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Undersmoothed Kernel Entropy Estimators

Liam Paninski and Masanao Yajima

Abstract—We develop a “plug-in” kernel estimator for the differential
entropy that is consistent even if the kernel width tends to zero as quickly
as 1=N , whereN is the number of independent and identically distributed
(i.i.d.) samples. Thus, accurate density estimates are not required for ac-
curate kernel entropy estimates; in fact, it is a good idea when estimating
entropy to sacrifice some accuracy in the quality of the corresponding den-
sity estimate.

Index Terms—Approximation theory, bias, consistency, density estima-
tion, distribution-free bounds.

I. INTRODUCTION

The estimation of the entropy and of related quantities (mutual infor-
mation, Kullback–Leibler divergence, etc.) from independent and iden-
tically distributed (i.i.d.) samples is a very well-studied problem. Work
on estimating the discrete entropy began shortly after the appearance of
Shannon’s original work [8], [2], [1], [9]. A variety of nonparametric
approaches for estimating the differential entropy have been studied,
including histogram-based estimators, “plug-in” kernel estimators, re-
sampled kernel estimators, and nearest-neighbor estimators; see [3] for
a nice review.

In particular, this previous work has established the consistency of
several kernel- or nearest-neighbor-based estimators of the differen-
tial entropy, under certain smoothness or tail conditions on the under-
lying (unknown) distribution p. In the kernel case, consistency is estab-
lished under the assumption that the kernel width scales more slowly
than 1=N [3]; this is the usual assumption guaranteeing that the corre-
sponding kernel density estimate is consistent (not “undersmoothed”).
While these consistency results are well understood, worst case error
bounds—i.e., bounds on the estimator’s average error over a large class
of underlying probability measures p—are more rare.

Our main result here is an adaptation of the discrete (histogram-
based) techniques of [9], [10] to the kernel estimator case. This earlier
work established universal consistency for a histogram-based estimator
of the entropy assuming that the number of histogram bins m = mN

obeyed the scaling mN = O(N); in addition, nonparametric error
bounds were established for any (m;N) pair. To adapt these results
here we decompose the error of the kernel estimator into three parts:
a (deterministic) smoothing error, and an estimation error consisting
of the usual bias, and variance terms. Smoothing error generically de-
creases with kernel width, and therefore it is beneficial to make the
kernel width as small as possible; on the other hand, in the classical
plug-in entropy estimators, making the kernel width too small can make
the estimation error component (the bias plus the variance) large. We
provide an estimator whose estimation error term may be bounded by
a term which goes to zero even if the kernel width scales as 1=N . Thus,
accurate density estimates are not required for accurate kernel entropy
estimates; in fact, it is a good idea when estimating entropy to sacrifice
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some accuracy in the quality of the corresponding density estimate (i.e.,
to undersmooth). Some comparisons on simulated data are provided.

II. MAIN RESULTS

We assume that data fxjg, 1 � j � N , are drawn i.i.d. from some
arbitrary probability measure p. We are interested in estimating the dif-
ferential entropy of p [5]

H(p) = �
dp(s)

ds
log

dp(s)

ds
ds

(for clarity, we will restrict our attention here to the case that the base
measure ds is Lebesgue measure on a finite one-dimensional interval
X of length �(X ), though extensions of the following results to more
general measure spaces are possible.)

We will consider kernel entropy estimators of the following form:

Ĥ = g(p̂(s))ds

where we define the kernel density estimate

p̂(s) =
1

N

N

j=1

k(s� xj)

with k(�) the kernel; as usual, kds = 1 and k � 0. The standard
“plug-in” estimator for the entropy is obtained by setting

g(u) = h(u) � �u log u;

our basic plan is to optimize g(�), in some sense, to obtain a better
estimate than the plug-in estimate.

Our development begins with the standard bias-variance decompo-
sition for the squared error of the estimator

E(H � Ĥ)2 = (Eapp +B(Ĥ))2 + V (Ĥ)

with the approximation error

Eapp = H(p � k)�H(p)

and the bias term

B(Ĥ) = Ep(Ĥ)�H(p � k)

defined relative to the smoothed measure

p � k(s) = Ep(p̂(s)) = k(s� x)dp(x):

Note that Eapp is generically positive and increasing with the kernel
width (since smoothing tends to increase entropy), while the biasB(Ĥ)
of the standard plug-in estimator (g(�) = h(�)) is always negative, by
Jensen’s inequality.

