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Bayesian Image Recovery for Dendritic Structures
Under Low Signal-to-Noise Conditions

Geoffrey Fudenberg and Liam Paninski

Abstract—Experimental research seeking to quantify neuronal
structure constantly contends with restrictions on image resolu-
tion and variability. In particular, experimentalists often need to
analyze images with very low signal-to-noise ratio (SNR). In many
experiments, dye toxicity scales with the light intensity; this leads
experimentalists to reduce image SNR in order to preserve the
viability of the specimen. In this paper, we present a Bayesian
approach for estimating the neuronal shape given low-SNR ob-
servations. This Bayesian framework has two major advantages.
First, the method effectively incorporates known facts about 1) the
image formation process, including blur and the Poisson nature of
image noise at low intensities, and 2) dendritic shape, including the
fact that dendrites are simply-connected geometric structures with
smooth boundaries. Second, we may employ standard Markov
chain Monte Carlo techniques for quantifying the posterior
uncertainty in our estimate of the dendritic shape. We describe
an efficient computational implementation of these methods and
demonstrate the algorithm’s performance on simulated noisy
two-photon laser-scanning microscopy images.

Index Terms—Bayes procedures, image restoration, Monte
Carlo methods.

I. INTRODUCTION

I N neuroscience, what we see often limits what we know. Im-
proving imaging capabilities holds great promise for inno-

vative experimental work. For example, quantitative analysis of
dendritic spine morphology has the potential to teach us a great
deal about synaptic transmission [1], [2] and long-term synaptic
plasticity [3]. The opportunities for insight into the function of
dendritic spines have already spurred computational work on
automated analysis of dendritic spine morphology [4]–[8].

Clearly, quantitative experiments can directly benefit from
improved imaging procedures. In lieu of designing a new
imaging apparatus, this paper focuses on methods for making
better use of currently obtainable data, especially within a
sparse low signal-to-noise (SNR) regime. As a key example, we
focus on algorithms for recovering two-photon laser scanning
microscopy (TPLSM) images. While TPLSM offers increased
optical resolution without increased phototoxicity as compared
with conventional confocal microscopy [9], phototoxicity
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persists within the focal slice and limits attainable resolution:
to avoid damaging the sample, imaging at long time scales or
high intensities is impossible. Since photon detection during
imaging can be modeled as a Poisson process [10], in which
the signal-to-noise varies directly with the total number of
photons absorbed, these biophysical limitations on the maximal
intensity force us to deal with low-SNR images.

In general, the image recovery problem may be posed as fol-
lows: we make noisy, blurred observations of some underlying
“true” neural shape —schematically

where denotes the observed image data, and denotes a
convolution by , the point-spread function (or PSF)—and our
goal is to recover the true input image as faithfully as possible.
Of course, exact recovery of this true input image is rarely fea-
sible, and so we also need to know how uncertain we are about
our estimate: in a sense, we would like to put “errorbars” around
our estimate .

Many groups have contributed to the general problem of
restoring noisy blurred images using maximum likelihood
(ML) approaches [11], [12]. For the case of Poisson noise,
Richardson and Lucy [13], [14] independently introduced iter-
ative deconvolution algorithms. Significant research has been
devoted to developing Bayesian statistical machinery for use in
astrophysical [15] and medical imaging problems, especially
positron emission tomography (PET) [16], [17].

We build upon this extensive previous imaging literature by
incorporating important prior information about dendrites. In
particular, we know that dendrites are simply connected geo-
metrical structures, with fairly smooth boundaries. We may fur-
ther restrict our attention to binary images: a given pixel may
be either inside or outside the dendrite.1 Furthermore, we focus
our attention on cases where it is possible to generate an initial
binary image with the correct topology. Thus, conceptually, to
recover the true neural shape we need only search over the space
of topologically equivalent binary images with smooth bound-
aries (of course, we do not attempt a brute-force search over
this space, which would be computationally impractical). By
combining the statistical model for image degradation with this
a priori information, we can apply powerful likelihood-based
tools from Bayesian statistics to the problem of optimally re-
covering dendritic shape (including spine size, etc.). In partic-
ular, we develop efficient Markov chain Monte Carlo (MCMC)

1Note that this is equivalent to the assumption that neuronal fluorescence is
uniform inside the neuron, i.e., the dye concentration equilibrates completely.
This assumption has been debated in the literature [18], [19] but provides a rea-
sonable starting point for the analysis presented here.
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methods for computing the optimal estimate of the underlying
neuronal shape, while at the same time quantifying our uncer-
tainty about this estimate.

