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A Composite Holographic Associative Recall Model

Janet Metcalfe Eich
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In this article, a highly interactive model of association formation, storage, and
retrieval is described. Items, represented as sets of features, are associated by the
operation of convolution. The associations are stored by being superimposed in
a composite memory trace. Retrieval occurs when a cue item is correlated with
the composite trace. The retrieved items are intrinsically noisy, may be ambig-
uous, and may under certain conditions be systematically distorted from their
encoded form. A discrete response is selected by matching the retrieved item to
all of the items in semantic memory. The model yields several new predictions
about errors in single-trial cued recall that depend on similarity relations among
the to-be-remembered items, and also about the efficacy of extralist cues. Ex-
periments are presented that test these predictions against human recall. The
model is then applied to several well-known results: prototype abstraction, the
A-B A-D paradigm—including the independence of the B and D responses—

and the Osgood transfer surface.

This article addresses the question of how
people associate two ideas and store the as-
sociation in memory in such a way that at
some later time, when only one of the ideas
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is available, they may use that idea to re-cre-
ate or retrieve the other. A second question
that follows naturally from the first is, How
are people able to retrieve such ideas?

The particular answer to these questions
that will be investigated and elaborated here
has usually been called the holographic hy-
pothesis of associations. It is not the image-
like characteristics of holograms that define
the holographic hypothesis; rather, it is the
formal operations of convolution and cor-
relation that are important. Roughly speak-
ing, association by convolution consists of
the interation of all of the parts of one item
with all of the parts of another. The result
is an interactive new entity. A number of
these interactive associations may be stored
in a single composite memory trace, some-
what resembling a photograph that has been
exposed many times. Retrieval occurs by
means of the operation of correlation. The
operations of convolution and correlation
will be explained in a later section of the ar-
ticle or the reader may refer to Borsellino and
Poggio (1973), Murdock (1979), or Stroke
(1969). What we get from this scheme—hol-
ographic associations stored in a composite
trace—is a profoundly interactive memory.

Since its invention by Gabor (1948), the
hologram has frequently been cited as a met-
aphor for human association formation, stor-
age, and retrieval, and the neurological apt-
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ness of the metaphor has often been hoted
(Borsellino & Poggio, 1973; Cavanagh, 1976;
Heerden, 1963; Julesz & Pennington, 1965;
Longuet-Higgins, 1968; Metcalfe & Mur-
dock, 1981; Murdock, 1979, 1982; Pribram,
1971; Pribram, Nuwer, & Baron, 1974; West-
lake, 1970; Willshaw, 1981; Liepa, Note 1).
In addition, J. A. Anderson (1970) has re-
marked that the construct of a composite
trace, which is an intrinsic part of all holo-
graphic models, may be particularly appro-
priate to human memory because it may give
rise to creative behavior. Holographic mod-
els, however, have only rarely been directed
toward explaining psychological data. One
notable exception is Cavanagh’s (1976) holo-
graphic model of recognition for short lists
of items, Also, Metcalfe and Murdock (1981)
presented a holographic model of single-trial
free recall of unrelated words. Both of these
models provide a reasonably good descrip-
tion of the data to which they are applied.

In this article, a traditional psychological
variable—similarity—will be represented in
a holographic model similar to that proposed
by Metcalfe and Murdock (1981). This model
will henceforth be referred to as CHARM,
which stands for composite holographic as-
sociative recall model. The representation of
similarity will allow the highly interactive
nature of the holographic association itself
and of the method of storage to become
manifest. It will also allow the model to make
some predictions about what people will re-
call in several experimental situations. Not
all of these predictions are intuitively ob-
vious.

CHARM initially will focus on an experi-
mental situation in which people are pre-
sented with a list of pairs of words to study
and remember. The words may vary in their
similarity to each other. The subjects will be
instructed to study the pairs as pairs, and it
will be assumed that an association is formed
between the two words composing each pair.
A short time after studying, subjects will be
presented with cue words and asked to recall
the targets. The reason for focusing on the
cued recall of a once-presented list of paired
associates is that this is the simplest situation
to which CHARM can be applied. It is also the
simplest situation in which to address the
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question of how two ideas may be associated
and stored and how retrieval takes place.

Although the initial focus of this article is
on implications of the holographic associa-
tion and the composite trace in single-trial
cued recall, several extensions of the model
to other paradigms will be presented in a later
section. These extensions—to prototype
learning, the A-B A-D paradigm, and the
Osgood transfer surface—provide some in-
sight into the generality as well as the limi-
tations of CHARM.

Description of CHARM

CHARM is a fairly simple holographic
model of associative recall. A main assump-
tion of the model is that items are represented
as patterns of features rather than as discrete
indivisible units. These items may vary in
their similarity to each other. Two such items
are associated interactively by means of the
operation of convolution. The result is stored
in a composite memory trace that consists
of the superimposition of other associations
as well. Retrieval occurs by means of the
operation of correlation. Finally, the re-
trieved item is identified as a particular re-

-sponse by being matched to every item in a

lexicon representing semantic memory.

CHARM stems from a variety of sources,
and each of the main constructs in the model
has precedents in the literature. For instance,
the representation of items in terms of sets
of features is well known (e.g., Bower, 1967;
Estes, 1972; Tversky, 1977; Wickens, 1972).
The representation of similarity will be in
terms of feature overlap. This representation
has often been used before (e.g., Reed, 1973;
Smith, Shoben, & Rips, 1974; Tversky, 1977),
although, to my knowledge, similarity has
not previously been studied within a holo-
graphic framework.

The holographic association in vector no-
tation, as will be used here, has been specified
before (Borsellino & Poggio, 1973). This as-
sociation appears in a number of other mod-
els (Cavanagh, 1976; Heerden, 1963; Julesz
& Pennington, 1965; Longuet-Higgins, 1968;
Murdock, 1982; Willshaw, 1981; Liepa, Note
1). The model from which CHARM most di-
rectly derives was given by Liepa (Note 1),
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and work on the present model was begun
in collaboration with Bennet Murdock (Met-
calfe & Murdock, 1981). Murdock (1982) has
elaborated a holographic model that stores
both item and associative information in a
single trace. Murdock’s (1982) paper also
deals with the issue of noise distributions—
an issue that will not be covered in the pres-
ent article. The main constructs under ‘in-
vestigation here—the holographic associa-
tion and the composite trace—are the same
in CHARM as in the above-cited models, and
CHARM depends on the theoretical advances
made by these investigators.

The construct of a composite trace is an
integral part of all holographic memory mod-
els but has also been employed in models
that do not use the associative operation of
convolution and the retrieval operation of
correlation (J. A. Anderson, 1970, 1972,
1973, 1977;J. A. Anderson, Silverstein, Ritz,
& Jones, 1977; Kohonen, 1977, 1980). Some
of the psychological-as well as neurological
implications of this construct have been de-
lineated by J. A. Anderson (1977), the most
important being that it may give rise to cre-
ative behavior.

The distinction between semantic and ep-
isodic memory is a familiar one (Tulving,
1972). In this article, the composite-holo-
graphic trace refers (roughly) to episodic
memory. A pattern recognizer corresponding

“to semantic memory is included as well.
These two levels of representation allow
CHARM to solve the problem of response am-
biguity that occurs in other holographic and
distributed models (e.g., Willshaw, 1981;
Liepa, Note 1). The construct of a semantic
pattern recognizer relates to response avail-
ability (e.g., Martin, 1965; Underwood, Run-
quist, & Schulz, 1959; Underwood & Schulz,
1960). The identification process used in
CHARM, by which a particular response is
selected, bears a semblance to the resonance
process given in Ratcliff’s (1978) item-rec-
ognition model.

Each part of the model is thus familiar

. (though some parts may be more familiar

than others). What I do in the present article

is to mesh these several parts into a model

that makes some predictions about recall.
There are, of course, many things one
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would like such a model to do and explain,
The strategy I adopt in the present article is
to specify the model sufficiently to allow
some of the implications of the interactive
nature of the association and the composite
nature of the trace to become obvious and
testable. Recourse to other constructs (how-
ever reasonable) was specifically avoided in
an effort to show what sorts of predictions
and results could (and could not) be attrib-
uted direcly to the composite-holographic
trace. In this section of the article, I explain
the mechanisms for association formation,
storage, and retrieval and describe some re-
sults of varying semantic similarity, First,
however, the manner in which the individual
items are represented needs to be examined.

Representation of Individual Items

In CHARM, items are represented as or-
dered sets of features. The work of Tversky
(1977) indicates that the individual features
of items, and not just their point location in
multidimensional space (Hutchinson &
Lockhead, 1977), may be important for cer-
tain tasks, such as judgements of similarities
and differences. However, the featural rep-
resentation, as opposed to a point-location
representation, is necessary in the present
model because the features themselves par-
ticipate in both the associative and the re-
trieval operations.

In contrast to certain other models (see -
Medin & Schaffer, 1978; Reed, 1973), in
which items are represented by a rather small
number of features, CHARM assumes that the
number of features representing a given item
is quite large. Apart from this quantitative
difference, the concept of siinilarity as feature
overlap, as it has been developed in earlier
models, applies quite readily to-CHARM and
simplifies the analysis of similarity.

The features in each item are coded as
numbers and are assumed to have positive
and negative values, with an expected mean
of zero. This coding scheme is analogous to
the semantic differential. However, Batch-
elder and Narens (1977) have shown that the
identity of particular features, even under
highly circumscribed conditions, may not be
uniquely determinable. Because this is the
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case, it seems appropriate to consider the fea-
tures to be abstract.

The numerical values of the features may
vary from item to item, and it is the differ-
ence in overall pattern that characterizes
each item. The strength of a feature, as given
by its absolute value, is an indication of how
important that feature is in the representa-
tion of the item. In a later section, once some
of the implications of similarity have been
described, the question, “More important for
what?” will be addressed in the context of
cued recall. If the average absolute value of
all of the features of one item were greater
than that of another item, the first item
would be said to be stronger than the second.

It is assumed that the numerical value of
a particular feature within an item is inde-
pendent of the values of the other features
within the same item. Though possibly un-
realistic, this assumption is made for math-
ematical convenience and presumably could
be relaxed.

More critical is the assumption that the
features must be ordered. That is, if Feature
15, say, represents a particular attribute in
one item, it represents the same attribute in
all items. Both the associative formation and
retrieval operations depend on the features
being ordered.

Unrelated items will be considered to be
items in which the feature values are statis-
tically independent. Knowing the value of a
particular feature in one item gives no in-
formation about the value of that same fea-
ture in the rest of the set of unrelated items.
We may take the dot product between two
items as a measure of the extent to which the
two items are similar or unrelated. The dot
product is found by multiplying the value of
each feature in one item by the value of the
corresponding feature in the other item and
adding all of the products. The dot product
of F, coded as (- - -, f_, fo, f1, +--) and
G,codedas(-*+,2.1,8,8, )18 F:-G,
given by

where 7 is the number of features in the
items. The result is (- +f_.g, + fogo +
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fig1 + <« ). Over the set of unrelated items,
the dot product between any two items is
expected to be zero. In the computer simu-
lations that will follow, unrelated items will
be constructed by selecting feature values
randomly for each feature of each item from
a symmetrical distribution centered on zero.
The representational assumptions for unre-
lated items are the same as those of Metcalfe
and Murdock (1981) and differ from those
of J. A. Anderson et al. (1977) and Liepa
(Note 1) only insofar as the unrelated items
are considered to be statistically independent
rather than strictly orthogonal.

