugate of Y, h is known as a data taper,
and U denotes the window size. Data tapers and the use of overlapping
windows were used because they can reduce the bias and variance asso-
ciated with estimating R by a naive periodogram using data of finite
length (Percival and Walden, 1993). Data was zero-padded so that U
equaled 256 even though the window length was variable. The product of
two Hanning windows is denoted by h:

h�u, m� � 0.25�1 � cos�2�u/L���1 � cos�2�m/L��

for u �1, . . . , L;m�1, . . . , L. (36)

We estimated R by averaging the estimates across segments. We com-
puted C as in Equation 32, substituting in the estimated R for the cross-
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spectral density function. We plot coherence values in decibels, given by
the base-10 logarithm of the coherence multiplied by a factor of 10.

Results
Two-alternative forced choice discrimination
We begin by asking if an ideal observer of MLd neural responses
could discriminate between conspecific songs using the GLM
encoding model. Zebra finches can accurately discriminate be-
tween songs based on a single presentation, so it is interesting to
determine whether MLd responses can also discriminate between
songs. We performed multiple two-alternative forced choice tests
using an optimal decision rule and counted the fraction of correct
trials from the different runs. Each test consisted of two segments
of different conspecific songs and the spike trains, from multiple
neurons, produced in response to one of the segments (Fig. 5A).
Using the log-likelihood Equations 2– 4, we evaluated the prob-
ability of observing the spike trains given both segments and
chose the segment with the higher likelihood. This procedure is
optimal for simple hypothesis tests (Lehmann and Romano,
2005). The likelihood depends on the STRFs of the neurons used
for discrimination and thus this test directly measures if the in-
formation about song provided by these STRFs can be used for
song discrimination.

Figure 5B shows the fraction of correct trials for four different
response/segment durations, when single spike trains produced
by 1, 104, and 189 neurons are used for decision making. As
expected, the probability of responding correctly increases with
longer response durations and as more neurons are used for dis-
crimination. Given the very short response duration of 3 ms,
single neurons discriminated at chance level. As the response
duration increased to 102 ms, the average fraction correct in-
creased to approximately 70%. Combining the responses of 189
neurons led to a discriminability accuracy as great as that seen in
behavioral experiments, 90 –100% (Shinn-Cunningham et al.,
2007), after response durations around 27 ms, and perfect dis-

crimination after durations of 100 ms. These results show that
MLd responses can be used for single presentation conspecific
song discrimination.

Decoding song spectrograms using single neurons
The results discussed above are in agreement with previous stud-
ies showing that responses from auditory neurons in the fore-
brain area field L (Wang et al., 2007) and MLd (Schneider and
Woolley, 2010) can be used for song discrimination. As in previ-
ous studies, MLd responses and our encoding model could be
used to determine the most likely song identity, given a predefined
set of possible songs. Instead of directly comparing our results with
previous methods, we focused on a different problem; we asked
whether these responses contain enough information to reconstruct
song spectrograms. Spectrogram reconstruction is a more compu-
tationally demanding task than song discrimination and is a better
test of the information about song encoded by neuronal responses.
As explained in Materials and Methods, we use the MAP value to
estimate the spectrogram. We first compute spectrogram recon-
structions using single-trial responses from single MLd neurons to
understand how MAP estimates depend on the STRF and prior
information.

The top of Figure 6A shows 250 ms of a spectrogram that
elicited the two spikes shown below the spectrogram. The spikes
are plotted at the frequency at which that neuron’s STRF reaches
a maximum [the best frequency (BF)]. Below the evoked spike
train is the MAP estimate (see Materials and Methods) computed
without prior information of spectrotemporal correlations in
song power (Fig. 6B, top) and with prior information (Fig. 6B,
bottom).