Clearly, it is impossible to obtain any nontrivial risk bounds on the
expected mean-square error of any estimator of the differential entropy,
since we might have H = �1 (in the case that p is singular). Thus,
instead of trying to obtain bounds on the full error E(H(p)�Ĥ)2, our
goal will be to bound the estimation error

E(H(p � k)� Ĥ)2 = B(Ĥ)2 + V (Ĥ)

and then choose the kernel k so that the smoothing error Eapp is as
small as possible, under the constraint that the worst case expected es-
timation error is acceptably small.

For this class of kernel entropy estimators, we have some simple
bounds on the bias and variance (adapted from bounds derived in [1],
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[9]). We may bound the variance V (Ĥg;N) using McDiarmid’s tech-
nique [6], [7].

Lemma 1 (Variance Bound, General Kernel):

V (Ĥg;N) � N sup
y

g(y)� g y +
k(s)

N
ds

2

:

In the special case that g(�) is Lipschitz, sups;t jg(s)�g(s+t)j � cjtj,
for some 0 < c < 1, the bound simplifies considerably

V (Ĥg;N) � c2=N:

Proof: McDiarmid’s variance inequality [6], [7] says that if we
may bound the maximal coordinatewise difference

sup
x ;...;x ;x ;...;x

Ĥg;N(x1; . . . ; xj ; . . . ; xN )

�Ĥg;N(x1; . . . ; x
0
j ; . . . ; xN ) � cj ;

where Hg;N(x1; . . . ; xN ) denotes the estimator evaluated on some ar-
bitrary configuration of the observed samples fxjg1�j�N , then

V (Ĥg;N) �
1

4
j

c2j :

We have here that cj , as defined above, may be chosen as

cj = 2 sup
y

g(y)� g y +
k(s)

N
ds;

plugging in, we obtain the the general bound in the lemma. In the Lip-
schitz case

N sup
y

g(y)� g y +
k(s)

N
ds

2

� N
c

N
k(s)ds

2

= N(c=N)2 = c2=N

where the first inequality follows by the Lipschitz condition and the
first equality by the fact that the kernel k integrates to one.

Exponential tail bounds are also available [7], [6], [1], [9] in case
almost-sure results are desired, but these bounds will not be necessary
here.

We now specialize to the simplest possible kernel, the step kernel of
width w

kw(s) =
1

w
1 (s 2 [�w=2; w=2]) :

In this case, we only need to define g(u) at the N + 1 points u =
0; 1

Nw
; 2
Nw

; . . . ; 1
w

, and we have the following simplification of
Lemma 1:

Lemma 2 (Variance Bound, Step Kernel):

sup
p

V (Ĥg;N) � Nw2 max
0�j<N

g
j + 1

Nw
� g

j

Nw

2

:

Proof: In this case it is easy to see that
supy g(y)� g y + k (s)

N
ds is bounded above by

w max
0�j<N

g
j + 1

Nw
� g

j

Nw
;

the result now follows directly from Lemma 1.
We may compute the bias B(Ĥg;N) exactly in this special step-

kernel case

B(Ĥg;N) = Ep(Ĥg;N)�H(p � kw)

= � h[p � kw(s)]

�

N

j=0

g
j

Nw
Bj;N [wp � kw(s)] ds (1)

where we have abbreviated the binomial functions

Bj;N (u) �
N

j
uj(1� u)N�j ;

the derivation of this formula exactly follows that in the discrete case,
as described in [9] (all that is required is an interchange of an integral
and a finite sum). From this we may easily derive the following approx-
imation-theoretic bound.

Lemma 3. Bias Bound :1

sup
p

jB(Ĥg;N)j � �(X ) max
0�u�1

1

w
h(u)

+ logw �

N

j=0

g
j

Nw
Bj;N (u) :

Proof: We apply the simple inequality j
X
f(x)d�(x)j �

�(X ) supx jf(x)j to the expression for the bias in (1). First we rewrite

h[p � kw(x)]dx = h
1

w
wp � kw(x) dx

= logw +
1

w
h[wp � kw(x)]dx:

Now

B(Ĥg;N) = � logw +
1

w
h[wp � kw(x)]

�

N

j=0

g
j

Nw
Bj;N [wp � kw(x)] dx

so jB(Ĥg;N)j is bounded above by the equation at the bottom of the
page, since 0 � wp � kw(x) � 1. The maximum is obtained, by
compactness and continuity of h(u) and Bj;N (u).

1A direct generalization to the infinite�(X ) case is not possible without some
restrictions on the decay of p. We will not pursue such bounds here.