To go to the other extreme, suppose that
two items are identical. Now when the dot
product between these two identical items is
taken, the result is not zero but rather the
sum of squares of the values of the features,
which is a positive value. Let us, for conve-
nience, set this value at | so that F-F = |
for all items. Notice that this value is a mea-
sure of the strength of the item and that set-
ting the value to be the same for all items
amounts to saying that items begin with
equal strength. This is not a necessary as-
sumption, and there are no doubt experi-
mental manipulations that would affect this
value, Identity is taken as the most extreme
case of similarity. As has often been pointed
out, even when the same item is presented
twice, it may not be encoded identically on
both occasions. The construct of encoding
variability will not be used in the present
article as an explanation, however, although
the model is not incompatible with this idea.

One may, of course, have intermediate
degrees of similarity. Suppose, for instance,
that half of the features in two items are iden-
tical and the other half independent. The in-
dependent features, when multiplied and
added to form the dot product, will be ex-
pected to sum to zero as before, and the iden-
tical features will result in a positive value,
as before. Because only one half of the total
features are identical, the expected value of
the dot product will be .5 rather than 1. The
dot product thus indicates the extent of fea-
ture overlap (beyond independence) of two
items.

In this article, similarity will be repre-
sented as the proportion of features that two
items have in common (i.e., that have iden-
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tical numerical values). It will be assumed

that the number of features in each item is
some large constant number and that the dot
product of an item with itself gives a value
of one. These representational assumptions
are very simplified and can probably be re-
laxed considerably to be more psychologi-
cally plausible. For the present purpose, the
simplicity of the assumptions makes it easier
to see what CHARM does when items are as-
sociated, stored, and retrieved.

Association Formation

It is postulated that two items in con-
sciousness, each represented as an ordered
set of features, may be associated by means
of the operation of convolution. This method
of association formation is fundamental to
the holographic hypothesis and is shared by
a variety of other models. The operation has
other applications as well (see Murdock,
1979, for a review). Suppose that two items
F and G are coded in terms of »n features
(where n is odd), yielding F = (f_(,-1y2,
LRI f—!’ fO, fl: L f(n—l)/2) and
G =81y« > &1> 80 &5 + + - » En—1)2)-
The convolution of F and G, written as FxG,
is a 2n— | row vector whose mth term is

given by ‘
Tm = Z f i gj >
(4, yEStm)

where S(m) = {(i, )l — (n—1)/2<i, j=<
(n— 1)/2,and [ + j = m}. If n is equal to
3, it is straightforward to compute that
FxG = (f_1g-1, fog8-1+ f-180 f18-1 +
fogo+ f-ifis fi& + fo&i, fi&1). Fig-
ure 1 presents an illustration of convolution
for two items each consisting of three fea-
tures, and a number of other iltustrations can
be found in Lathi (1968). The associative
trace, which is the sum of the products along
the central line of intersection, is represented
in the box in the center of Figure 1. It is
simple to compute the convolution of two
items by constructing a matrix, such as the
one shown in Figure Al of the Appendix.

The operation of convolution is itself com-
mutative or symmetric, that is, F+G = G«F.
This can easily be verified by exchanging the
items in Figure 1; the associative trace re-
mains the same. This implies that the for-
ward and backward associative strength be-

ASSOCIATIVE
ITEM F MEMORY ITEM G
TRACE
[ ©-
fo
f4 v 4

Figure 1. An illustration of the convolution of two items,
each consisting of three features.

tween F and G should be the same if every-
thing else is equal (cf. Asch, 1968; Ekstrand,
1966).

In CHARM, both of the associated items are
considered to converge on a higher order as-
sociative trace. This trace is a complex in-
teraction between the two items and does not
itself resemble, in any obvious way, either of
the contributing items. The meaning of the
features in the association is not the same as
the raeaning of the features in the items. For
instance, if one were to assign a name to one
of the features in the items, that name would
not apply (uniquely) to any of the features
in the associative trace. Conceptually, this
association is nothing like a pathway between
the two items (as in, for instance, J. R. An-
derson & Bower’s, 1973, or J. R. Anderson’s,
1976, models). As we shall soon see, the re-
trieval operation is nothing like a search.

To facilitate the exposition of how con-
volution works in combination with corre-
lation, consider the special case in which an
item is convolved with a delta vector, de-
noted §. A delta vector is an item that has
values of zero on all features except the cen-
tral feature, which has a value of 1. When an
item is convolved with a delta vector, the
result is the item itself. This may easily be
verified by substituting the valtues of (0, 1, 0)
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for either F or G in Figure 1 and multiplying
through each connection. The result is the
other item. Convolving an item with a zero
vector, that is, an item with values of zero
on all features, produces a vacuous item—
another zero vector. Convolving an item with
what will be called an attenuated delta vector
(i.e., an item with values of zero on all fea-
tures except the central one, which has a
value greater than zero but less than one)
produces the other item with a strength that
is equal to the central feature of the atten-
uated delta vector.

I do not propose that memory items are
themselves delta vectors. However, if there
were an operation that functionally con-
verted one of the items into a delta vector,
the other item would be reconstructed. This
is just what the retrieval operation of corre-
lation does.

Item Retrieval

When a retrieval cue is presented and re-
call of the item with which that cue was as-
sociated is required, it is proposed that the
cue is correlated with the associative trace.
(Correlation, as used here, is not identical to
correlation in statistics, which is the dot prod-
uct, although the two are related.) Correla-
tion may be defined in a manner similar to
convolution. When F and G are coded as
F= (f—(n—l)/z, v fous fo, fla cees f(n—n)/z)
and G = (g—(n—l)/2’ eves -1 80 815 -0
Zin-12), the correlation of F and G, written
as F#G, is a 2n — 1 row vector whose mth
term is given by

R.= 2 fig,

(1, JYES(m)

where S(m) = {(i, Dl-(n—1)/2=<i, j=<
(n—1)/2, and i—j=m}. It follows that
when 7 is equal to 3, for instance, the result
of correlation F#G = (f_,g1, fo&) + f-1%0s
f18&1 + fogo + f-18-1, f180 + fog-1, f18-1). As
can be seen, the central feature of correlation
isF-G.

If an item is correlated with itself, the value
of the central feature will be one, because
F - F was set to one, The noncentral features
will have an expected value of zero (but will
not be exactly zero) because of the indepen-
dence of the feature values and the overall
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expected value of zero. Thus, autocorrelation
(F#F) results in an approximation to a delta
vector. If the two items being correlated are
similar, the central feature will be equal to
the dot product between the two similar
items, that is, equal to their similarity. Thus,
the correlation of two similar items results
in an attenuated delta vector. If the two items
being correlated are unrelated, the expected
value of the central feature is zero, as it is for
all of the other features. Thus, the correlation
of two unrelated items approximates a zero
vector.

Relation Between Operations for
Associating and Retrieving

As was given in the Association Formation
section, when an item is convolved with a
delta vector, the result is the item itself:

6+G = G. (1)

When an item is convolved with a zero vec-
tor, the result is a zero vector:

0+G = 0. 2)

The result of convolution with an attenuated
delta vector falls between these two extremes.
As was given in the Item Retrieval section,
when an item is correlated with itself, an ap-
proximation to a delta vector results:

F#F ~ 6. 3)

When an item is correlated with an unrelated
item, an approximation to a zero vector re-

sults:
F#G ~0, where F-G=0. (4)

The result of correlating an item with another
similar item falls in between these two ex-
tremes, resulting in an approximation to an
attenuated delta vector, '

The relation between convolution and cor-
relation for unrelated items has been given
before (Borsellino & Poggio, 1973; Murdock,
1979; Liepa, Note 1). It will be simpler to
give a more general equation here and then
derive the result for unrelated items. The
equation relating convolution and correla-
tion is given by

F#(F+G)

= (F#F)*G + (F#G)+F + noise. (5)
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- The Appendix illustrates the convolution
and correlation matrices that produce this
summary equation and shows the locus of
the two potentially nonnoise components,
(F#F)*G and (F#G)+F.

" If F and G are unrelated, we may substi-
tute the first four equations into Equation 5
as follows:

" F#(F+G) = (F#F)*G + (F#G)+F + noise
~ §xG + 0+F 4+ noise
~ G + 0 + noise
~G.

If F and G are unrelated, and G is used as
a retrieval cue, Equation 5 becomes

G#(F+G) = (G#F)*G + (G#G)*F + noise
~ O0xG + 6xF + noise
~ 0 + F + noise
~ F.

Thus, when two unrelated items are as-
sociated by convolution, and either of the
items is correlated with the resulting associa-
tive trace, an approximation to the other
item is reconstructed or retrieved.

Effects of Similarity

Stimulus and response generalization fall
out immediately from the above associative
and retrieval scheme. When two unrelated
items are associated by convolution, and
then an item that is similar to but not iden-
tical with one of the associated items is cor-
related with the result, an-approximation to
the other item is produced. In this case the
two similar items do not form a delta vector
with a central feature of precisely one; in-
stead, an attenuated delta vector is formed,
with a central feature equal to the similarity
(dot product) between the two items. The
retrieval operation produces the other item
with a strength that is proportional to the dot
product. Thus, if F and G are convolved and
then F (an item similar to F) is correlated
with the trace, F and F’' will form an atten-
uated delta vector that will produce or re-
construct G with a strength proportional to
F-F. In a like manner, if G’ was used as a
retrieval cue, F would be produced with a
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strength proportional to G - G'. The fact that
stimulus generalization results directly from
the method of association formation and re-
trieval suggests that the model might be di-
rectly applicable to a wide variety of exper-
imental paradigms (see Gibson, 1941). The
fact that response generalization occurs for
the same reason gives rise to the counterin-
tuitive prediction that an item similar to a
response will evoke recall of the stimulus-—
a prediction that will be tested later in this
article. :

If the two associated items are similar to
each other (i.e., F- G > 0), both of the non-
noise components given in Equation 5 are
important. For example, consider the limit-
ing case in which F and G are identical.
Equation 5 becomes ‘

F#(F»G) = (F#F)*G + (F#G)+F + noise
~ §xG + 6+F + noise
- ~ 2G + noise
~ 2F + noise.

The item produced will have twice the
strength as would have been the case had it
been associated with an unrelated item.
(Some complications arise from the internal
noise that make this only an approximation,
but it is a fairly good one, so long as other
associations enter into the composite trace
as well as the target association.)

Suppose now that instead of the associated
items being identical, they are similar to each
other. For the sake of illustration, suppose
that F+ G = .5 because about 50% of the fea-
tures are identical (and the remainder are
independent). If these two similar items were
correlated, the result would be an attenuated
delta vector with a central feature equal to
F-G = .5. Equation 5 then becomes

F#(F*G) = (F#F)xG + (F#G)*F + noise
~ 6%xG + .56+%F + noise
~ G + .5F + noise.