When the stimulus is only weakly correlated with the neuronal
response, i.e., when the convolved spectrogram, computed by

�
f ��0

F�1 �
���0

M�1k� f �, ��� s� f �, t � ���, is much less than one, it is pos-

sible to calculate the MAP solution analytically (Pillow et al.,

Figure 5. Conspecific song discrimination based on the likelihood of spike-trains from multiple neurons. A, Spike trains from multiple neurons in response to presentation of song segment 1.
Under a two-alternative forced choice (2AFC) test, song discrimination is performed by choosing the song which leads to a greater likelihood of observing the given spikes. Spikes from a given neuron
are plotted at the BF at which that neuron’s receptive field reaches maximal value. Neurons with the same BF are plotted on the same row. B, 2AFC results as a function of response duration and the
number of neurons used for discrimination. The 2AFC test was performed multiple times for each possible pairing of the 20 songs in the data set. Each panel shows the frequency of correct trials across
all possible song pairings. Above each panel, the average of the histogram is reported. On average, neurons performed at chance level when stimulus segments were only 3 ms in duration.
Near-perfect song discrimination can be achieved using 189 responses and response durations of at least �30 ms, or 104 neurons and durations of �100 ms.
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2011). As discussed by Pillow et al. (2011), the analytic MAP
solution when a spike occurs is approximately equal to the neu-
ron’s STRF multiplied by the prior covariance matrix. Under
our uncorrelated prior (see Materials and Methods, Noncor-
related Gaussian prior), this is equivalent to estimating the spec-
trogram by the STRF scaled by the song variance. In the absence
of spiking the analytic MAP solution is equal to the prior mean.
We plot the frequency averaged prior mean, �f�̂f, in green and
adjacent to the MAP estimate we plot the STRF for this particular
neuron. Comparing the STRF with the MAP estimate, we see that
the analytic solution for the weakly correlated case is valid for this
example neuron. This solution is intuitive because it reflects the
fact that the only information an MLd neuron has about the
spectrogram is from its song filtering properties. It also illustrates
a fundamental difficulty in the problem of song estimation; an
MLd neuron only responds to a small spectral and temporal area
of song power. Because of this, spikes from a single neuron, with-
out prior correlation information, can only contribute informa-
tion on the small spectrotemporal scales encoded by that neuron.

Information independent of MLd spike responses can aid in
song reconstruction by using spectral and temporal correlations
to interpolate bands filtered out by the STRF. The MAP solution
using our correlated Gaussian prior displays this intuitive behav-
ior. Next to the MAP solution using a correlated prior, we plot the
neuron’s STRF temporally convolved and spectrally multiplied
with the prior covariance matrix:

k�� f, �� � �
f �, ��

CT��� � ����
� f, f ��k� f �, ���. (37)

Comparing the MAP solution with k�, we see that when a spike
occurs, to a good approximation, the MAP estimates the spectro-
gram with a covariance multiplied STRF. The MAP estimate
shows values of power after a spike occurs because it uses prior
knowledge of the temporal correlations in song to infer spectro-
gram power at these times.

Population decoding of song spectrograms
We expect reconstruction quality to improve as more neurons are
used in decoding. From the intuition developed performing
single-neuron reconstructions, we guessed that each neuron,
without prior information of song correlations, would estimate
an STRF each time it spikes. With the diverse array of STRF
patterns known to exist in MLd (Woolley et al., 2009), a popula-
tion of MLd neurons might faithfully estimate a spectrogram,
without prior information, by having each neuron estimate a
small spectrotemporal area determined by its STRF.

In Figure 7A (top), we plot 1.25 s of an example song that we
attempt to reconstruct given the spike trains from 189 neurons.
In Figure 7A (bottom) we plot these responses, with each neu-
ron’s spikes plotted at the BF at which that neuron’s receptive
field reaches a maximal value. Neurons with the same BF are
plotted on the same row. Figure 7B shows the MAP estimate
using the uncorrelated prior. As in the single-neuron case, during
segments of song that result in few spikes from the population,
the song is approximately estimated by the prior mean (green
segments). This MAP estimate does a good job of distinguishing
areas of high power from silent periods. Examination of the pop-
ulation spike responses show that this property is attributable to
the population’s ability to respond in a manner temporally
locked to vocalization episodes.