�(X ) sup
x

logw +
1

w
h[wp � kw(x)]�

N

j=0

g
j

Nw
Bj;N [wp � kw(x)] = �(X ) max

0�u�1
logw +

1

w
h(u)�

N

j=0

g
j

Nw
Bj;N (u)
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Note that each of the above bounds is distribution-free, that is, uni-
form over all possible underlying distributions p. We may combine
these to obtain uniform bounds on the mean-square error

sup
p

E(Ĥg;N �H(p � kw))
2

= sup
p

B(Ĥg;N)
2 + V (Ĥg;N)

� sup
p

jB(Ĥg;N)j
2

+ sup
p

V (Ĥg;N)

� �(X )2 max
0�u�1

1

w
h(u) + logw �

N

j=0

g
j

Nw
Bj;N (u)

2

+Nw2 max
0�j<N

g
j + 1

Nw
� g

j

Nw

2

=
�(X )

w

2

max
0�u�1

h(u) + w logw �

N

j=0

wg
j

Nw
Bj;N(u)

2

+N max
0�j<N

wg
j + 1

Nw
� wg

j

Nw

2

: (2)

If we define

a(j=N) = w [g(j=N)� logw]

then expression (2) simplifies to

�(X )

w

2

max
0�u�1

h(u)�

N

j=0

a
j

N
Bj;N (u)

2

+N max
0�j<N

a
j + 1

N
� a

j

N

2

:

In [10], we proved that there exists a sequence of functions aN (defined
implicitly as the solution to a certain approximation-theoretic convex
optimization problem) such that

m2
N max

0�u�1
h(u)�

N

j=0

aN
j

N
Bj;N(u)

2

+N max
0�j<N

aN
j + 1

N
� aN

j

N

2

converges to zero as N !1 for any sequence mN satisfying mN =
O(N).2

Now, settingmN = �(X )=wN , we may now easily deduce the main
result of this correspondence.

Theorem 4: Let NwN � c > 0, uniformly in N . There exists
an estimator Ĥg;N for the entropy H which is uniformly smoothed-
consistent in mean square; that is

sup
p

E(Ĥg;N �H(p � kw ))2 < �(c; N)

with �(c;N) & 0 as N ! 1, and the supremum is taken over all
probability measures p.

Proof: We need only apply the main result of [10] guaranteeing
the existence of the sequence aN described above, and then take
g(j=N) = 1

w
aN (j=N) + logw.

2In [10], m was defined as the finite number of points on which the discrete
probability measure was supported. Note that this definition of m is consistent
with the definition of m in the case of a histogram-based method, in which
we divide the space X into m bins and the effective kernel width w is exactly
�(X )=m.

Fig. 1. Top: True density used for the simulations described in the text and in
Fig. 2. Bottom: Smoothed density.

As a corollary, it is easy to show that a uniformly consistent estimator
exists if NwN ! 0 sufficiently slowly; as in [10], this follows by a
straightforward diagonalization argument. Note that wN = O(N�1)
(and certainlywN = o(N�1)) does not lead to consistent density esti-
mates, even under smoothness restrictions on p [9], [4], [11]. Thus, the
content of the theorem is that we can undersmooth the density and still
estimate entropy well. In fact, undersmoothing is a good idea because
it generically decreases the approximation bias Eapp.

Finally, it is worth noting that an identical result may be obtained
in the multidimensional case; the only difference in the statement and
proof of the result is that in the general case the inverse measure of the
support of our step kernel must be O(N), whereas in the one-dimen-
sional case (Theorem 4) we restrict the inverse lengthwN to beO(N).

III. NUMERICAL RESULTS

Sample-spacing estimators also have the “undersmoothing” prop-
erty—consistent density estimates are not required for consistent en-
tropy estimates [3]. Thus, it makes sense to compare the performance
of the estimator introduced here with that of these sample-spacing
estimators.

Them-sample spacing estimator is defined as follows. GivenN real-
valued samples Xi, we may form the usual order statistics X(i). The
gaps between the ith- and (i+m)th-order statistics,X(i+m)�X(i), are
called the m-spacings. It is easy to form a density estimator based on
these m-spacings [3], and plugging this estimator into the differential
entropy formula (and performing a bias correction) gives the following
estimator for the entropy:

Ĥ(m) �
1

N

N�m

i=1

log
N

m
(X(i+m) �X(i)) �  (m) + logm

where we have abbreviated the digamma function

 (x) =
@ log �(t)

@t t=x
:

To compare the performance of the estimators, it is useful to choose a
bounded, absolutely continuous density whose entropy is very vulner-
able to oversmoothing, that is, a density p for whichH(p) andH(p�k)
are very different and therefore the approximation error Eapp is large.
One such density is of the one-dimensional sawtooth form

p(x) = pN(x) �
2; n�1

N
� x � 2n�1

2N

0; 2n�1
2N

� x � n

N

where n = 1; 2; . . . ; N (Fig. 1). (More generally, any density with
large fluctuations on a 1=w scale will induce a large approximation
errorEapp; the density p chosen here just has a particularly convenient
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p � k(x) =