The retrieved item is a linear combination
of the original items F and G. Each feature
in G is weighted or multiplied by 1, each
feature in F is multiplied by .5, and the re-
sults are added, feature by feature. This tends
to accentuate the features that are common
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to F and G, making them stronger than they
would otherwise be, and to have an interfer-
ing effect on the features that are unique to
the target item G. The item that is re-created
is a systematic distortion of the encoded (tar-
get) item G such that it is more like the as-
sociated item F than would be the case had
the target been associated with an item that
was not similar. The fact that the model sys-
tematically distorts the retrieved item from
its encoded form when the two associated
items are similar, but not when they are un-
related, has experimental implications that
will be tested later in the article.

In summary, when two items that are un-
related are associated by convolution and
then one of the two is correlated with the
trace, an approximation to the other item is
retrieved. When an item similar to one of the
convolved items is correlated with the trace,
the other item is still produced, but with a
decreased strength. When two similar items
are convolved and then one of the two is
correlated with the trace, the item that is re-
trieved is systematically distorted from its
encoded form such that it is more like both
of the associated items and less like the target
item itself, taken in isolation. The interactive
association itself introduces this distortion.
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The Composite Associative Memory Trace

In CHARM, associations are stored in a
composite memory trace—termed composite
because the composite portraits of Galton
(1879), in which photographs of faces were
superimposed to yield a prototypical face,
provide a good visual analogy to such a mem-
ory trace. J. A, Anderson and his colleagues
(J. A. Anderson, 1970, 1972, 1973, 1977,
J. A. Anderson et al., 1977; J. A. Anderson
& Hinton, 1981) have argued for the neu-
rological and psychological plausibility of
this same construct.

Figure 2 gives a numerical example of how
the composite trace in CHARM is formed. The
figure shows how two pairs of items are first
convolved and then added into the compos-
ite trace. The trace starts out with some nu-
merical values that are the result of previous
pairs that have been added into it. When a
pair of items (F and G) is presented, con-
volution occurs as described earlier. The
matrix in the figure is a convenient way of
computing the result of convolution. The
numerical values in the figure were chosen
for their computational simplicity rather
than to conform to the independence and
strength assumptions in the model. The re-

Figure 2. A schematic illustration of the formation of the composite memory trace. (Note that the
associations are truncated as in the simulations). ‘
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sult of convolution is added, feature by fea-
ture, into the trace. When the next pair (H
and I) is associated, the result is also added
into the composite trace.

How does the composite trace influence
what is recalled? When the items of a list are
all unrelated, the fact that the trace includes
pairs other than the target pair adds noise to
the recalled item. Suppose a list consists of
two pairs of four unrelated items: F-G and
H-I1. When F is given as a retrieval cue, the
reconstruction can be characterized as fol-
lows:

F#[(F+G) + (HxI)]
= (F#F)*G + (F#G)*F + noiser,g
+ (F#H)*I + (F#1)*H + noisey.
= 0+G + 0«F + noisep,g + 0*I
+ 0+%H + noisey,y
= G + noisep.¢ + NOISEH,g -

In this situation, the effect of the nontarget
H-I pair is to add noise to the reconstructed
item G. Quite literally, the composite trace
produces interference. Metcalfe and Mur-
dock (1981) present a number of computer
simulations that illustrate this buildup of
noise due to an increasing number of pairs
in the memory trace, when those pairs are
unrelated.

Now consider a situation in which all four
items are similar to one another. For the sake
of illustration, suppose that the dot product
of any item with any other item is .5. Going
through the reconstruction computations
gives

F#{(F+G) + (H*I)]
= (F#F)*G. + (F#G)«F + noisep,g
+ (F#H)«L + (F#T)«H + noisey.y
= %G + .56%F + noisep,g + .56x1
+ .56%xH + noisey.
=G+ .5F+ .51 + .SH
+ noisep,¢ + NOiSCH.s -

The main point to note is that in this situ-
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ation, the composite trace not only produces
noise but also causes all of the items in the
list to contribute to the pattern that is re-
trieved from memory.

As a final illustration, consider the case
where two unrelated target items (B and D)
have been associated with the same cue (A)
and both associations (A-B and A-D) have
been stored in the composite trace. When the
cue is correlated with the trace, the single
item that is retrieved is a combination of both
of the unrelated targets. This situation, which
corresponds to Barnes and Underwood’s
(1959) A-B A-D paradigm, can be sche-
matized as follows:

A#[(AxB) + (A+D)]
= (A#A)*B + (A#B)*A + noisea.n
+ (A#A)+D + (A#D)*A + noise,.p
= 6xB + OxA + noise,,p + 6%D
+ 0%A + noise.p
= B + D + noises,g + Noises.p .‘

The fact that the retrieved item is a combi-
nation of more than one item in this situa-
tion, as well as in situations where to-be-re-
membered items are similar to each other,
reveals a problem of possible response am-
biguity. The construct of semantic memory,
detailed below, solves this problem.

To summarize, a quick rule of thumb for
saying what will be retrieved from the com-
posite~holographic memory trace is as fol-
lows: Take the dot product (i.e., the similar-
ity) of the cue item with each of the items
in the list. If the dot product between the cue
and a particular item is about zero, then only
noise will be produced. If the dot product
between the cue and Item X is not zero, then
the complement item, with which Item X
was convolved, will be retrieved with a
strength proportional to the dot product.
This calculation may be carried out for every
item in the list, giving the strength with which
the complement items are retrieved. All of
the noise and the retrieved items, weighted
by their appropriate strengths, are then added
to give an approximation to the single item
that is recovered from memory.
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Semantic Memory

Because the item that is retrieved from the
composite trace is intrinsically noisy, and
may be systematically distorted or ambigu-
ous, CHARM requires a pattern recognizer if
it is to make predictions about what discrete
words will be recalled. This pattern recog-
nizer basically identifies the retrieved item as
such and such a word and allows for a dis-
crete response.

There are two parts to the pattern recog-
nizer. First, because the retrieved item is to
be assigned a particular label, there is a listing
of all the possibilities. This listing of respon-
ses corresponds in a general way to what is
often called semantic memory, where the
term is interpreted in the restricted sense of
a lexicon. The usage of the term semantic
memory seems most similar to that given by
Kintsch (1974). Thus, when an item is re-
trieved from the composite trace, it is iden-
tified by being matched to every item in the
lexicon,

Second, there is a matching process that
serves to select one (or more) of the discrete
possibilities as the response(s). The matching
process is similar to the resonance operation
described in Ratcliff’s (1978) item-recogni-
tion model. Each feature in the retrieved item
is multiplied by the corresponding feature in
each lexical item, and the sum of the prod-
ucts for all of the features corresponding to
a particular lexical item is taken. In this man-
ner, a separate -dot product is computed for
every lexical item. The better the match be-
tween the retrieved item and a particular lex-
ical item, the higher will be the dot product—
or “resonance” value (see Ratcliff, 1978)—
for that lexical item. In the simulations that
follow, the matching process is allowed to be
exhaustive; that is, every feature of every lex-
ical item is matched to the retrieved item.
(An alternative approach is to halt the match-
ing process once sufficient information has
accumulated—via a random walk to a cri-
terion—for a particular response; see Rat-
cliff, 1978. Whether the matching process
stops at a criterion or is exhaustive probably
depends on the demands of the specific task
at hand.)

Resonance values allow us to determine
what the retrieved item will be identified as
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and to make contact with verbal cued-recall
experiments in which, in most instances, re-
sponses are discrete. It is at the identification
stage that the strength of features becomes
especially important. Features that have high
absolute resonance values—that is, strong
features—will contribute more to the selec-
tion of a response than will weak features.
The implementation of a lexicon for pattern’
recognition is the same as in Metcalfe and
Murdock (1981) but is not explicit in any
other holographic model, It allows CHARM
to address situations involving response am-
biguity and thereby enables the model to
make predictions concerning errors of recall
and to deal elegantly with the A-B A-D
transfer paradigm. In the third and fourth
experiments reported below, evidence for the
separate existence of a semantic memory sys-

.tem is provided.

For simplicity, no occurrence information
is stored at the lexical level. The matching
process is thus properly considered to be an
identification process rather than a recogni-
tion-memory process. CHARM is a model of
recall, not recognition,

Experimental Tests of CHARM

In the preceding discussion, I described the
workings of the model. I said little, however,
about explicit experimental predictions. In
this section, I will describe several simple sin-
gle-trial cued-recall experiments and outline
the predictions of the model. 1 will present
computer simulations of the model that dem-
onstrate the predictions in a more concrete
fashion. These simulations were run predic-
tively (before the experiments were con-
ducted) and thus are attempts not to fit data
but rather to make qualitative predictions.
I will present several experiments that seek
to determine whether people, when in recall
situations that should conform fairly closely
to those simulated, produce patterns of recall
that correspond to the predictions of the
model.

Intralist Intrusions

The first simulation is directed at a situ-
ation in which people are presented with a
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list of cue—~target word pairs to study and re-
member. The list may consist of words that
are all unrelated to each other or that are all
similar to each other. After studying, subjects
are given the cue words as retrieval stimuli,
and the question asked is, What will be re-
called?

Simulation 1

Method. The entire simulation that I will describe
here was run 100 times for each of the two conditions:
similar list and unrelated list. The only difference be-
tween these runs was that each had a different random
assignment for the initial representations of the items,
One run of this simulation for the unrelated-list con-
dition wil first be detailed. Then the alteration in the
program that gives rise to the similar list condition will
be described.

A small lexicon consisting of 12 items was con-

structed. Six of these items were designated to be list
items and six were unrelated extralist items. Each feature
of each lexical item was a number randomly selected
from a unit normal distribution with a mean value of
zero. The randomization subroutine RANDR was used
and care -was taken that the computer specifications
match those for which this subroutine was originally
designed. Each item consisted of 63 features. The 63-
tuple composing each item was then normalized so that
the dot product of any item with itself equaled one.
Because of the random selection of feature values, the
dot product of any item with any other item was ap-
proximately equal to zero.

The associative memory trace was formed by con-
volving Items | and 2, Items 3 and 4, and Items 5 and
6. The results of the three convolutions were added into
a single 63-tuple made up of the central 63 features of
the convolutions. Once this composite trace was formed,
the program attempted to recall.

In order to recall, each of Items 1, 3, and 5 was cor-
related with the composite trace, resulting in three re-

trieved patterns that were again truncated to the central-

Table i
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63 features. Each retrieved pattern was then matched to
each of the 12 lexical items by multiplying each feature .
in the retrieved item by the corresponding feature in the
lexical item and summing the products, yielding a reso-
nance score for each lexical item. For purposes of illus-
tration, the program also chose the lexical item that had
the highest resonance score (as long as it was greater
than zero) to give as a résponse. This responding crite-
rion is arbitrary but will illustrate the pattern of recall
more concretely than do the resonance scores them-
selves.

In the similar-list condition, the lexicon was initially
constructed in exactly the same way as in the unrelated-
list condition. Then the values of every other feature in
the first six items were altered so that they were all ex-
actly the same as the feature values originally assigned
to Item 1. Thus, the items that were to make up the list
had identical values on 32 features and independent
values on 31 features. This representation of similarity
is crude, but a later simulation’on protoypes that uses
a more refined representation gives about the same re-
sults. The convolution, correlation, and identification
procedures were the same in the similar-list condition
as in the unrelated-list condition.