Effect of prior information on song estimation
Reconstructions without prior information show discontinuous
gaps in power during vocal periods. They also show sparse spec-
trotemporal correlations at frequencies above 4 kHz. As in the
single-neuron case, these features probably reflect the fact that
each neuron only filters small spectrotemporal segments of song.
In addition, most STRFs have peak frequencies below 4 kHz (this
is evident in the plot of spike responses ordered by BF) (Fig. 7B).
Intuitively we expect MAP estimates constructed with prior in-
formation of song correlations to enhance reconstructions by
filling in these “gaps” in power density.

Figure 7 shows how the MAP estimate given the responses
from 189 neurons changes as prior information is added. We plot
MAP estimates using a prior covariance matrix that contains
temporal information but no spectral information (Fig. 7C),
spectral information but no temporal information (Fig. 7D), and
both spectral and temporal correlations (Fig. 7E) (for details, see
Materials and Methods, Birdsong priors) (see Fig. 10 for a plot of
preferred frequency tuning across the neural population). Com-
paring these estimates with the estimate using an uncorrelated
prior (Fig. 7B) shows that information about the second-order
statistics in zebra finch song enhances reconstructions by inter-
polating correlations in spectrogram areas not covered by MLd
STRFs.

A clear improvement in estimates using the spectrally corre-
lated priors occurs at times where spiking activity is sparse. At
these times, the MAP estimate using the uncorrelated prior
equals the prior mean. When given knowledge of song correla-

Figure 6. Single-cell decoding of song spectrogram. A, Top, Spectrogram of birdsong that
elicited the two spikes shown immediately below. Spikes are plotted at the frequency at which
this neuron’s receptive field reaches maximal value. B, Top left, The most probable spectrogram
from the posterior distribution (MAP estimate) given the two spikes shown in A and using an
uncorrelated prior. When a single spike occurs, the MAP is determined by the neuron’s STRF
(right). In the absence of spikes, the MAP is determined by the prior mean. Bottom left, MAP
estimate using the correlated Gaussian prior; when a spike occurs the MAP is determined by the
neuron’s STRF multiplied by the prior covariance matrix (right). Immediately after a spike, the
MAP infers spectrogram values using prior knowledge of stimulus correlations.
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tions, the MAP uses the sparse activity in MLd to correctly infer
the deflections from the mean that occur in the original song
spectrogram. The correlations also help the MAP infer that, dur-
ing episodes of high spiking activity, spectral bands above 4 kHz
should have similar levels of power as those below 4 kHz. In the
supplemental material (available at www.jneurosci.org) we pro-
vide the reconstruction in the time domain created by combining
the spectrogram in Figure 7E with random phase. For compari-
son purposes, we also provide the original song constructed with
randomized phase.

In Figure 8 we quantify how reconstruction quality improves
as a function of the number of neurons used in decoding. We use
the SNR (see Materials and Methods) as a quantitative method
for evaluating reconstruction accuracy. As described in Materials
and Methods, the neurons chosen for reconstruction were ran-
domly chosen from the population.

Figure 8A plots example MAP estimates using the Gaussian
prior with spectrotemporal correlations as a function of the num-
ber of neurons for a single example song. The associated value of
the SNR is given above the MAP estimate. The solid lines in

Figure 8B show the SNR averaged across all songs, and dashed
lines show the SE about these lines. An SNR value of one corre-
sponds to estimating the spectrogram by a single number, the
mean. Improvements in SNR reflect improved estimates in the
correlations of song power about the mean. The colors denote
which prior was used in computing the MAP estimate. As ex-
pected, the SNR from MAP estimates using prior spectrotempo-
ral information (black line) grows the fastest, followed by the
SNR from MAP estimates, which use only spectral prior informa-
tion (green line). The faster growth in SNR using only spectral
prior information versus temporal information is probably at-
tributable to the facts that MLd population responses already
capture a good deal of temporal information, spectral informa-
tion helps infer deflections from the mean at times of sparse
activity, and most MLd neurons have STRFs with peak frequen-
cies below 4 kHz.