II. BLURRED POISSON IMAGE FORMATION MODEL

We begin by describing our model of how the observed
image depends on the true underlying neuronal shape. Define

to be the photon count observed in the th
pixel, and to be the true underlying (unobserved)
neuronal shape: is either one or zero, depending
on whether the location is inside or outside of the
neuron, respectively. (Note that the pixelization of is
user-defined—we can attempt to reconstruct the neuronal shape
at any resolution we desire—while the pixelization of is set
by the imaging apparatus. Therefore, the observed pixelization
may generally be coarser than that of .)

The observed photon counts per pixel are as-
sumed to be discretized observations of a Poisson process; the
rate of each individual Poisson count at pixel is given
by the convolution

(1)

where is the point-spread (blur) function, or PSF, and
represents the baseline fluorescence outside of the neuron

and represents the internal fluorescence; typically, is
greater than . A reasonable definition of the signal-to-noise
ratio here is

this is the difference between the mean fluorescence inside and
outside the neuron, normalized by the standard deviation of the
baseline (extracellular) photon count in a pixel of size one.

The image space is the space of all binary simply connected
shapes; that is, all possible shapes such that is ei-
ther one or zero (inside or outside the neuron, respectively) and
such that the interior (the collection of pixels satisfying

) is simply connected: we may connect any two
“inside” pixels by a (possibly curved) continuous path which
lies entirely inside the neuron. Thus, we implicitly assume that
the pixelization is sufficiently fine that no pixels are
partially inside and partially outside the neuron. We further as-
sume (as discussed in the introduction above) that the fluores-
cent dye is fully equilibrated in the sample: there are no spatial
fluctuations in (caused, e.g., by fluctuations in internal dye
concentration) or .

Thus, the model is fully specified by the parameters
. This model is fairly standard in the imaging

literature, and may be extended in a straightforward manner in a
number of natural ways: non-Poisson noise, nonhomogeneous
blurring, nonhomogeneous baseline fluorescence, etc. However,
for simplicity we will only treat the homogeneous Poisson case

here. We will further assume the parameters
to be known properties of the fluorescent dye and imaging
apparatus, respectively (though of course we may in general
attempt to simultaneously infer these parameters, too; e.g.,
Fig. 5). Finally, we will restrict our attention to the 2-D case for
illustrative purposes.

III. COMPUTING THE LIKELIHOOD

Now that our model is defined properly, our task is to quantify
the posterior distribution over neuronal
shapes given the observed data and the imaging parame-
ters . By Bayes’ rule, we know that we can express
this posterior as a normalized product of two terms

where the first term is the likelihood of observing given
and the second term is the prior probability of .

We will begin by examining the likelihood. Our model states
that the photon counts in each individual pixel constitute inde-
pendent Poisson random variables. Thus, the likelihood of ob-
serving a count of in the th pixel is given by the Poisson
distribution with rate

where is calcuated via (1). Now, to obtain the likelihood of
the observed array of counts (where indexes every pixel
in ), we simply form the product

It is convenient to work with the log-likelihood instead

(2)

where the constant does not depend on , and may, therefore,
be ignored.

IV. MAXIMUM LIKELIHOOD ESTIMATION

Before we describe methods for computing the poste-
rior , it is worth examining the somewhat simpler
problem of computing the maximum likelihood estimate for

(we have suppressed the dependence of the likelihood function
on the imaging parameters for sim-

plicity).
To compute , we must search over the image space .