Results. As evidenced by the results pre-
sented in Table 1, the model predicts that the
discriminability of the target relative to other
list items is worse when the list is composed
of similar rather than unrelated items. Thus,
a distinctive pattern of intrusion errors should
be found when the responses to a list of sim-
ilar items are compared to those to a list of
unrelated items. When the list consists of
unrelated items, intralist intrusions should
be quite infrequent, whereas when the list
items are all similar, the frequency of intralist
intrusions should be considerably higher.
The resonance scores show this pattern and
also show that there should be no difference
in the rate of intrusions depending on whether

Mean Resonance and Recall for Each Type of Response in Simulation 1

Type of response

Nontarget Nontarget Unrelated
Condition Target Cue response stimulus extralist

Unrelated

Resonance .80 (.20) .00 (.30) .00 (.20) .00 (.20) .00 (.20)

Recall 98.6% 6% 6% 0% 3%
Similar

Resonance 1.70 (.60) 1.50 (.60) 1.50 (.60) 1.50 (.60) .00 (.40)

Recall, 42.0% 14.6% 21.7% 21.7% 0%

No. (out of 12) of lexical items -
corresponding to response type 1 1 2 2 6

Note. Standard deviations are in parentheses.
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a given item had been a stimulus or a re-
sponse item.

The differential pattern in the two condi-
tions stems from the fact that in the model,
the pattern that is retrieved from the com-
posite trace is a combination of all of the
items that are stored in the composite trace
when those items are similar to each other
but consists only of the target item when the
list items are unrelated. This intrusion pat-
tern is thus expected even though there may
be lexical items in the unrelated-list condi-
tion that are equally similar to the target item
as are the list items to the target in the sim-
ilar-list condition.

The table shows the levels of recall given
the arbitrary decision criterion of the best
matched item. These numbers are not quan-
titative estimates because no attempt was
made to quantify the degree of similarity in
the simulation as compared to the experi-
ment that will follow, to equate the number
of pairs in the trace, or to estimate the num-
ber of features. The recall figures do serve to
illustrate that even though the resonance of
the target item was higher in the similar-list
as compared to the unrelated-list condition,
correct recall in the similar-list condition is
expected to be worse than in the unrelated-
list condition. This occurs because the re-
trieved item provides little of the information
on the nonshared features of the similar
items that is necessary to discriminate the
target item from the other list items.

The simulation also produced the coun-
terintuitive prediction that there should be
cue intrusions—that is, recall of a cue word
to itself as a cue—in the similar-list but not
in the unrelated-list condition.

FExperiment 1

Method. 1n this experiment, people’s recall to a list
of similar pairs was compared to recall to a list of un-
related pairs.

Four sets of materials were constructed such that each
set consisted of two lists: one in which the words were
all from a single category and one in which each word
was from a different category. Each list consisted of 14
pairs of words. In order to construct the similar list in
each set, a category was randomly selected from the
Toronto categorized word pool (Murdock, 1976). Words
were randomly selected from the category until 14 pairs
resulted. The uncategorized list in each set was con-
structed from the same word pool. Twenty-eight cate-
gories were randomly selected (with the exclusion of the
category that was used in the similar list in the same
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set). A word was randomly chosen from each of the 28
categories, and the words were then randomly paired.

Each of the 16 subjects in the experiment (volunteers
from the social sciences subject pool at the University
of California, Irvine) received two lists of pairs (one set)
to study. Four subjects were assigned to each of the four
sets of materials. Two subjects studied and were tested
on the categorized list first, whereas the remaining two
subjects studied and were tested on the unrelated list
first. The lists were typed in uppercase letters on sheets
that were given to subjects to study for 4 minutes. After
studying, subjects counted backwards from a large num-
ber by threes for 1 minute and wrote down their final
count. They were instructed that the right-hand mem-
bers of the pairs were the targets or responses and that
they would be given the left-hand items as cues.

Cued recall was written in booklets that contained one
cue per page. The order of presentation of cues was ran-
domized for every subject. Beside each response, subjects
were asked to write their degree of confidence about the
correctness of the response on a scale of 1 to 6, where
I was guessing and 6 was highly confident. Recall was
subject paced, and subjects were instructed not to look
back to previous responses or forward to upcoming cues
until all attempts to respond had been made.

Results. The mean number of correct re-
sponses, intralist intrusions, and extralist in-
trusions in each of the two conditions are
presented in Table 2, along with the confi-
dence ratings. As can be seen from the table,
the entire pattern of recall and intrusions
corresponded quite well to the predictions of
the model. In particular, the nontarget list
items were poorly discriminated from the
target items in the categorized-list condition
but not in the uncategorized-list condition.
An analysis of variance was conducted in
which the factors were condition (categorized
or uncategorized), response type (correct,
stimulus intrusion, response intrusion, and
extralist intrusion) and set (1 to 4). There was
a significant interaction between response
type and condition, F(3, 36) = 34.47, p<
.05. There were no other significant effects
or interactions. A chi-square test, where the
observations were treated as if they were in-
dependent, was also performed. There was
a significant relation between the frequency
of correct and intralist intrusions and the
categorized or uncategorized conditions,
xX(1) = 30.67.

There was no statistical difference between
intrusions that were originally stimulus items
and response items, #(15) = .81, although the
slight tendency was in favor of the stimulus
items. This result offers some support for the
symmetrical nature of the association in the
model.
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Table 2

Mean Number of Correct Responses and
Confidence Rating for Each Type of Response in
Experiment 1

Type of response

Other Extra-
list  list

Condition Target Cue item item
Uncategorized .
No. recalled® 11,2 0 8 B!
Confidence rating” 59 — 3.8 3.5

Categorized

No. recalled® 7.9 0 3.1 .5
Confidence rating® 57 — 26 1.4

2 Qut of 14. ® Out of 6.

In summary, the predictions of the model
given in Simulation 1 were largely supported
by the results of the present experiment. The
one prediction that absolutely failed to ma-
terialize was that of intrusions of the cue item
to itself as a cue: No subject ever said that
the target item was A when A was given as
a cue. It seems likely that because an item
was never paired with itself in the experi-
ment, subjects were able to use a rule to in-
hibit this particular response. Nevertheless,
the prediction of cue intrusions is important,
not necessarily for its own sake, but because
it is a direct result of the interactive nature
of the postulated association.

It is of interest to note that the prediction
of differential intrusion errors in the similar
as compared to the unrelated condition de-
rives directly from the property of the model
that, in the former condition, the composite
trace causes the retrieved item to be system-
atically distorted towards a “prototype” of
the list. The results of both the simulation
and the experiment indicate that CHARM
should be extendable to prototype learning
experiments. Further, errors of recall, ac-
cording to the model, are related to people’s
ability to form concepts. The extension of
the model to prototype learning will be made
in a later section of the article.

Extraassociative-List Context Effects

For the same reason that intralist intru-
sions were predicted in the first experiment,
the model predicts that the makeup of the

639

whole list of paired associates, not only the
to-be-remembered pair, will influence the
goodness of recall. Consider a situation in
which a given pair, say NAPOLEON-ARIS-
TOTLE, is embedded in a list of pairs of names
of famous people (homogeneous list) or is
embedded in a list containing a variety of
conceptually different pairs such as RED-
BLUE, 14-22, and so forth (heterogeneous
list). As was pointed out to the author (Tulv-
ing, Note 2), CHARM makes precisely the
right predictions about the difficulty of recall
under these conditions. NAPOLEON-ARIS-
TOTLE should be more difficult in the ho-
mogeneous-list condition because, in that
condition, the composite trace will cause a
prototype of the entire list rather than just
the appropriate target response to be pro-
duced. In an experiment that included this
comparison, Tulving (Note 3) found that the
target association was indeed harder to learn
in the homogeneous- than in the heteroge-
neous-list condition,

Cue Intrusions

The predictions of differential cue intru-
sions between the similar and unrelated con-
ditions was not confirmed in Experiment 1,
probably because subjects were able to use
a rule to eliminate these responses. This pre-
diction is, nevertheless, an important one
because it bears directly on the structure of
the interactive association postulated in
CHARM and, further, because it is a counter-
intuitive or high-risk prediction. The ques-
tion that will be addressed in the present ex-
periment is whether cue intrusions are more
likely to occur when a cue and target are sim-
ilar rather than unrelated. Tulving (1974) has
reported the presence of cue intrusions in a
study in which some of the pairs had identical
cues and targets, so the inclusion of this type
of pair in the list appears to override, at least
to some extent, a rule excluding these intru-
sions.

CHARM makes the prediction that cue in-
trusions will be more frequent when the cue-
target items are similar to each other because
the item that is retrieved from memory re-
sembles both the cue and the target. It is be-
cause the retrieved item in the similar con-
dition is a combination of both A and A/,
where the common features are accentuated



640

and the contrasting features suffer interfer-
ence, that one expects this retrieved item to
be sometimes mistakenly (from the experi-
menter’s point of view) identified as A—the
cue itself. When the two associated items A
and B are unrelated and A is presented as a
cue, the cue item is not itself reconstructed,
and so cue intrusions are not expected.

It is not clear that other models make this
prediction. In models such as FRAN (J. R.
Anderson, 1972), in which the probability of
forming an association depends on the sim-
ilarity of the to-be-associated items, it would
seem that the probability of recall might be
higher in the similar as compared to the un-
related condition (in contrast to the previous
experiment). There is no indication, how-
ever, of whether there should be more or
fewer cue intrusions in the similar as com-
pared to the unrelated condition. There
might be more if a selection of nodes (dif-
ferent from the central node for a given item)
occurs, as is suggested by J. R. Anderson
(1976). On the other hand, there might be
fewer cue intrusions in the similar condition
if the subject guesses the cue in the absence
of a tagged pathway to a different tagged node
(as presumably occurs more frequently when
the items are not similar). There is little
doubt that either result could be accommo-
dated after the fact, but no a priori prediction
is clear. Bower’s (1972) multicomponent
model makes reference only to the properties
of the stimuli and so can make no predictions
about phenomena attributable to the relation
between the two associated items. The same
may be said for Medin and Schaffer’s (1978)
feature model, which represents similarity
but does not consider the responses, only the
stimuli. This is also the case for the J. A.
Anderson et al. (1977) model, which contains
a forward-directional association, although
this model is in other respects like CHARM.
Because Flexser and Tulving’s (1978) gestal-
ten model does not include any representa-
tion of similarity, it makes no predictions in
this situation. To my knowledge, there are
no other models that make the prediction of
cue intrusions. If subjects were guessing some
of the time when they had no information
about the correct response, one would expect
that the conditional probability of a cue in-
trusion given an intrusion should be the same
in both conditions.
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Simulation 2

Method. In this simulation, the similarity of the cue-
target pairs was varied within a single list. Three levels
of similarity were used; identical, similar (50% feature
overlap), and unrelated. As in the first simulation, a lex-
icon of 12 items was constructed such that each item
was a random normalized 63-tuple. Items 1 and 2 were
reassigned feature values so that they were identical;
Items 3 and 4 were reassigned feature values so that 32
of the 63 features were identical and the remaining 31
features were independent; and Items 5 and 6 were left
with their original independent feature values. Items 7
through 12 were not included in the study list but were
considered to be unrelated extralist possibilities in ‘the
lexicon. To make the simulation somewhat more real-
istic, Item 7 was assigned the same feature values as were
Items | and 2 on half its features, Item 8 was similarly
related to Item 5, and Item 9 was related to item 6.