Figure 8C plots the coherence between the reconstructions
and original spectrograms. The coherence is a normalized
measure of the cross-correlation between the original two-
dimensional signal and estimate in the frequency domain. In all
of the plots, the vertical axis shows spectral modulations (in units
of cycles per kilohertz). These frequencies are often referred to as
the ripple density. The horizontal axis shows temporal modula-
tions (in units of hertz). We note that the coherence plot is not the
same as the modulation power spectrum shown in Figure 3D. In
Figure 8C, the range of the coherence is limited from �10 dB
(dark blue), a coherence of 0.1, to 0 dB, i.e., perfect coherence
(red). With the exception of the noncorrelated prior, we see a
high coherence for temporal modulations between �50 and 50
Hz and ripple densities between 0 and 0.6 cycles/kHz. When we
analyzed the coherence within these frequencies, we found that
the average coherence is highest for the spectrotemporal prior,
second highest for the spectral prior, and smallest for the prior
without covariance information. From this plot we conclude that
prior knowledge of the stimulus correlations primarily aids in
reconstructing lower temporal modulations and ripple densities.

It is interesting to compare the decoding performance just
described with the OLE, a simpler and more commonly used
decoder (Mesgarani et al., 2009). As discussed in Materials and
Methods, the OLE finds the estimate that minimizes the average-
squared Euclidean distance between the spectrogram being esti-
mated and a linear combination of the responses. Figure 8
(magenta line) shows the growth in the SNR of the OLE using the
same real responses as those used for the nonlinear, Bayesian
model. The OLE depends on spectrotemporal correlations in the
stimulus so we compare its performance with the prior that con-
tains both spectral and temporal correlations (black line). Com-
paring these two shows that when the number of neurons is low,
the two estimates perform similarly. As more neurons are added
to the estimate, the MAP estimator outperforms the OLE. Previ-
ous work (Pillow et al., 2011) has shown that this behavior is
expected if the encoding model is a good model for spike re-
sponses to stimuli and if the prior model does a good job of
capturing stimulus correlations. Pillow et al. (2011) showed that
when the number of neurons used for estimation is low, the MAP
estimate and OLE are equivalent. As the number of neurons
grows, the MAP estimate can outperform the OLE because the
MAP estimator is not restricted to be a linear function of spike
responses.

Hierarchical prior model
We observed visible differences in power density covariance and
mean during silent and vocal periods (Fig. 4, covariance matrices,

Figure 7. Population decoding of song spectrogram with varying degrees of prior informa-
tion of song statistics. A, Top, Spectrogram of birdsong played to 189 different neurons leading
to the spike responses shown immediately below. Spikes from a given neuron are plotted at the
BF at which that neuron’s receptive field reaches its maximal value. Neurons with the same BF
are plotted on the same row. A–E, MAP estimate given the responses in A using an uncorrelated
prior (B), a prior with temporal correlations and no spectral correlations (C), a prior with spectral
correlations and no temporal correlations (D), and a prior with spectral and temporal correla-
tions (E). Combining the spike train with spectral information is more important for reconstruct-
ing the original spectrogram than combining the spike train with temporal information.
However, combining spikes with joint spectrotemporal information leads to the best
reconstructions.
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and the differences in color between silent and vocal periods in
the plotted spectrograms). These differences are averaged to-
gether when constructing the covariance matrix and mean used
in the single Gaussian prior. Averaging together the correlation
information from these two different periods smoothes the spec-
tral correlation information (compare Figs. 3A, 4B, left, covari-
ance matrices). We reconstructed songs using a hierarchical prior
(see Materials and Methods, Hierarchical model prior) to test
whether this smoothing hinders the reconstruction performance.
This prior includes a state variable that determines the mean and
spectral covariance. We first study the case where all possible state
trajectories are used for decoding, with trajectory probabilities
determined by neural responses and the transition probabilities
in our model (see Materials and Methods) (Fig. 4). Each trajec-
tory yields a different reconstructed spectrogram, and the final
estimate is determined by averaging across these reconstructions.
This is equivalent to estimating the song using the posterior
mean. This estimate should be better than an estimate using a
single Gaussian if the neural responses provide sufficient infor-
mation to properly infer state transitions.