Of course, this space is far too large to search directly; thus,
some kind of local search algorithm is necessary. We will de-
scribe the simplest version of this local search, in which we it-
eratively change the state of one pixel at a time in our current
estimate of the true underlying neuronal shape . It is important
to note that is connected: any two simply connected shapes
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Fig. 1. Illustration of iterative pixel-flipping algorithm. Top Left: Raw sample image of a dendrite segment (courtesy of R. Araya and R. Yuste); colorbar indicates
the observed counts per pixel. Image taken at 30 pixels per micron. Top Right: A sample �, showing interior (gray and white), exterior (black), and boundary set
(white) pixels. The rectangle encloses the area around the pixels displayed in the lower three panels. Lower Panels: These three panels illustrate a local area of
the neuron before and after flipping a selected edge set pixel from inside to outside the neuron. Left: We begin by randomly choosing a pixel in the boundary set
(dark grey pixel marked with black X). Middle: Negative ��� signs mark possible removals in the neighborhood of the selected pixel; positive ��� signs show
possible flips which would add exterior neighbors. Gray symbols are the allowed flips (these do not violate simple connectivity), while the white symbol marks a
forbidden flip: adding this pixel would create a hole in �, violating simple connectivity. If a proposed flip is accepted, elements of the edge set must be updated.
Right: The edge set has been updated upon removing the allowed gray ��� pixel.

are topologically equivalent, in the sense that we can continu-
ously deform one shape into another (no “tearing” or “gluing”
is allowed). In this setting, continuous deformations are con-
structed by composing a sequence of single pixel flips which do
not “tear” (break it up into two disconnected pieces) or “glue”

on itself (form a loop of the dendritic shape onto itself). How-
ever, while the underlying space is connected in this sense,
the likelihood function typically has many local optima, and,
therefore, local search techniques must be supplemented with a
randomized or multistart strategy (e.g., simulated annealing) in
order to find the global optimum. We provide details of the local
search strategy in the following subsections. For information on
our particular initialization procedure, see the Appendix.

A. Boundary Set

On each iteration, we choose a pixel randomly and decide
whether or not to “flip” it (i.e., add the pixel to the interior set if
it is currently outside, or remove the pixel if it is inside). Before
deciding whether or not to flip a given pixel, we must first test
whether flipping the pixel will preserve the simply connected
structure of . Clearly, we are not allowed to flip pixels which
are not located on the boundary of , since flipping a pixel which
is not touching will create a disconnected shape (the current
plus a disconnected pixel), and flipping a pixel which is on the
interior of but not on the boundary will form a hole, therefore
breaking the simple connectivity of . Thus, we may restrict our
attention to the boundary set of : the set of all pixels which are

in the interior of but which contact at least one pixel on the
exterior. For concreteness, we say that a pixel contacts another
if they are direct neighbors either horizontally or vertically (i.e.,
diagonal contacts are not considered). An example of an edge
pixel flip is shown in Fig. 1.

After each accepted flip, we must update the boundary set, by
removing any pixels in the interior which are now not touching
the exterior and adding any interior pixels which are now on the
boundary. As we discuss below, this is a local computation: we
do not need to rescan the entire image after each accepted flip;
instead, we need only check the four neighbors of the flipped
pixel.

B. Simple Connectivity Constraint

Each possible flip is checked to ensure maintenance of the
simple connectivity constraint. While simple connectivity is a
global topological constraint, we can enforce it locally in two
dimensions [20]. Mathematically, this is possible by forbidding
topological changes: flips which either cut a region in two
(tearing) or join two unconnected regions together (gluing).
We may check these constraints in a computationally efficient,
local manner by requiring the number of connected regions
in a 3 3 neighborhood of the proposed pixel (i.e., the eight
horizontal, vertical, and diagonal neighbors) to remain constant
when we flip the pixel from the neuron.

This check on the connectivity may be performed using, e.g.,
the bwlabel.m function in Matlab, which serves to count all the
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connected regions in a given image. However, it is inefficient to
perform this check every time we want to flip a pixel. Instead,
we cache 3 3 patches that we have tested previously, along
with whether the flip was accepted or not. Now for each new
patch that we need to test, we need only check to see if we have
checked this patch before, and if so, whether it led to a valid flip.

In the data we present, we assume only one neuron is la-
beled. This has an important correspondence with experiments,
as some techniques label single neurons, while others typi-
cally label many cells. However, our algorithm maintains the
topology of initialization—if two neuronal structures started out
next to each other, but were separate, then the algorithm would
keep them separate. Again, this behavior relies on the fact that
by rejecting changes in local topology, we maintain global
topology. If the algorithm was used to recover an area with two
nearby neurons, and was initialized with separated shapes, it
might incorrectly assign a spine to the wrong neuron—leading
to a less favorable recovery—but the two structures would
remain separate.