2

w
x� n�1

N
� w

2
; n�1

N
� w

2
� x � n�1

N
+ w

2

2; n�1

N
+ w

2
� x � 2n�1

2N
� w

2

2 1� 1

w
x � 2n�1

2N
� w

2
; 2n�1

2N
� w

2
� x � 2n�1

2N
+ w

2

0; 2n�1

2N
+ w

2
� x � n

N
,

form.) The entropy H(p) of this distribution can easily be calculated
as � log(2).

The smoothed entropy H(p � k) may also be computed explicitly
here. The density p � k is simply a sum of trapezoids, of the form
shown in the equation at the top of the page, where we have assumed
that w < 1=N . Thus, for the smoothed entropy we obtain

H(p � k) =�
<

p � k(x) log p � k(x)dx

=�N
�

2 log 2dx� 2N
w

0

2x

w
log

2x

w
dx

=�N
1

2N
� w 2 log 2� 2N

w

2

2

0

y log ydy

=�N
1

2N
� w 2 log 2

�
Nw

2
y2 log y �

1

2
y2

2

0

=� log 2 +Nw:

We illustrate the performance of the new kernel estimator (which we
will refer to by the initials “BUB,” for “best upper bound,” as in [9])
versus the m-spacing estimator with m = 1 (this value of m led to
the best performance here; data not shown) in Fig. 2.3 The idea was
to choose w to be as small as possible (to make the smoothing error
H(p � k) �H(p) as small as possible), within the constraint that the
maximal error maxp[Ĥ � H(p � k)]2 is decreasing as a function of
N (to ensure smoothed consistency of the estimate Ĥ). This behavior
is illustrated in Fig. 2: we see that the error bound does in fact tend to
zero (albeit slowly), implying that Ĥ ! H(p � k) in mean square; at
the same time, since nWN ! 0, H(p � k)! H(p), and we have that
Ĥ is not only smoothed consistent in mean-square but in fact mean-
square consistent forH(p). On the other hand, them-spacing estimator
has an asymptotic bias; since the m-spacing estimator is constructed
from a density estimate whose kernel width, roughly speaking, would
correspond to 1=[Np(x)], this estimator cannot detect the structure on
the o(1=N) scale which is necessary to consistently estimate H(p)
here. (But note that the m-spacing estimator can be superior in the
case of an unbounded density p, where the smoothing errorH(p�k)�
H(p) of the kernel estimator is large but where the small effective width
1=[Np(x)] of them-spacing estimator can lead to a much smaller bias;
data not shown.)

3Kernel density estimators are typically computationally expensive, requiring
O(Nt) time to compute, where t denotes the number of points at which we
evaluate the integrand in the definition of the entropy estimate; the m-spacing
estimates, on the other hand, may be computed after a simple sorting operation
which requires O(N logN) time (typically t is taken to be significantly larger
than logN ; i.e., them-spacing estimator is computationally cheaper). However,
in the case of the step kernel used here, applied to one-dimensional data, it is
possible to compute the density estimate, and therefore Ĥ , inO(N logN) time:
we need only sort the sample points (as in the case of them-spacing estimator),
then to compute the integral in the definition of Ĥ we need only keep track of
the 2N points at which the density estimate k(x ) jumps up or down (at
the points fx �w=2g and fx +w=2g, respectively); the whole computation
requires just a couple lines of code.

Fig. 2. Comparison of the performance of the m-spacing (m = 1) and BUB
estimators applied to the density p shown in Fig. 1. For each of several values of
the sample size N , we chose N i.i.d. samples from p (with N in the definition
of p chosen to equal the sample size in each case; i.e., the number of sawtooths
in the definition of p increases linearly with N ), then replicated the experiment
ten times, in order to obtain reliable estimates of the sample mean and stan-
dard deviation of the two estimates. This sample mean, plus and minus a single
standard deviation, is plotted for them-spacing and BUB estimates (dotted and
solid black traces, respectively). Note the large positive asymptotic bias of the
m-spacing estimator (the variance of both the m-spacing and BUB estimators
are relatively negligible). The true value of the entropy, H(p) = � log 2, is
indicated by the dashed line; the gray trace shows the true smoothed entropy,
plus or minus the square root of the maximal mean-squared error of the BUB
estimator. Note that this maximal error tends to zero as N ! 1, as does
H(p � k) ! H(p), for the values of w chosen here, implying mean-square
consistency of Ĥ for H(p).