In Figure 9A (left) we plot an example song spectrogram
with evoked single-neuron, single-trial responses immediately
below. We have again plotted the responses at the neuron’s
best frequency, which in this case is 1.8 kHz. Below this we
have plotted the MAP estimate using these responses and a

single correlated Gaussian prior (Fig. 9B, top) and the poste-
rior mean using the hierarchical prior (Fig. 9B, bottom). The
estimates show surprisingly similar behavior. Under the hier-
archical prior, we see power densities slightly closer to those in
song, around the neuron’s BF, compared to the estimate using
a single Gaussian prior. Otherwise, no large differences be-
tween the two estimators are seen.

It is possible that estimates based on the hierarchical model
are not much better than those using a single Gaussian because
single-neuron responses do not provide enough information to
infer the state transitions. Figure 9C shows the average state tran-
sition given the neural response. We see that this is indeed the
case, and on average, the inferred state transitions do not match
those in the song being estimated. Given the above result, we
asked whether the hierarchical model would outperform the sin-
gle Gaussian prior when more neurons are used for decoding. In
the right column of Figure 9A, we plot the responses of 49 addi-
tional neurons (for a total of 50 neurons) with BFs slightly greater
than the single neuron used in the left column. These responses
are again plotted below the spectrogram being estimated. Exam-
ining the average state changes given responses in Figure 9C, we
see a closer resemblance between the inferred state transitions to
those present in the estimated song. In the right column of Figure
9B, we plot the posterior mean under the hierarchical prior and
the MAP estimate using the same subset of neural responses com-

Figure 8. Decoding performance given different amounts of prior information and numbers of neurons. A, Spectrogram reconstructions (top) for an example song (Fig. 7A) using a Gaussian prior
with spectrotemporal correlations and using varying numbers of neuronal responses (bottom). Above each reconstruction is the SNR used to measure similarity between the reconstructed song and
the song presented to the bird. B, Solid lines show the SNR averaged across all decoded songs, whereas dashed lines show 1 SE. The prior used for decoding is denoted by color. Spectral prior
information leads to faster growth in the SNR than temporal information. For reference, the magenta line shows the growth in SNR for the commonly used the OLE. The OLE has access to both spectral
and temporal correlations. C, Coherence between spectrograms and reconstructions under the four different priors. The horizontal axis reports temporal modulations and the vertical axis reports
spectral modulations. All plots display the highest coherence at low spectral and temporal modulations. The primary effect of adding spectrotemporal prior information is to improve reconstructions
at lower spectral and temporal modulations.
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bined with a single Gaussian (nonhierarchical) prior. The two
estimators do not show any prominent differences. Adding more
neurons to the estimation should only cause the two estimators to
look more similar since the reconstructions will have less depen-
dence on prior information when more data are included. There-
fore, we did not compute estimates with �50 neurons using the
Hierarchical prior. Finally, we eliminated the portion of recon-
struction error caused by problems associated with estimating
the state transitions by computing the MAP estimate of the Hi-
erarchical prior given the true underlying state in the song being
estimated. We compared this estimate, which has perfect knowl-
edge of the underlying song transitions, to the MAP estimate
using a single Gaussian prior. Even in this case, we do not see
any large differences between the estimators (data not shown).
These results demonstrate that spectrogram estimates do not
necessarily improve as more complicated prior information of
song is included in the posterior distribution. Although samples
from the hierarchical prior contain more statistical informa-
tion of song and arguably show more resemblance to song
than samples from a single, correlated Gaussian prior (com-
pare Figs. 3C, 4C), this advantage does not translate into better
spectrogram reconstructions.