C. Local Updating of the Loglikelihood

Once we have decided that a given pixel flip is acceptable
(i.e., it maintains simple connectivity of ), we need to decide
whether the flip will increase the likelihood. In a strict ascent
algorithm, we will only accept a flip if it increases the likeli-
hood function, while in a simulated annealing (randomized) al-
gorithm, the probability of accepting a flip increases as a func-
tion of the ratio between the likelihood of after and before the
flip. In either case, we need to compare the postflip and preflip
likelihood.

Computing the log-likelihood (2) requires that we compute
(1) and then perform a sum over all pixels . However, if the

point-spread function has finite support, then updating the
log-likelihood requires just a simple (fast) local computation. To
see this, we expand the log-likelihood ratio

where the sum over is only over those pixels for which
. In many applications, is only a few

pixels wide, and, by linearity of convolution, changing one
pixel in will only affect over a few pixels. The sum over
will be much smaller (and faster to compute) than the sum over
. Furthermore, the second sum in the last line above is in fact

a constant, again by linearity of convolution

where is the space integral of the point spread function
and the is taken to be positive when the pixel is flipped in
(added to the interior set) and negative when the pixel is flipped
out (removed from the interior). So, finally, we obtain

Finally, note that we only need to compute for pixels such that
is positive. We achieve this by employing sparse matrices to

store the location of positive for a tested pixel as we sample
from . Thus, updates for the loglikelihood may be computed
quite quickly.

D. Direct Maximum Likelihood Performs Poorly

The performance of the maximum likelihood estimator
is illustrated in Fig. 2. We started with the binary test image

on the left, then convolved this image with an isotropic
Gaussian point-spread function (the standard deviation
of this Gaussian was taken to be 3 pixels here), then sampled
photon counts from the blurred Poisson model as de-
scribed above. The images of are arranged opposite data
with increasing SNR below the “true” shape. The top row uses

, the middle row uses , and the bottom
row uses . For each set of data we computed

by direct ascent methods, but similar results are observed
when various forms of simulated annealing are employed.

The main result evident here is that directly computing
leads to rather poor image recovery in the low-SNR regime.
Roughly speaking, the MLE tries to include all pixels where
many photons have been detected and to exclude all pixels in
which no photons are detected; under the simple-connectivity
constraint, this behavior leads to the undesirable “tendril” (high
perimeter-to-area ratio) structures seen in Fig. 2. This behavior
is in fact evident over a fairly wide range of SNR regimes; only
when the SNR is high enough does the MLE become a viable
estimator for .

V. PENALIZED MAXIMUM LIKELIHOOD LEADS TO BETTER

IMAGE RECONSTRUCTION

Given our prior knowledge about the relative smoothness of
neuronal edges, we know that the overly “hairy” recovered neu-
ronal shape shown in Fig. 2 is inaccurate. We would like to
build this a priori information directly into our estimator. One
direct and fairly classical way to do this is to maximize a penal-
ized likelihood instead of maximizing the likelihood directly:
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Fig. 2. Unpenalized MLE gives an overly “stringy” estimate of the underlying neuron shape. This figure shows how MLE performance scales with increasing
SNR. The left column displays � (simulated) with increasing SNR generated by the blurred Poisson model and the right column shows the corresponding �� .
The top row uses � � �� , the middle row uses � � �� , and the bottom row uses � � ���� . With low-SNR the unpenalized MLE clearly fails
to accurately recover the original image; note the undesirable “tendril” (high perimeter per area) structures. As SNR increases, however, the data more adequately
constrains recovery and �� approaches � .

we may obtain a smoother reconstruction by penalizing flip pro-
posals which make the edge more jagged. Thus, we maximize
the penalized loglikelihood

(3)

instead of just the loglikelihood . We want to
choose the penalty function so that becomes larger
as becomes more jagged. However, we constrain ourselves
to penalty functions which may be updated through strictly
local computations so that our iterative algorithm (which
requires many pixel flips) remains computationally tractable.
As usual, this penalized likelihood has a natural Bayesian
interpretation: if our prior distribution on images is of the form

then the penalized loglikelihood is just the log-posterior under
this prior, and the maximum penalized likelihood estimator is
equivalent to the maximum a posteriori estimator.