The associative memory trace was constructed by con-
volving Items 1 and 2, Items 3 and 4, and Items § and
6 and adding the results into a single 63-tuple repre-
senting the composite trace. Then Items 1, 3, and 5 were
correlated with the trace to produce three retrieved
items, These retrieved items were matched to the items
in the lexicon by means of the matching process de-
scribed in Simulation 1. The simulation was run through
100 replications, and the means and standard deviations
of the resonances of the lexical items to each of the three
retrieved items were computed.

Results. The main point to note from the
results shown in Table 3 is the difference in
the resonances of the cues for the similar and
unrelated conditions. When the original two
items in a pair were similar, the resonance
of the cue was almost as high as was that of
the target. In the unrelated condition, the
resonance of the cue was essentially zero,
whereas the target itself was fairly strongly
evoked.

I note parenthetically that if a rule can be
used to eliminate the cue as a response, the
level of recall is proportional to the resonance
scores of the target, in this simulation. Recall
will then be a direct function of the similarity
between the stimulus and the response. This
is the case because, unlike Simulation 1, the
only competing response is the cue itself.
However, in the experiment that follows, an
attempt is made to deliberately inhibit the
use of such a rule. Thus, no prediction is
made about the level of recall: The only clear
prediction is that there should be relatively
more cue intrusions in the similar-pair con-
dition than in the unrelated-pair condition.

Experiment 2

Method. The lists in the present experiment each
consisted of three types of pairs: identical pairs, synonym
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Table 3
Mean Resonance for Each Type of Response in
Simulation 2

Type of response
Other Unrelated

‘ list Extralist
Condition  Target Cue item item
Unrelated

M .76 .02 .00 .00

SD .20 32 27 22
Similar

M 94 85 07 -.02

SD 29 41 .30 24
Identical

M 1.42 1.42 -.01 .02

SD 32 32 32 .26

Note. The unrelated, similar, and identical conditions
were all within a single list.

pairs, and unrelated pairs. There were 20 pairs of each
type in each list, for a total of 60 'pairs. Although the
cue-target words varied in their similarity to each other
within a pair, there was no obvious relation among the
pairs in the list. Four different lists were constructed.
The words that constituted the four lists in the experi-
ment were chosen from the 80 highest ranked synonyms

of Whitten, Suter, and Frank (1979). The lists were con-

structed so that the same response term occurred equally
frequently as a response in each of the three conditions,
over lists, and the mean synonymy was about the same
for all lists.

To construct the lists, each of the four pairs that were
the highest ranking four synonym pairs given by Whitten
et al. (1979) were assigned by means of a Latin square
to the four lists in four nominal conditions: identical,
synonym, cue of the unrelated pair, target of the unre-
lated pair. The synonym given first in Whitten et al.’s
(1979) listing was the particular member of the synonym
pair that was used in these four nominal conditions. In
the synonym condition, both words from the synonym
listing were used. The assignment of words to conditions
and lists-was repeated for each successive tetrad of syn-
onym pairs given in the norms until there were 60 pairs
in each list. The order of pairs in each list was then
randomized. There were two random test orders for each
of the four lists.

Thirty-two subjects, who were volunteers from the
social sciences subject pool at the University of Califor-
nia, Irvine were tested. Eight subjects were assigned to
each list. .

The lists were read to subjects at a rate of 10 sec per
pair. Following study, subjects wrote the names of the
states of the United States in alphabetical order for 6
minutes, They were then given a booklet containing the
60 cue items—always the first item in a pair—and were
asked to write their responses along with a rating of the
certainty of their responses on a scale of 1 (guessing) to
6 (highly confident). Ten minutes were allowed for cued
recall.
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Results. The prediction that there would
be more cue intrusions in the synonym than
in the unrelated condition was confirmed.
When the probability of a cue intrusion,
given an intrusion, was calculated for each
subject in both conditions, the resultant
mean conditional probability was .60 in the
synonym condition and .46 in the unrelated
condition, #31) = 1.89, p < .05, The same
pattern resulted when the data were pooled
over subjects. The conditional probability of
a cue intrusion was then .50 in the synonym
condition and .39 in the unrelated condition.

Table 4 shows the frequency of cue and
noncue intrusions for the synonym and un-
related conditions when these were divided
into highly confident (with ratings of 4 or
higher) and low-confident (with ratings of 3
or lower) intrusions. There was a dispropor-
tionate number of highly confident cue in-
trusions in the synonym conditions,
x*(1) = 5.19, p < .025, but not in the unre-
lated condition x*(1) = .00, ns. The confi-
dence-rating results provide converging evi-
dence that these intrusions were not due sim-
ply to some complicated guessing strategy.

The level of correct recall was .63 in the
synonym condition and .22 in the unrelated
condition. When the cue-target pair had
originally consisted of identical words, the

“level of correct responding was .59, I thought

that as long as subjects actually associated
the identical words with each other, the level
of recall would be better in the identical than
in the synonym condition rather than show

Table 4

Comparison of Cue Versus Other Intrusions as
a Function of Condition and Confidence in
Experiment 2

Synonym Unrelated
condition condition
High Low High Low
Type of confi- confi- confi- confi-
intrusion dence dence dence dence
Cue 31 28 30 63
Other 15 34 46 97

Note. A total of six intrusions for which no confidence
ratings were obtained have been excluded. Of these six
intrusions, two occurred in the synonym condition and
four in the unrelated condition; within each condition,
the excluded intrusions were divided equally according

to type (cue versus other).
. !
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no difference. One should note that in Tulv-
ing’s (1974) study, recall of identical pairs
was worse than that of similar pairs. In other
experiments it has been shown that the level
of recall increases with increased similarity
between the cue and target (McKoon & Rat-
cliff, 1979, for instance). It seems that per-
formance in the identical condition, which
is not usually included, is most puzzling.
The cue-intrusion prediction was made
because the item recreated from the holo-
graphic association is, under some condi-
tions, a combination of the cue and target
and, hence, is likely to be mistakenly iden-
tified as the cue. It would be of some interest
to tap experimentally an item that is itself a
combination rather than rely on the intru-
sion probabilities as the only evidence for this
combinatorial property. An experiment by
Loftus (1979) may be relevant. Loftus showed
subjects slides of people going about routine
activities. One of the slides showed a person
reading a green book. Later, a leading ques-
tion suggested that the book had actually
been blue. When subjects were asked to select
the remembered color on a color wheel, their
“choices tended to be a compromise between
what they actually saw and what they were
told on their questionnaire, that is, they se-
lected a bluish-green” (p. 123). One plausible
interpretation is that the subjects actually re-
trieved a superimposed combination of the
two events, as both the composite trace and
the holographic association in CHARM pro-
duce. Gibson (1941) has also noted that in

a paired-associate learning task in which sub-’
jects are given two different nonsense sylla-

bles as responses to the same stimulus, a fre-
quent error was the combination of the two
nonsense syllables, Bartlett (1932) noted that
in an experiment in which subjects were
given name-face pairs and were later asked
to describe the face corresponding to a par-
ticular name, details from other faces were
often incorporated into the descriptions.
These results suggest that what is retrieved
is not simply a degraded but essentially ve-
ridical copy of the target item but may ac-
tually be a combination of a number of
events,

The finding of differential cue intrusions
in the present experiment is an indication
that the item that is retrieved from memory
may be a combination of the items that were

JANET METCALFE EICH

associated when those items are initially sim-
ilar to each other. This finding was predicted
because of the interactive nature of the as-
sociation in CHARM, It is a counterintuitive
finding that is not predicted by other models
of recall.

Extralist Cuing

In the preceding experiments, I tested sev-
eral predictions of the model with respect to
errors of recall. In this section, a rather dif-
ferent question will be addressed: the efficacy
of extralist cues. These two areas of investi-
gation have in common the fact that the in-
teractive association model yields predictions
about both. They are linked not by the ex-
perimental paradigm but rather by the con-
cept of the interactive association.

Consider a situation in which a person
studies a list of pairs of unrelated words. The
subject is told that the right-hand word in
each pair is the target word that will later be
cued for recall. We now ask the question,
What sorts of cues will be effective in eliciting
the target items? Three possibilities will be
considered, namely, the word that was pre-
sented with the target item in the list (i.e., the
list cue), a word that is similar to the list cue,
and a word that is similar to the target itself.
Before presenting the simulation of this sit-
uation, let us consider for a moment what
might be expected.

If one simply assumes that an association
is formed between the list cue and the target
item, then it seems likely that the list cue
would serve as an effective reminder for the
target. Presumably, all associative models,
including the present one, are in accord on
this point. One might also expect that an ex-
tralist cue similar to the list cue should give
rise to recall of the target. This is a classic
case of stimulus generalization, and although
the term stimulus generalization does not
itself explain the phenomenon, there are a
number of feature models (e.g., Bower, 1967,
Estes, 1955; Medin & Schaffer, 1978) in ad-
dition to the present one that can address it.

Because the phenomenon of stimulus gen-
eralization is well known and well substan-
tiated, it is probably intuitive that the item
similar to the cue should allow recall of the
target. More obscure is the question of what
the item that is similar to the target will cause
to be recalled. There is a considerable amount
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of data that show that an item that is preex-
perimentally related to a list item may facil-
itate recall of the list item (Bahrick, 1969;
Bilodeau, 1967; Bilodeau & Blick, 1965;
Light, 1972; Santa & Lamwers, 1974), It is
not clear, however, that items that are similar
to each other in the sense that they share
features are related in this same sense. If they
are, then perhaps they should cause the target
item to be recalled. However, there are other
data (e.g., Santa & Lamwers, 1974; Thomson
& Tulving, 1970) that show that even preex-
perimentally related cues do not necessarily
cause the target item to be recalled. Intuition
suggests that an extralist word such as BUY
might be an effective retrieval cue for a target
word such as PURCHASE. !

The most interesting prediction of CHARM
in this extralist cuing situation is that a syn-
onym of the target word, rather than causing
the target word itself to be recalled, will tend
to retrieve the unrelated-intralist cue, This
prediction, as well as the stimulus-general-
ization prediction, will be demonstrated in
the simulation that follows.

Simulation 3

Method. In this simulation, the efficacy of extralist
cues was examined. A [2-item lexicon was constructed
as in the previous simulations. The items consisted of
63-tuples, where each feature value was drawn from a
unit normal distribution and then normalized so that
the dot product of an item with itself equalled one. The
first six items were designated as list items. Item 7 was
reassigned feature values so that it showed 84% overlap
with Item 1; Item 7 would thus be considered to be like
an extralist item similar to the cue. Item 9 was reassigned
feature values to show 84% overlap with Item 2 and was
thus like an item similar to the target. Item 11 was also
used as an extralist cue, but one that was unrelated to
_ either the cue or the target and its feature values were
not changed.