Reconstruction dependence On STRF frequency tuning
The information for reconstruction provided by an individual
MLd neuron depends on its STRF. Neurons that have STRFs that
overlap in their spectrotemporal filtering properties will provide
redundant information. Although this redundancy is useful for
reducing the noise associated with the spike generation process
(Schneider and Woolley, 2010), good spectrogram reconstruc-
tions also require enough neurons that provide independent in-
formation. We asked whether our results would improve if we
used neurons that had either no overlap in their filtering proper-

ties or complete overlap. We computed
MAP estimates using simulated STRFs,
which we will refer to as point STRFs, that
have no spectral blur and no history de-
pendence (see Materials and Methods for
how these receptive fields were con-
structed). Figure 10A (top left) plots an
STRF calculated from real responses using
the method of maximum likelihood
(“full” STRF) and a point STRF (top
right) with an equivalent peak frequency.
In Figure 10A (bottom left), we show the
extent of the blurring behavior in our
neuronal population. For each neuron,
we plot the spectral axis of its STRF at
the latency at which that STRF reaches
its maximum value. The right panel of
Figure 10 A shows the same information
for the point STRFs (see Materials and
Methods for our determination of the
number of neurons with a particular
peak frequency).

Figure 10B (top) shows an example
spectrogram we attempt to reconstruct.
For both STRFs, we reconstructed songs
using simulated responses. We did not use
real responses because we wanted to re-
duce the differences in reconstruction
performance caused by the poorer predic-
tive performance of point STRFs on real

data. Using simulated responses allowed us to better control for
this effect and focus on differences in reconstruction perfor-
mance caused by spectral blurring. For comparison purposes, we
plot the real responses of 189 neurons, aligned according to their
BF, immediately below this spectrogram. The middle panel of
Figure 10B shows simulated responses to this example song cre-
ated using the generalized linear model with point STRFs. The
bottom shows simulated responses using full STRFs. Using a cor-
related Gaussian prior, we reconstructed the spectrogram using
the point STRFs and the simulated responses generated from
them (middle) and using the full STRFs and their associated sim-
ulated responses (bottom).

Stimulus reconstructions using point STRFs show slightly
finer spectral detail compared to reconstructions using full
STRFs. However, overall we do not find that spectral blurring
of the full STRFs leads to much degradation in stimulus recon-
structions. The growth in SNR for point STRFs and full STRFs
as a function of the number of neurons is shown in Figure 10C.
On average, point STRFs have slightly higher signal-to-noise
ratios as the number of neurons increases; however, the dif-
ference between the two curves is not too great. It is important
to point out that these results depend on the fact that recon-
structions were performed using a correlated prior trained on
natural stimuli. The spectrotemporal width of the covariance
is broad compared to that of the full STRFs. When we recon-
structed songs using a prior with no correlations, we found
that full STRFs decode slightly better than the point STRFs
(data not shown). Also, for the reasons stated above, we used
simulated responses, which also influences the results. Recon-
structions using point STRFs are slightly worse than recon-
structions with full STRFs when real data are used. We
attribute this difference to the better predictive performance
of the full STRFs on real data.

Figure 9. Single-neuron and population decoding using a hierarchical prior. A, Song spectrogram along with a single cell’s
response to this song (left) and the response of this cell plus 49 other cells with nearby characteristic frequencies (right). B, MAP
estimates using a single, correlated Gaussian prior (top) are compared with estimates using the posterior mean and the hierarchical
prior (bottom); in both the single-neuron and population decoding cases, the estimate using a hierarchical prior looks similar to the
MAP with a Gaussian prior. C, The expected value for vocalization state given responses; single-cell responses do not yield enough
information to accurately infer the spectrogram’s vocalization state; however, as the number of neurons used for inference
increases, the vocalization state becomes more pronounced.
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Discussion
We asked whether the responses of zebra finch auditory midbrain
neurons to song encode enough information about the stimulus
so that an ideal observer of MLd spike trains could recognize and
reconstruct the song spectrogram. We found that 189 sequen-
tially recorded MLd responses can be combined using a GLM to
discriminate between pairs of songs that are 30 ms in duration
with an accuracy equivalent to that found in behavioral experi-
ments. These results are in agreement with prior studies showing
that responses from auditory neurons in the forebrain area field L
(Wang et al., 2007) and MLd (Schneider and Woolley, 2010) can
be used for song discrimination. Importantly, this previous work
did not use the GLM to evaluate the discriminability, and thus
provides an independent benchmark to compare with our GLM-
dependent results.