Fig. 3 illustrates the behavior of a penalized MLE on the data
shown in the middle row of Fig. 2. We found the following
to be a simple, effective penalizer here:

where

and and are adjustable parameters. In this case, both
and serve to measure the roughness of the

boundary of , and may both be computed efficiently via
simple local computations (specifically, counting the number
of pixels in or near the boundary set of ); we found empiri-
cally that a combination of these two penalties leads to better
recovery of the true shape , since alone favors rectan-
gular, blocky edges, while selects for diagonal edges.
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Fig. 3. Illustration of the edge-length penalties � ��� and � ���. Each panel displays the penalized MLE, computed with � � � (left) and � � � (right),
given the observed data shown in the middle panel �� � �� � in Fig. 2. In each case, the penalized MLE eliminates the “tendrils” seen in the unpenalized
MLE; however, employing� ��� or� ��� alone leads to somewhat blocky reconstructed images. By combining penalties (i.e., setting both � and � positive),
we can more optimally recover a neuronal shape.

A. Fitting the Smoothing Penalty Parameters via
Cross-Validation

The definition of the penalty function above poses the
obvious, yet nontrivial, problem: How do we optimally choose
the penalty weights ? A satisfactory analytic treatment
of this problem has proven elusive; any definition of the “op-
timal” penalty value would depend upon many parameters (e.g.,
the signal-to-noise ratio of the observed data, the smoothness
of the true underlying image, etc.). Moreover, direct numerical
minimization of the penalized loglikelihood (3) as a function
of clearly leads to the unpenalized maximum like-
lihood solution (i.e., and are just set to zero), which is
clearly not the solution we are looking for (cf. Fig. 2). Thus,
we took a cross-validation approach to optimizing the penalty
values here.

Cross-validation refers to the technique of splitting the ob-
served data into two components, the “training” set and the
“held-out” (or “test”) set. Fitting is performed on the training
data, and then the performance of the estimator (under various
values of the penalization parameters) is tested on the held-out
data. Using cross-validation, we then choose the penalization
parameters which perform best on the held-out test data. The
best-performing parameters are those for which the penalized
MLE maximizes the (unpenalized) likelihood of the test data.

In the interest of minimizing imaging damage to the sample,
we would like to be able to fit the penalty parameters given
a single image. Thus, we randomly hold out a fraction of the
observed pixels in a single image. This entails a straightforward

change in our loglikelihood function: instead of computing the
sum over all pixels in expression (2), we compute the sum over
all observed pixels instead—we simply discard the held-out
test pixels from the sum.

Thus, for each candidate value of the penalization parameters
, we compute

where the fluorescence rate at the th pixel given , is com-
puted as described above. Then to choose the best , we
compare the loglikelihood each assigns to the test data

where the sum is over all the held-out test pixels and now is
computed given the shape computed using the training
data only.

Applying this method returns nonzero values for penalty
parameters since—as shown in Fig. 2—naïve MLE
reconstruction at low-SNR is underconstrained by the data.
Imposing the edge penalty constrains image recovery and
increases the loglikelihood of the the held-out test data. The
success of our cross-validation approach is shown in Fig. 4: We
see that the cross-validated test loglikelihood does a good job
of choosing penalty values which lead to the best-recovered
neuronal shapes for known . The recovery using
parameters chosen by cross-validation incorrectly classifies
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Fig. 4. Illustration of the performance of cross-validation in selecting the optimal penalization parameters �� � � � for data shown in middle panel
of Fig. 2 �� � �� �. Top: Comparison of cross-validated test loglikelihood surface (right) versus percentage of pixels which were correctly
classified as being inside or outside of the true neuron � (left), as a function of �� � � �. In this case, the percent correctly classified is calculated as
�� � �����	��
�� ��������� �������	
���� �� ������ �	 � ��. The two surfaces match each other qualitatively, indicating that cross-validation is an
effective technique for selecting �� � � �. Bottom Left: Recovered shape �� which maximizes the number of recovered pixels. White and black indicate
pixels where the two agree, light grey denotes misses, and dark grey shows false positives. Bottom Right: �� selected by using cross-validation to fit
�� �� �. The two estimated shapes are comparable recoveries of the true shape, the respective percentages of erroneously classified pixels divided by number of
pixels in � are 7.00% and 7.36%. The comparable fidelity of these recoveries again show that cross-validation is an effective technique for selecting �� � � �.

only a slightly higher number of pixels than the parameters
which best recovered the original image; the respective per-
centages of erroneously classified pixels divided by number of
pixels in are 7.00% and 7.36%.