IV. CONCLUSION

We have presented a kernel density estimator of the entropy (based
on a simple step kernel) which can be applied even when the kernel un-
dersmooths the true underlying density (that is, when the kernel width
tends to zero as quickly as 1=N ). This kernel estimator is shown to have
better numerical performance than the classical m-spacing estimators
when the underlying density p is very jagged. We anticipate that this
new estimator will be useful in applications that require the estimation
of differential entropy of a random vector, or of the mutual information
between two random variables.
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A Note on Permutation Polynomials Over

Guobiao Weng and Chaoping Dong

Abstract—Permutation polynomials have applications in coding theory,
cryptography, combinatorial designs, and they have been studied for over
a hundred years. Recently, permutation polynomials over have been
used to construct interleavers for turbo codes. In this paper, we determine
all permutation polynomials over with degree no more than six.

Index Terms—Interleaver, permutation polynomial, turbo code.

I. INTRODUCTION

Let q be the finite field of order q, where q is a prime power. We
call f(x) 2 q[x] a permutation polynomial over q if it permutes all
the elements of q .

Permutation polynomials over finite fields have been a subject of in-
terest for over a hundred years. They have applications in coding theory,
cryptography, combinatorial designs, etc. One can refer to Cohen [2,
Ch. 7] of Lidl’s book [5], Mullen [7] for properties, constructions, and
applications of permutation polynomials.

In this note, we always assume R to be a finite commutative ring
with identity, L to be a finite local ring with identity, and n to be the
quotient ring =n .

We call f(x) 2 R[x] a permutation polynomial over R if it per-
mutes all the elements of R. Permutation polynomials over n are ap-
plied to interleavers and turbo codes. For details, one can see Sun and
Takeshita’s paper [11].

We note that some authors, such as Chen in [1] and Ryu in [10],
have recently considered quadratic and cubic permutation polynomials
over n. But actually we can determine all permutation polynomials
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over n with a degree no more than six. We will discuss permutation
polynomials over finite commutative rings in Section II and then come
up with the main result over n in Section III.

II. PERMUTATION POLYNOMIALS OVER

FINITE COMMUTATIVE RINGS

In this section, we will show the general steps of approaching per-
mutation polynomials over finite commutative rings.

First, McDonald in [6] gave the following structure theorem for finite
commutative ring with identity.

Theorem 2.1 ([6, Theorem VI.2]): Let R be a finite commutative
ring with identity. Then R can be written uniquely as a direct product
of some local rings, i.e.,

R = L1 � L2 � � � � � Ls

where Lj , 1 � j � s, are all local rings.

Hence, every element h in R can be written uniquely in the form

h = (h1; h2; . . . ; hs); where hj 2 Lj ; 1 � j � s:

Suppose f(x) = t

i=0 aix
i 2 R[x], where ai = (a

(1)
i ; . . . ; a

(s)
i ),

0 � i � t, and

fj(x) =

t

i=0

a
(j)
i xi 2 Lj [x]; 1 � j � s:

Then for any h = (h1; h2; . . . ; hs) 2 R, we have

f(h) =

t

i=0

a
(1)
i ; . . . ; a

(s)
i (h1; . . . ; hs)

i

=

t

i=0

a
(1)
i ; . . . ; a

(s)
i hi

1; . . . ; h
i
s

=

t

i=0

a
(1)
i hi

1; . . . ;

t

i=0

a
(s)
i hi

s

=(f1(h1); . . . ; fs(hs)):

Thus, we can write f(x) 2 R[x] uniquely as (f1; f2; . . . ; fs), where
fj(x) 2 Lj [x], 1 � j � s.

It is easy to see that deg(f) = maxfdeg(fj) j 1 � j � sg. Also
one can easily deduce the following theorem.

Theorem 2.2: Let f(x) and fj(x) be the polynomials mentioned
above. Then f(x) permutes R if and only if fj(x) permutes Lj , 1 �
j � s.

We note that in order to consider the inverse of f(x), one can just
focus on the inverse of fj(x), 1 � j � s.

By Theorem 2.2, we just need to focus on permutation polynomials
over finite local rings now. First, let us fix some notations during the
following discussions of this section.

Let L be a finite local ring with identity and let be its unique
maximal ideal. Suppose 6= 0 and q = L= , where q is a prime
power, i.e., q is the residue field of L.

Let � : L ! L= be the natural epimorphism and denote a =
�(a), 8 a 2 L. For any

f(x) =

t

i=0

aix
i 2 L[x]

we denote

f(x) =

t

i=0

aix
i 2 q[x]
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