We tested the hypothesis that the statistics of zebra finch song
can be used to perform vocal recognition by decoding MLd re-
sponses to conspecific song using a priori knowledge of the joint
spectrotemporal correlations present across zebra finch songs.
We explicitly used prior information lacking higher-order infor-
mation of song to test whether MLd responses only require

knowledge of correlations to be used for spectrogram reconstruc-
tion. When we evaluated the reconstructed spectrograms in the
Fourier domain, we found that these responses do a fair job of
reproducing temporal and spectral frequencies, i.e., temporal
modulations and ripple densities, between �50 and 50 Hz and
below 0.6 cycles per kilohertz. When combined with the joint
spectrotemporal correlations of zebra finch song, we found an
improvement in the coherence in these regions. These results did
not change greatly when we used STRFs with nonoverlapping
best frequencies, suggesting that the spectral blur or “bandwidth”
limitations of the STRF did not strongly affect reconstruction per-
formance using these responses combined with spectrotemporal
correlations in zebra finch song.

None of the reconstructions using MLd neurons and the cor-
relations present in song reproduced all the details of a particular
spectrogram. These results are qualitatively similar to previous
findings showing that the auditory system of zebra finch, as well
as other songbirds, can recognize songs even when some of the
fine details of the song signal have been degraded by various types
of background noise (Bee and Klump, 2004; Appeltants et al.,
2005; Narayan et al., 2006; Knudsen and Gentner, 2010). This
may be similar to the finding that humans can recognize speech
even after the spectral and temporal content has been degraded
(Drullman et al., 1994; Shannon et al., 1995).

It is interesting to speculate whether the song features that
were reproduced in this study are relevant to the bird for song
recognition. For example, we found that reconstructions were
most accurate at low ripple densities and temporal modulations.
Song recognition based on these features would be consistent
with existing evidence that zebra finch are better able to discrim-
inate auditory gratings with lower ripple density/temporal mod-
ulations (Osmanski et al., 2009). Because of the complexity of
song, it is difficult to quantify behaviorally relevant song features
birds use for recognition and communication (Osmanski et al.,
2009; Knudsen and Gentner, 2010). The spectrogram recon-
structions reported here may serve as a useful probe for future
discrimination studies. For example, one could compare dis-
crimination thresholds between songs whose amplitude spec-
trums have been degraded according to the regions where
reconstructions have low coherence and songs whose amplitude
spectrums are randomly degraded. If the MAP reconstructions
are relevant to the bird, we would expect performance to be worse
on songs with randomly degraded amplitude spectrums. This
idea is similar to the previously mentioned study by Osmanski et
al. (2009) testing discrimination of auditory gratings in birds;
however, the ripple density/temporal modulations used for
probes would be more complex than simple gratings. Working
with ferret auditory cortical neurons, Mesgarani et al. (2009)
previously examined the effects of stimulus correlation on
spectrogram decoding. Similar to our findings, they found
improvements in reconstruction quality when they used prior
information of sound correlations. This suggests that the use of
natural sound correlations for vocal recognition might be a gen-
eral strategy used across species. However, there are important
distinctions between the Bayesian approach used here for recon-
struction and the optimal linear decoder used by Mesgarani et al.
(2009). The optimal linear decoder incorporates stimulus corre-
lations via the stimulus–response cross-covariance matrix and
the response auto-covariance matrix. The Bayesian decoder in-
corporates stimulus statistics using a prior distribution that is
independent of the likelihood distribution used to characterize
neural responses (Eq. 1). Therefore, this decoder allows one to
estimate song correlations independent of the amount of neural