Running the algorithm on similar simulated data as in Fig. 4,
we are able to simultaneously estimate the penalty parameters

and fluorescence levels . Of course, this full
search covers a larger parameter space and is, therefore, slower.
Fig. 5 shows the loglikelihood surface as a function of and

at optimal values of . We see the surface is fairly well
behaved; we may fit fluorescence levels in addition to penalty
values for . Cross-validation, then, can robustly deter-
mine favorable image recovery parameters.

VI. MARKOV CHAIN MONTE CARLO METHODS FOR

SAMPLING FROM

Now we may finally turn to the primary goal of this paper,
which is to develop fully Bayesian methods for quantifying our
knowledge of the neuronal shape given the observed image
data . Up until now, we have discussed techniques for
computing estimators which (locally) maximize the posterior

. However, it is equally important to quantify our
uncertainty in these estimates. One standard way to do this is
to draw samples from the posterior , and then
to quantify the variability of these samples. Directly sampling

Fig. 5. Cross validation can be used to simultaneously determine optimal
penalty parameters �� � � � and fluorescence levels �� � � �; here we show
the loglikelihood surface as a function of � and � at optimal values of � �
� . As with Fig. 4, this figure illustrates performance using same-SNR data
�� � �� � as in the middle panel of Fig. 2. � vary respectively from .75
to 1.25 times and .75 to 1.20 times the true values used to generate the data. The
maximal loglikelihood value exactly coincides with fluorescence levels used for
data generation. Note that our estimate for � is more strongly constrained
by the data, since there are many more pixels (i.e., more information) outside
the dendrite than inside.

from these posteriors is infeasible, but standard Markov Chain
Monte Carlo [21] methods may be employed easily.

We implemented a simple Gibbs sampler [22] here. The idea
is that we iteratively choose a pixel randomly and sample
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Fig. 6. This figure displays how unpenalized MCMC sampling scales with increasing SNR. From the center and right columns, we gain a sense of the variability of
samples, which decreases with increasing SNR. Left Column: � (simulated) generated by the blurred Poisson model (same data as in Fig. 2). Center Column:
A random sample � drawn during Gibbs sampling. Right Column: Pictures which show average shape of samples drawn using Gibbs sampling. Each image
represents the square root of the superposition of 100 samples. Colorbar represents the percentage of samples that have a given pixel on the interior, red(10) means
the pixel was on the neuronal interior on every sample, blue(0) means the pixel was on the exterior in every sample. Samples were drawn once every 200 proposals
from the Markov chain after an initialization (burn-in) period of 5e3 proposals.

from , the distribution of the states
of the pixel given the observed data , the parameters

which specify our prior , and the states
of every other pixel in . It is well known that this iter-

ative sampling strategy leads to samples from the full posterior
, although these samples will not be indepen-

dent; see, e.g., [21] for further details and background on Gibbs
sampling.

Thus, we only need to discuss the problem of sampling from
; this turns out to be quite easy

given the methods we have already developed. We simply write
out

where the first term in the last line is one or zero depending on
whether the shape made of the pixels is simply
connected. Luckily, we have already developed methods for ef-
ficiently checking simple connectivity and for computing and

updating the penalty and the likelihood , one
pixel at a time. Thus, we see that sampling from the poste-
rior via the Gibbs approach requires no more code
than what we have already written to maximize .

The behavior of the Gibbs sampler is illustrated in Figs. 6
and 7 (code to be made publicly available at http://www.stat.co-
lumbia.edu/~liam). With very low SNR, image recovery is not
particularly constrained by the data. Fig. 6 shows the results
of unpenalized sampling for increasing SNR (this is equiva-
lent to sampling from the posterior given a “flat” prior, i.e.,

for all simply connected ). At the lowest SNR
displayed (top row), samples from the unpenal-

ized Markov chain shows high variability; in fact the Gibbs
chain does not equilibrate around . This analysis, there-
fore, indicates that the chain is relatively unconstrained by the
data. If we increase the strength of the penalty, by raising and