Items 1 and 2, 3 and 4, and 5 and 6 were convolved,
and the results of the three convolutions were added into

a 63-tuple representing the composite trace. Then Items

1 (the list cue), 7 (an extralist item similar to the list
cue), 9 (an extralist item similar to the target), and 11
(an unrelated extralist cue) were correlated with the
trace. The means and standard deviations of the reso-
nance scores of the retrieved items with each of the lex-
ical items were computed from the 100 runs of the sim-
ulation. ‘

Results. Table 5 provides a summary of
the mean resonances and their standard de-
viations as obtained from Simulation 3.
When the list cue was correlated with the
trace, the target was strongly evoked. The
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Table 5
Mean Resonance for Each Type of Response
in Simulation 3

Response type

List List Intralist Extralist
Cue condition  target cue intrusion intrusion
List cue
M 75 .00 .01 .00
SD 20 .30 21 .19
Cue synonym
M .52 .05 .00 .00
SD 19 .26 .20 .20
Target synonym
M .02 5t .01 .00
SD 23 19 21 .19
Unrelated
extralist cue
M .02 .01 -.02 .00
SD .20 22 .19 18

extralist cue that was similar to the list cue
also retrieved a pattern that had a high reso-
nance with the target, though not as high as-
that evoked by the list cue. This indicates -
that stimulus generalization should occur.
The extralist cue that was similar to the target
produced .a pattern that was not at all like
the target. Instead of retrieving the target, the
extralist cue similar to the target retrieved an
approximation to the list cue!

Experiment 3

Method. Lists of pairs of unrelated words were pre-
sented for study. Subjects were then given as cues for
the recall of each right-hand target word either (a) the
left-hand cue word that had initially been presented, (b)
a synonym of the left-hand cue word, or (c) a synonym
of the target.

The design of the experiment included two within-
subjects factors: type of cue (list cue, cue synonym, or
target synonym) and trials (one to three). There were
eight cues of each type in a given list. At recall, eight
unrelated extralist cues were also presented as lures,

Three lists were constructed from the 144 highest
ranked synonym pairs of Whitten et al. (1979). Of the-
three highest ranking synonym pairs, one word was ran-
domly selected and then randomly assigned either to
List 1, 2, or 3. Thus, at this stage in list construction,
each of the three lists contained only one word. Of the
next three highest ranking synonym pairs in the norms,
one word was again randomly selected and then ran-
domly assigned to either of the three lists. At this stage,
each list contained two words, which were then mated
to form the initial cue-target pair in each list. These
procedures were repeated until 4 total of 24 pairs had
been formed for each list. One half of the pairs in each
list were then reversed so that a word that was originally
assigned as the cue for a given pair became the target
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for that pair, and the original target became the cue.
This equated the synonymy of the extralist cues to the
cue (or stimulus) and target (or response) members of
the pairs over the list. The order of presentation of the
pairs in each list was then randomized.

For each list, three test sets were constructed. Across
the three test sets for a given list, every pair was assigned
to every cuing condition. Thus, if in Set A of List 1 the
first pair was cued with the list cue, in Set B it might be
tested with a synonym of the cue, and in Set C with a
synonym of the target. For each test set within each list,
there were three random orders.

The entire experiment was counterbalanced so that
Lists 1, 2, and 3 occurred equally often on Trials 1, 2,
and 3 and the three test sets for each list occurred equally
often on every trial.

Subjects were given two set-establishing lists before
beginning the experiment. One of these lists consisted
of similar pairs and the other of unrelated pairs (see
Experiment | for more details). Subjects were then given
booklets in which threg study lists, three blank pages,
and three test lists were interleaved. The subjects were
instructed to study the first list for 4 minutes, keeping
in mind that they would soon be asked to recall the
capitalized right-hand words and that the uncapitalized
left-hand words should be studied in conjunction with
the targets because these might assist later recall. Fol-
lowing study, subjects turned to the next (blank) page
of their booklets and wrote the alphabet in reverse order
for 1 minute. The subjects were then told that they would
be given an equal number of cues that were list cues,
synonyms of the list cues, synonyms of the targets, or
unrelated extralist cues and that their task was to use
these cues to recall the right-hand members of the pre-
viously presented pairs (i.e., the target items). On Trial
1, subjects were unaware, while they were studying, of
the différences among the various types of cues to which
they would soon be exposed during the recall test. On
Trials 2 and 3, these differences were known to the sub-
jects at the time of list presentation and study.

Eighteen subjects, who were volunteers from the so-
cial sciences subject pool at the University of California,
Irvine participated in the experiment. The subjects wer:
tested in small groups. :

Resuits. The data resulting from Experi-
ment 3 are presented in Table 6. As can be
seen from the table,.the level of target recall
when a synonym of the list cue was given
was the same as when a synonym of the target
was given. This finding is in contrast to the
prediction of the model, which was that a
synonym of the target should produce the
original list cue rather than the target itself.

There were a number of other discrepan-
cies between the data and the predictions of
CHARM. Cue synonyms and target synonyms
produced equal numbers of list-cue respon-
ses. According to the model, synonyms of the
targets should cause recall of the original list
cues, and synonyms of the list cues should
not. Again, in contrast to the predictions of
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Table 6
Percentage of Response Types as a Function of
Cue Type in Experiment 3

Response type

List List Intrusion Omission
Cue type target  cue error error

List cue 34 0 15 51
Cue

synonym 14 8 9 69
Target

synonym 16 10 9 65
Lure —_ — 13 87

2Qnly 5 of these 58 responses were synonyms of the
lures.

the model, a rather large number of responses
to the unrelated extralist cues was found.

In an attempt to rescue CHARM, an anal-
ysis of the intercorrelations of each of the
three cue-type conditions (list cue, cue syn-
onym, and target synonym) was conducted.
Each subject contributed three scores to each
correlation, one for each of the three trials.
There was no correlation between correct
recall in the two synonym conditions,
r(52) = —.01. There was also no correlation
between recall to the target synonyms and
recall to the list cues, r(52) = —.08. There
was, however, a positive correlation between
recall to the cue synonyms and recall to the
list cues, r(52) = .44.

Correlations were also computed between
correct (target) recall in the two synonym
conditions and responses to the unrelated
extralist cues (or lures). Responses to these
lures give some indication of guessing. A pos-
itive correlation was found between recall to
the target synonyms and responses made to
the lures, 7(52) = .33. A negative correlation
was found between responses to the lures
and correct recall to the cue synonyms,
r(52) = —.22.

In summary, it appeared that correct recall
to the cue synonyms was positively corre-
lated with normal cued recall and negatively
related to guessing. Correct target recall to
the target synonyms was unrelated to normal
cued recall and positively correlated with
guessing. The regression equations, showing
the relative weightings of correct (target) re-
call in the two synonym conditions in pre-
dicting correct recall given the list cues and
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in predicting guessing to the lures, are given
below.

z ’(Iist cue)
= +-44z(cue synonym) — -Osz(zarget synonym) »
z!
(responses to lures)
= ~'222(cue synonym) T '33Z(target synonym}

These correlations suggest that there might
be two different processes or levels of infor-
mation that combine to give rise to the (un-
predicted) equal level of target recall in the
cue-synonym and target-synonym condi-
‘tions as well as the equal level of intrusions
of the list cues in these two conditions. To
illustrate these ideas, I divided the data into
those lists in which subjects made two or
more responses to the unrelated extralist cues
of lures (high-guessing lists) and those in
which no responses were made to the lures
(low-guessing lists). The data segregated in
this fashion are shown in Figure 3. As can
be seen from the figure, the data for the low-
guessing lists conformed more closely to the
predictions of CHARM than did the data from
the experiment as a whole. In particular, in
these lists, when a synonym of the target was
provided as a retrieval cue, the original list
cue tended to be recalled in preference to the
target itself. On the high-guessing lists, this
trend was dramatically reversed. The list cue
was hardly ever recalled to the synonym of
the target, whereas the target itself was re-
called quite frequently, The holographic as-
sociation and composite trace in CHARM can-
not account for the pattern of recall observed
in the high-guessing lists.

The correlations obtained in Experiment
3 suggest that there might be two factors,
processes, or levels of information that con-
tribute to the overall pattern of recall found
in the experiment. One of these factors seems
to produce results consistent with CHARM,

whereas the other factor produces results that

are at odds with the model. CHARM has noth-
ing to say about this second factor, but the
data suggest that it is in some way related to
guessing. It seems unlikely that it is just
guessing, because the responses that were
generated to the lures were rarely synonyms
(although the lures also had synonyms). This
second factor was nevertheless related to
guessing and not to normal recall, where the
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R Little guessing
1 Much guessing

PROPORTION RECALLED
IS

LIST CUE TARGET TARGET
CUE SYNONYM SYNONYM  SYNONYM
(TARGET)  (TARGET) (CUE) (TARGET)

Figure 3. Proportion of list cues or target items recalled
as a function of cue type and guessing level (Experiment
3). (The abscissa gives the type of cue presented at re-
trieval—not in parentheses-——and the response given—
in parentheses.)

stimulus or cue is given and the response or
target is recalled. The next experiment was
carried out in an attempt to isolate the pat-
tern of recall that is consistent with CHARM.

Experiment 4

Method. Inthe present experiment, as in Experiment
3, subjects studied a list of paired associates and were
then given list cues, cue synonyms, and target synonyms
as retrieval cues. The question of interest, as before, was
what would be recalled to the extralist cues. The most
counterintuitive prediction was that extralist target syn-
onyms would result in recall of the list cues rather than
the targets.

There were three main differences between the present
experiment and the previous one. The first difference
was that subjects in the present experiment were not
informed that some of the cues would be target syn-
onyms and some would be cue synonyms. (I thought
that by not informing subjects, it might be possible to
attenuate what was a guessing-related strategy in the
previous experiment.) The second difference was the
proportion of synonym cues in the test lists. In the pres-
ent experiment, 16 of the 20 total cues were list cues.
Only two cues were critical target synonyms, and only
two were cue synonyms. I thought that this change might
induce subjects to respond to the extralist synonym cues
in the same way that they responded to the list cues.
This is, after all, what the simulation did. Finally, no
unrelated extralist lures were presented because I felt
that their inclusion might disturb the set that the ex-
periment was designed to induce. In summary, Exper-
iment 4 sought to encourage subjects to use only the
retrieval operation or strategy that is normally used to
recall target items from a list when intralist cues are .
provided.

The experiment conformed to a 3 X 4 X 2 X 3 mixed
design, with cue type (list cue, cue synonym, and target
synonym) serving as a within-subjects factor and list,
study order, and test order serving as between-subjects
variables,
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Four lists, each consisting of a unique collection of
20 unrelated cue-target word pairs, were generated via
the synonymy norms of Whitten et al. (1979) in a man-
ner similar to that used in Experiment 3. Every subject
in the present experiment studied one of these four lists.
Two different random presentation or study orders of
each list were prepared and assigned randomly to sub-
jects. The cue-target pairs were typed in lowercase and
uppercase letters, respectively, on the first page of a
three-page booklet. Immediately prior to list presenta-
tion, the subjects were read the following instructions:

In this experiment, you will be given a list of pairs
of words. Your task is to remember the right-hand
words. However, you should study the right-hand
words in conjunction with the left-hand words—
trying to form meaningful pairs. You will have three
minutes to study the pairs., When the three minutes
are up, I will ask you to turn to the last page of your
booklet [the second page was blank], where you will
find some cues that may help you to recall the right-
hand target words. Most of the cues will be the left-
hand cue words. You will have four minutes to recall.
Do you have any questions?”