Figure 10. Spectral blur of STRFs causes a small loss of information for reconstructions. A,
Top left, Example STRF and localized point STRF (top right) with equivalent peak frequency.
Bottom left, Frequency vectors at the latency where the STRF obtains maximal value for the
population of neurons used in this study. Bottom right, The equivalent plot for point STRFs.
Point STRF peak locations were randomly drawn from a distribution constructed using the peak
locations of real STRFs. B, First two rows, Song spectrogram and evoked responses of 189 real
neurons. Middle, Reconstructed song spectrogram given simulated responses using a point
STRF model. Simulated responses are shown immediately below the reconstruction. Bottom
two rows, Reconstructed song spectrogram given simulated responses using full STRFs. Re-
sponses are shown immediately below the reconstruction. Reconstructions with full STRFs
show slightly different spectral details but otherwise look very similar to reconstructions using
point STRFs. C, SNR growth (�1 SE) as a function of the number of neurons used in decoding for
point STRFs and full STRFs; on average, the point STRFs have higher SNRs than full STRFs.
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data available. This is beneficial for obtaining good estimates of
song correlations when it is easier to obtain song samples than
physiological data. Another important distinction between the
linear decoder and the Bayesian method is that the Bayesian de-
coder does not have to be a linear function of the spike responses.
This seems to be the reason for the Bayesian method’s slight
improvement over the linear decoder. When we decode songs
using a linear, Gaussian, Bayesian decoder with the same corre-
lated Gaussian prior as the one in this study, we find worse re-
construction performance than the GLM. This suggests that
the nonlinearity is an important factor in the GLM’s improved
performance.

Another advantage of separating prior information from neu-
ral responses is that we could systematically change the before
study which statistical properties of song are most important for
stimulus reconstruction without refitting the filters applied to the
observed spike trains. We found that reconstructions based on
MLd responses with a priori information of spectral correlations
yielded better estimates of song than did reconstructions using
temporal correlations present in song. Although we cannot con-
clude from this study whether or not the bird actually uses a prior,
we speculate that these results suggest what information, in ad-
dition to MLd responses, may be used when the bird recognizes
song. These results suggest that there is a greater benefit to the
bird, in terms of vocal recognition capabilities, if MLd responses
are processed by neuronal circuits that have access to the joint
spectrotemporal or spectral song correlations rather than tempo-
ral correlations. This interpretation would be consistent with
previous work showing that zebra finch appear to be more sensi-
tive to frequency cues than temporal cues when categorizing
songs belonging to one of two males (Nagel et al., 2010). How-
ever, even though much work has been done relating information
encoded within a prior distribution to neuronal spiking proper-
ties (Zemel et al., 1998; Beck and Pouget, 2007; Litvak and Ull-
man, 2009), it is unclear how to predict response properties of
cells based on the statistical information about a stimulus they
may be encoding. To better understand this relationship, future
experiments could perform a similar decoding analysis using the
responses from other brain areas to look for spiking activity in
which it is more beneficial to store temporal correlations rather
then spectral correlations. If such activity exists, these responses
could be combined with MLd spike trains to perform reconstruc-
tions that presumably would only show marginal improvement
when combined with prior knowledge of either temporal or spec-
tral correlations.

There has been much recent interest in determining good
priors for describing natural sounds and stimuli (Singh and
Theunissen, 2003; Karklin and Lewicki, 2005; Cavaco and Le-
wicki, 2007; McDermott et al., 2009; Berkes et al., 2009). With the
two-state model, we briefly explored the effects on reconstruction
quality of prior distributions, which contain more information
than just the mean and covariance of birdsong; however, none of
the priors used in this study explicitly contain information about
the subunits such as song notes, syllables, or motifs typically used
to characterize song (Catchpole and Slater, 1995; Marler and
Slabbekoorn, 2004). Future work could examine whether recon-
struction quality changes using more realistic, non-Gaussian
prior distributions of birdsong that contain higher-order infor-
mation. For example, neurons in the songbird forebrain nucleus
HVC are known to be sensitive to syllable sequence (Margoliash
and Fortune, 1992; Lewicki and Arthur, 1996; Nishikawa et al.,
2008), suggesting that there are neural circuits that could provide
prior information of sound categories such as syllables and mo-

tifs. One could therefore reconstruct songs using this prior infor-
mation, for example, by using a hidden Markov model with the
hidden states trained on sound categories (Kogan and Margo-
liash, 1998). Although we did not find much of an improvement
in reconstruction quality using the two-state prior compared to a
Gaussian prior, more realistic priors may yield better reconstruc-
tions. If so, one could determine additional statistical informa-
tion about song stimuli, other than stimulus correlations, also
useful for song recognition.
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