, we can constrain image recovery more effectively (Fig. 7).
The top row shows what happens when we consider penalized
Gibbs sampling for the same lowest-SNR data. In this case,

equilibrates fairly quickly. Furthermore, sample
shapes show the effect of the constraint and are much less vari-
able than without a penalty. Thus, given appropriate prior in-
formation on dendritic shape, we can decrease the uncertainty
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Fig. 7. This figure shows how penalized MCMC sampling scales with increasing SNR. From the center and right columns, we see that imposing a penalty term
(� � ��� � � � here) constrains the variability of samples drawn using the Gibbs sampler. Left Column: � (simulated) generated by the blurred Poisson
model (same data as in Fig. 2). Center Column: A random sample � drawn during Gibbs sampling. Right Column: Pictures which show average shape of samples
drawn using Gibbs sampling. Conventions as in Fig. 6. Note that penalization leads to much less variability—especially at low SNR—than is evident in Fig. 6.

in our recovered image, as expected. (In both figures, top rows
have a ratio : of 2:1; the penalized Gibbs chain equili-
brates in about 5e3 steps, or 45 s. All computations performed
on a Pentium 4 CPU 3.40-GHz laptop with 1-GB RAM).

If we increase SNR instead of altering the penalty, the
Gibbs sampler also coverges nicely to a stationary state and

stabilizes quickly. The bottom row of Fig. 6
shows the lower sample variability and the better approximation
of the true shape, indicating that the data adequately constrains
recovery. Combined with the penalized sampling results, the
results of increased SNR indicate that the Gibbs sampler can
be used as a valuable tool to determine whether a dendritic
image is in fact adequately constrained by the observed data
(the higher SNR samples with ratios : of 5:1 and 500:1
equilibrate after around 7.5e3 steps, or 30 s, with or without the
penalty; as in the case of lowest SNR we considered, sample
shape and variability are visibly affected by the constraint).

VII. DISCUSSION

We have introduced Bayesian methods for quantifying neu-
ronal shape given low-SNR image observations. Our key in-
sights are that: 1) neurons are simply connected topological

structures, and this geometric constraint may be easily incorpo-
rated in algorithms for determining neural shape; 2) direct max-
imum likelihood estimation leads to poor recovery of the neu-
ronal shape, while simple penalization methods perform much
more effectively; and 3) Markov chain Monte Carlo techniques
allow us to quantify the uncertainty in our estimates of the neu-
ronal shape and can be used to determine whether this shape is
actually constrained by the data. These aspects of our method
make it a potentially useful front end for software whose goals
include identifying spines or tracking neuronal branching, such
as NeuronStudio (Computational Neurobiology and Imaging
Center, Mount Sinai School of Medicine; http://www.mssm.
edu/cnic/tools.html) or IMARIS (Bitplane AG. Zurich, Switzer-
land; http://www.bitplane.com/go/products/imaris).

Other groups have examined priors on roughness for imaging
work. Good’s roughness penalty [23] has received attention for
use in biological imaging applications including tomography
[24], confocal microscopy [25] and optical sectioning mi-
croscopy [26]. Good’s penalty is a kind of weighted Laplacian
penalty; there are close connections between the edge-based
penalty introduced here and these Laplacian penalties, since
the Laplacian serves to effectively detect edges in the case of
the binary shapes of interest here.
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Fig. 8. This figure shows how we obtain a starting � from the observed data � . Left: Observed data as in Fig. 2 (with � � �� ). Center: Smoothed data,
� . Right: � , obtained by thresholding � .

Fig. 9. Demonstration of the utility of prior optimization with an unphysically large psf for recovering images with even lower SNR. Top Left: Observed data
using �� � �� � but with � at ����� of its value in Fig. 2 etc. Top Right: Starting shape from thresholding. Poor starting points, such as this one, become
increasingly common as SNR decreases and the data becomes more sparse. Optimization using an unphysically large psf can improve image recovery. Bottom
Left: Comparison between �� and � after using the ‘physical’ psf, �, used to generate data. White and black indicate pixels where the two agree, light
grey denotes misses, and dark grey shows false positives. Bottom Right: Comparison between �� and � after prior optimization with an unphysically large
psf (4x spread). In the second case, the recovery is clearly more successful and �� much better approximates � . In particular, note how the top left spine,
which recovery using the ‘physical’ psf misses entirely, is present after optimization with the larger psf.