A total of 20 cues appeared on the final page of the
booklet. The cues were typed in lowercase letters. Of the
20 cues, 14 were original list cues that the subject had
seen minutes before, Of the remaining six cues, two were
extralist cue synonyms, two were extralist target syn-
onyms, and two were (additional) list cues. These latter
six cues provided the experimental data of chief interest
and will be referred to as “critical” cues.

On the recall page of the subject’s booklet, the top six
serial positions were reserved for a corresponding num-
ber of “noncritical” list cues, whereas the critical cues
were randomly allocated to the bottom 14 positions. On
the initial pass through the cues, subjects were asked to
read and, if possible, to respond to the cues in their order
of presentation from the top of the page to the bottom.

A total of three different test orders were constructed
for a given set of six critical cues. These test orders were
prepared such that, across all subjects, any given target
item that corresponded to a critical cue was probed
equally often with (a) a cue synonym, (b) a target syn-
onym, and (c) the original list cue. The critical extralist
" cue and target synonyms, like all of the words in the
lists, were drawn from the synonymy norms of Whitten
et al. (1979). Every extralist cue was approximately bi-
directionally synonymous with its applicable intralist
cue or target item (see Whitten et al., 1979, for details
on directional synonymy).

Table 7
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A total of 72 students at the University of Toronto
donated a portion of their class time to take part in the
experiment. Three subjects were randomly assigned to
each of the 24 conditions that were defined by the cross-
ing of the three between-subjects factors (list, study or-
der, and test order). Of the 72 subjects, 69 provided
usable data. One subject’s data were discarded because
of prior knowledge of the hypothesis. The data from two
other subjects were also discarded because analysis of
their responses to the cue and target synonyms was com-
plicated by the fact that they produced both members
of the original pair when probed with the extralist cues,

Results. Data obtained via the critical
cues are summarized in Table 7 and can be
seen to correspond quite closely to the pre-
dictions of CHARM. In particular, target syn-
onyms produced recall of the corresponding
list cues rather than the targets themselves,
whereas the reverse was true of the cue syn-
onyms, x%(1) = 34.07, p < .001. It has been
pointed out to me that if the present exper-
iment was considered in isolation, it is con-
ceivable that subjects used a strategy of not
responding with a synonym, even though
synonyms were recalled (Slamecka, Note 4).
This strategy, though possible, does not scem
likely, because it would not account for why
the pattern of recall found in the present ex-
periment was also found in the previous ex-~
periment, but only when there was evidence
that subjects were doing little guessing. When
the results of the present experiment are
taken in conjunction with those of the pre-
vious experiment, it seems more likely that
the present experiment largely succeeded in
doing what it was designed to do, namely,
to attenuate the guessing strategy found in
the previous experiment and to induce sub-
jects to use the extralist target synonyms in
much the same manner that they use list
cues.

The only inconsistency between the data
and the predictions of the model was that the
extralist synonyms of the target did some-

Proportion of Response Types as a Function of Cue Type in Experiment 4

Response type

Intralist Extralist Omission
Cue type List target List cue intrusion intrusion error
List cue .68 ~ .00 .04 .01 27
Cue synonym .29 .02 .03 .02 .64
Target synonym A5 27 .03 +02 .53

Note. Each proportion is based on 138 observations—69 subjects X two presentations of each cue type per subject.
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times produce recall of the targets them-
selves. As Table 7 shows, this happened rel-
atively infrequently. It is possible that despite
steps that were taken to dissuade subjects
from using a guessing-related strategy like
that observed in Experiment 3, such a strat-
egy was not wholly eliminated. On balance,
though, the pattern of results found in the
present experiment was quite consistent with
the predictions of CHARM.

Extensions of CHARM

In the preceding section, CHARM was used
to make several predictions about what would
be recalled in a number of simple, single-trial
cued-recall situations. These predictions, by
and large, were confirmed by the experiments
that sought to test them. In the present sec-
tion, the model will be extended to three
more complex areas of investigation—pro-
totype learning, the A-B A-D paradigm, and
the Osgood transfer surface—in which the
composite~holographic trace might be ex-
pected to exert a major influence on perfor-
mance. These extensions are carried out with
some trepidation, because there are, no doubt,
factors and processes other than association
formation, storage, and retrieval that are im-
portant in the data observed in each of the
three chosen areas. The aim of the present
extensions is exploratory: to determine what
effects may be attributable to the holographic
association itself and to the composite trace
and also what effects do not fall out in a nat-
ural way. Therefore, I have specifically
avoided embellishing the model by including
other constructs such as encoding variability,
stimulus or response differentiation, contex-
tual associations, list markers, unlearning,
spontaneous recovery, decay, item recogni-
tion, response availability, response integra-
tion, and the like, even though some of these
constructs may be compatible with CHARM
and may also be quite appropriate and rea-
sonable. To reiterate, the aim of the present
extensions is to illustrate what the current,
unembellished version of CHARM does and
does not do, without recourse to other con-
structs.

Prototype Learning

In the discussion of Experiment 1, I noted
that the reason the model made the predic-

647

tion of intrusion errors in the similar-list con-
dition was that the composite~holographic
trace produced an item that was a combi-
nation of the items in the list. I suggested that
in effect, CHARM was producing a list pro-
totype. In this section, an attempt will be
made to apply the model in a more formal
way to the formation of prototypes.

The experimental paradigm that will be
modeled was introduced by Posner and his
colleagues (Posner, Goldsmith, & Welton,
1967; Posner & Keele, 1968, 1970) and has
been studied by a number of other investi-
gators (Franks & Bransford, 1971; Hintzman
& Ludlam, 1980; Homa, Cross, Cornell,
Goldman, & Shwartz, 1973; Medin & Schaf-
fer, 1978; Strange, Keeney, Kessel, & Jen-
kins, 1970). Basically, subjects are given sev-
eral patterns to study that may be considered
to be category exemplars generated from a
category prototype. Usually three or four
such constructed categories are included in
the study list, and subjects are instructed to
learn that Exemplar E is an instance of Cat-
egory C. This paradigm is quite similar to the
analysis of natural category learning as out-
lined by Rosch and Mervis (1975; Mervis
& Rosch, 1981) insofar as the exemplars do
not specify the category in terms of defining
features (i.e., features that must be present)
but rather show an overlap or correlation
with each other. Subjects, at time of study,
are not presented with the prototype itself
from which the exemplars were generated.
At time of test, subjects are given (a) the old
exemplars, (b) the prototype, (C) new exem-
plars that are formally equivalent to the old
exemplars in terms of their similarity to the
prototype, and, frequently, (d) new exem-
plars that are more like the prototype than
were the old exemplars. Subjects are asked
to sort the materials into different response
categories that are provided by the experi-
menter, In the simulations that follow, the
response possibilities will be limited to those
given by the experimenter rather than en-
compassing all of semantic memory.

The simulation will focus on the procedure
used by Homa et al. (1973), who varied the
number of presented exemplars in each cat-
egory. They found that when only a few
(three) exemplars of a category were given,
the old instances were classified best, the clas-
sification of the prototypes was considerably
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worse, and new instances were worse yet.
When many category instances were given,
however, there was little difference between
the correct classification of the old instances
and the prototyp¢; the new instances were
also classified somewhat better, but correct
responding did not improve as much for the
new instances as it did for the prototype. It
is this approximately Z-shaped interaction
(where the prototype gives the crossbar on
the Z) that will be simulated below.

Simulation 4

Method. 1 ran the entire simulation three times with
three levels of similarity. The high-similarity condition
will be described first, and then the changes in the pro-
gram that produced the medium and low similarity con-
ditions will be detailed.

A lexicon of 12 unrelated items, each consisting of 63
features, was constructed as in the previous simulations.
Three of the lexical items (10, 11, and 12) were desig-
nated as responses that would be associated with the
category exemplars and would be the targets of recall.
These three items were left unchanged. Two categories—
one with few (one) and one with many (four) exem-
plars—were constructed as follows: Lexical Item 1 was
considered to be a prototype, and Items 2 and 3 were
designated to be category exemplars. Items 2 and 3 were
reassigned feature values so that 42 of the 63 features
were identical to those in Item 1. In order to do this, 42
features were randomly selected and reassigned the same
values on Item 2 as those of the corresponding features
in Item 1. A different random selection of 42 features
were assigned to have identical values in Item 3-as those
of the prototype, Item 1.

The large category was constructed in the same way.
Forty-two features from each of Items 5 through 9 were
randomly selected (with a different random selection for
each) to be replaced with the corresponding values from
the large-category prototype, that is, Item 4.

In order to construct the memory trace, Item 3 (an
exemplar of the small category) was convolved with
Response Item 10. Four exemplars of the large category
(Items 6, 7, 8, and 9) were convolved with .Response
Item 11. All five associations (Item 3xItem 10, Item
6xItem 11, Item 7=ltem 11, Item 8«item 11, and Item
9«Item 11) were added into a 63-tuple representing the
composite trace.

Then Items 1 (the prototype of the small category),
2 (a nonpresented exemplar of the small category), 3
(the presented exemplar of the small category), 4 (the
prototype of the large category), 5 (a nonpresented ex-
emplar of the large category), and 6 (a presented ex-
emplar of the large category) were correlated with the
composite trace to produce six rétrieved patterns. These
six patterns were matched to the three response possi-
bilities, namely, Items 10, 11, and 12, by the same pro-
cedure used in the previous simulations. The best match
of the three was taken to be the response (or classifi-
cation) that would be given. Means and standard devia-
tions of the resonance scores were calculated for the 100
replications of the simulation.
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The entire simulation was run twice more, with only
21 or 11 features being replaced in- both categories, to
yield the medium- and low-similarity conditions, re-
spectively.

Results. The results of the simulation for
the three levels of similarity of the exemplars
to the prototype are given in Table 8. Results
obtained with few presented exemplars show
an effect of similarity of the test probe to the
encoded item. The presented exemplar was
a better cue for the correct response or clas-
sification than was the prototype, which in
turn was better than the nonpresented ex-
emplar, as Homa et al. (1973) reported.
These relations are basically the same as
those revealed by Simulation 3, which in-
vestigated the efficacy of extralist cues, and
may be viewed as manifestations of stimulus
generalization. (The prototype was more
similar to the presented exemplar than was
the nonpresented exemplar by virtue of the
way in which the exemplars were generated
in the simulation and presumably in the ex-
periment that it was designed to mimic.)