A major direction for future work is to incorporate more “re-
alism” into our priors. One attractive possibility has recently
been developed by [27]: the idea is to develop priors which
are truly “neuronal,” instead of the simple edge-based priors we
have used here. This could potentially lead to much more accu-
rate recovery of the underlying neuronal shapes. In particular,
we would like to use different priors for different types of neu-
ronal types, which might differ in the roughness of the dendritic
membrane, the number, size, and shape of dendritic spines, etc.
The challenge here will be to incorporate this more detailed
prior knowledge of neuronal shape while maintaining the local
nature of the computations described here. Future work could

also attempt to relax the assumption that neuronal fluorescence
can be modeled as a step function, and account for subtleties
related to dye distribution in spines and dendrites. Another im-
portant track involves translating our 2-D work into 3-D. Most
critically, we must adapt methods from digital topology to ef-
ficiently enforce the more complicated 3-d simple connectivity
constraint [28], [20].

Finally, we should emphasize that the Gibbs sampling
methods described here, while simple to code and understand,
are far from optimal in terms of computational speed. In fact,
the problem of efficiently sampling from a binary Markov
random field remains a topic of ongoing interest in applied
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statistics, computer vision, and statistical physics. This body
of work has a great potential for adaptation to our particular
circumstances. Instead of flipping a single graph vertex, ideas
like graph clustering and graph relabeling can be used to split,
merge, and regroup chunks of the graph [29]. This drastically
speeds convergence when adjacent graph vertices are strongly
coupled [30], as they are for neuronal structures. We hope in
the future to apply these advanced sampling techniques to the
analysis of spine geometry in real neuronal data.

APPENDIX

INITIALIZATION OF

In the main text, we chose not to give full details of the
initialization of our estimate of the neuronal shape , since
our maximization and sampling methods may be initialized
with any algorithm that extracts starting shapes with the correct
topology from a noisy image. At low-SNR, generating topolog-
ically faithful initializations is itself a difficult problem which
this particular paper does not aim to solve in full generality.
Other authors consider this difficulty; for example, [8] presents
a method employing adaptive thresholding which efficiently
determiens local dendritic morphology. Furthermore, better
initializations for can reduce computation time and increase
the accuracy of image recovery; thus, for completeness, we
describe in this Appendix the method we used to extract an
initial from the data shown in this paper (Fig. 8).

To obtain the “true” neuronal shape shape analyzed here,
we first thresholded the high-SNR empirical data shown in the
top left of Fig. 1, then extracted the largest connected shape,
filled in the resulting small observed holes, and smoothed the
edges. To extract largest connected components, we first use
Matlab’s bwlabel.m function to determine connectivity, and
then regionprops.m to label connected areas; to fill in holes,
we used Matlab’s imfill.m function. After using this shape
to generate observed data according to our model, our
procedure for initialization relies upon upon thresholding a
smoothed version of this observed data. To choose the threshold
value, we maximize the Poisson likelihood over a small set
of candidates . We generate candidate as follows:
we first convolve the data, , with the psf to obtain a
smoothed image . Next, we take a number of thresholds
of , i.e., where we vary . Each
threshold produces a binary image (with all pixels greater than
the threshold set to one). We then extract the largest simply
connected component, . We choose the
maximizing the Poisson loglikelihood according to our image
degradation model, , as our initial neuronal
shape.

If the observed pixel counts are particularly sparse, and the
neuron is particularly thin, this simple procedure can choose a
poor starting point for our optimization. Sometimes this even
leads to an intial guess with an incorrectly truncated neuron
(Fig. 9, top right). As the average number of observed photons
falling within an area of the neuron the size of the point-spread
function drops to zero, the optimization easily becomes stuck in
a local minima: the iterative algorithm cannot “see” enough data
to flip the pixels that would move towards a globally optimal

solution and, therefore, cannot recover from a faulty truncation.
In this very low-SNR case, we have found that a coarse-to-fine
strategy is effective: we perform the above thresholding proce-
dure after smoothing with an unphysically wide psf. This leads
to much more reasonable initializations for the algorithm in
these very low-intensity cases (Fig. 9, bottom right).
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