One can also see from the results in Table
8 that when many exemplars were presented,
the difference in correct responding between
the prototype and the presented exemplar
was decreased. In fact, in the high-similarity
condition, the prototype was actually more
effective at producing the correct response
than was a presented exemplar. This is not
obvious from the recall data because of a
ceiling effect but is readily apparent in the
resonance scores. Also, new exemplars were
consistently least effective at evoking correct
recall. Again, this is not obvious from the
percentage-correct scores in the high-simi-
larity condition owing to a ceiling effect but
can be deduced from the underlying reso-
nance scores.

"On the whole, this simple simulation did
a good job of producing the Z-shaped inter-
action found for correct classification when
the type of probe (presented exemplar, pro-
totype, and nonpresented exemplar) was
crossed with the number of exemplars pre-
sented, as found by Homa et al. (1973).

Simulation 5

Method. A second major finding with respect to the
prototype learning paradigm is that with a delay in test-
ing, there is a greater loss in the accuracy of classification
of the presented exemplars than the prototypes. This
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Table 8
Prototype Abstraction in Simulation 4

Number of exemplars
presented

Probe Few Many

High-similarity condition

Presented exemplar

Mean resonance 72 (.34) 1.71 (.41)
% recall 88 100
Prototype .
Mean resonance .40 (.31) 1.96 (.39)
% recall 62 100
Nonpresented exemplar
Mean resonance 25 (.34) 1.29 (.36)
% recall - 45 100
Medium-similarity condition
Presented exemplar
Mean resonance -.76 (.25) .98 (.34)
% recall 96 98
Prototype.
Mean resonance 24 (.24) 92 (.33)
% recall 66 100
Nonpresented exemplar
Mean resonance .05 (.23) .27 (.30)
% recall 34 61
Low-similarity condition
Presented exemplar
Mean resonance .79 (.26) .84 (.33)
% recall 96 100
Prototype
Mean resonance 11 (.26) .49 (.35)
% recall 41 79
Nonpresented exemplar .
Mean resonance .01 (.26) .03 (.34)
% recall 36 36

Note. The table represents the relation between number
of exemplars presented and efficacy of three types of
probes for correct classification under three conditions
of similarity. Standard deviations are in parentheses.

finding has been reported by Posner and Keele (1970),
Strange et al. (1970), and Homa et al. (1973). This dif-
ference has usually been interpreted (e.g., Posner &

Keele, 1970) as evidence for the differential storage of

prototype and exemplar information, although Medin
and Schaffer (1978) and Hintzman and Ludlam (1980)
have developed models that account for this effect by
making use only of exemplar information.

In order to mimic a delay in testing, I assumed in this
simulation that several unrelated pairs were convolved
and entered into the composite memory trace. This
amounts to making the assumption that something,
though unrelated to the experiment, was stored in the
composite trace in the delay interval of about 1 week.
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In a preliminary simulation, only two random pairs were
added, and no forgetting was systematically produced.
In the simulation I will describe here, these two inter-
vening pairs were multiplied by five in order to increase
the distortion they introduce into the trace.

This simulation was the same as the medium-simi-
larity condition of Simulation 4, except that four addi-
tional unrelated lexical items (designated 13-16) were
constructed. These four items were unrelated to, each
other and were also unrelated to any of the other 12
lexical items. The four extra items were simply random
normalized vectors, each composed of 63 features.

The composite trace was constructed in the same
manner as in Simulation 4. In addition, though, Item
13 was convolved with Item 14 and multiplied by five,
Item 15 was convolved with Item 16 and multiplied by
five, and the results of these convolutions were added
into the trace.

The three probes in each of the large and small cat-
egories were correlated with the trace, as before, and the
matching and response-selection operations were iden-
tical to those used in Simulation 4.

Results. The results of this simulation,
summarized in Table 9, may be directly com-
pared to those reproduced in the center panel
of Table 8, because the two simulations were
identical except for the addition of the in-
tervening unrelated associations, As revealed
through comparison of the two tables, the
presence of the intervening unrelated asso-
ciations did give rise to forgetting. What did
not occur, however, was differential forget-
ting of the presented exemplars and the pro-
totypes. ’

In summary, whereas CHARM readily pro-
duces a prototype that becomes more dom-
inant as the number of category exemplars
increases, it does not readily yield differential
forgetting of presented exemplars and pro-
totypes. Such differential forgetting might be
obtainable if we assume, in keeping with Pos-
ner and Keele (1970) and Strange et al.
(1970), that subjects store two types of in-
formation—exemplar information and ab-
stracted prototype information—that are lost
from memory at somewhat different rates.
CHARM abstracts prototypes quite readily (as
in Simulation 4). It is possible that there ex-
ists another level of information storage at
which individual items or exemplars are tem-
porarily stored in a discrete fashion (cf.
Hintzman & Ludlam, 1980; Medin & Schaf-
fer, 1978). This possibility is particularly in-
teresting when taken in conjunction with the
results of Experiment 3, which provide evi-
dence for a level of memory storage other
than that of the composite-holographic trace.
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Table 9
Prototype Abstraction in Simulation 5

No. of exemplars

presented
Probe Few Many
Presented exemplar
Mean resonance .72 (.66) 105 (.71)
% recall 60 76
Prototype
Mean resonance 25(72) 1.04 (.74)
% recall 44 74
Nonpresented exemplar
Mean resonance -.02(71) 38 (77)
% recall 29 44

Note. The table represents the relation between number
of exemplars presented and efficacy of three types of
probes for correct classification under the delay (medium
similarity) condition. Standard deviations are in paren-
theses.

Elio and Anderson (1981) have provided
other evidence in an abstraction paradigm
for two types of information.

Non-Association-Specific Interference

In the immediately preceding simulation,
the addition of unrelated pairs of items into
the composite memory trace produced a de-
crease in the level of correct recall. This in-
terference was not specific to the associations
that had been stored; that is, the interfering
associations were in no way related to the
stored target associations.

The buildup of interference that results in
the model as the number of unrelated pairs
added into the composite trace increases has
been demonstrated in several computer sim-
ulations reported by Metcalfe and Murdock
(1981). In essence, these simulations indicate
that, everything else being equal, the level of
recall is inversely related to the number of
unrelated associations that have been stored
in the composite memory trace.

The model’s property of non-association-
specific interference appears to be directly
analogous to McGovern’s (1964) finding that
subjects who learned a C-D list of paired
associates following an A-B list showed

poorer recall of the B terms than did subjects -

who studied only the A-B list. The same
property might also be related to Under-
wood’s (1957) classic description of an in-
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verse relation between probability of recall
of a given serial list and number of lists pre-
viously learned.

Association-Specific Interference

Barnes and Underwood (1959) conducted
a classic experiment in which a list of A-B
pairs was learned to criterion. Following
learning, subjects were given a variable num-
ber of trials on an A-D list, in which the
stimuli were the same as those of the first list
and the responses were different. Subjects
were then presented with the stimuli and
were asked to recall both the B and D terms.
The important finding was that when only
a few A-D trials were given, recall of B was
much higher than recall of D. As more A-D
trials were given, recall of D increased and
recall of B correspondingly declined. Subse-
quently, Martin (1971) showed that in the
A-B A-D paradigm with modified modified
free recall (MMFR) testing (as was used by
Barnes & Underwood, 1959), recall of B is
independent of recall of D. Over a variety of
methods of pooling the data, the relation
P(B)P(D) = P(B and D) was found to obtain
(Martin, 1971, 1972, 1981).

It is the trade-off between B and D recall,
depending on the number of A-D trials, in
combination with the independence of B and
D responses, that is modeled in the computer
simulation described below.

Simulation 6

Method. A lexicon of 12 unrelated items was con-
structed. There were 15 features in each item, and the
items were normalized so that the dot product of an
ttem with itself was equal to one. Fifteen features were
used, rather than 63 as in the previous simulations, in
order to place recall in an appropriate range. (Metcalfe
and Murdock, 1981, have shown that with unrelated
items, recall is directly proportional to the number of
features in the items.)

Item | was designated as A, Item 2 as B, and Item 3
as D. Item | was convolved with Item 2 and the result
was multiplied by four to correspond to four trials on
the A-B association. Item 1 was then convolved with
Item 3 and multiplied by either 1, 3, 5, or 7 to correspond
to an equivalent number of trials on the A-D associa-
tion. The results of the four repetitions of A«B, and of
the variable number of repetitions of A*D, were added
into a single 15-tuple representing the composite trace.

In order to recall, Item 1 (or A) was correlated with
the trace, producing a single retrieved item. This item
was matched to each of the 12 lexical items as in prior
simulations, producing a resonanace score for each lex-
icalitem. Then the program selected as the recalled items
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the two lexical items with the highest resonance scores,
provided that each score exceeded a lower limit of zero.
The selection of two items was made in order to mimic
the MMFR testing procedure introduced by Barnes and
Underwood (1959).

The simulation was replicated 100 times for each of
the four A-D repetition conditions. A count was made
of the number of trials, in each repetition condition, on
which B, D, and both B and D were recalled. Means
and standard deviations of the resonance scores were
also computed.

Results. Results of the present simula-
tion, summarized in Table 10, coincide
closely with the actual results reported by
Barnes and Underwood (1959): As the num-
ber of A-D trials or repetitions increases, re-
call of D increases whereas the recall of B
decreases.

The reason that the model generates Barnes
and Underwood’s finding becomes apparent
when the particular features of B and D are
considered. In all cases in the present sim-
ulation, Cue Item A produced a combination
of B and D. If a feature happened randomly
to have the same sign in B and D, then when
the item produced by correlation was
matched to all of the possibilities in the lex-
icon, this feature tended to favor the selection
of both B and D. On those features where
the signs of the values happened randomly
to be different between B and D, the number
of repetitions became especially important.
Suppose, for instance, that the A-B associ-
ation was repeated more frequently than was
the A-D association. In this instance, the sign
of the contrasting features tended to be that
of the B item. Alternatively, if the A-D as-
sociation was repeated more frequently, the
sign of the contrasting features in the re-cre-
ated item tended to favor selection of the D
item. To give a specific example, suppose that

Table 10
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feature n had a value of —1 in Item B and
+1 in Item D. If B had been presented only
once whereas D had been repeated four
times, the value of this feature in the recon-
structed item would have been +3—favoring
D. Had B been repeated four times and D

‘presented only once, the value would have

been —3—favoring B.

Because nothing was done to alter the in-
dependence of the Lexical Items B and D,
independence, as shown by Martin (1971),
emerged as a natural consequence. The con-
tingency tables produced by the simulation
for the four conditions of A-D repetition are
given in Table 11. Inspection of these tables
reveals that in all four repetition conditions,
the quantity P(A)P(B) was very close to P(A

“and B), indicating independence.

Osgood Transfer Surface

In the final simulation that will be pre-
sented here, the Osgood (1949) transfer sur-
face, as revised by Martin (1965) in his F
surface, will be modeled. This surface pro-
vides a summary of the transfer relations that
are expected, depending on the similarity of
the stimuli of two lists and the responses of
two lists. The four edges of the surface may
be described as follows: (a) When the stim-
ulus terms in the two lists are unrelated and
the response terms of the second list vary
from being identical to similar to unrelated
to those of the first list, no transfer is expected
(i.e., A-BC-B = A-BC-B' = A-BC-D). (b)
When the stimulus terms in the second list
vary from being identical to similar to un-
related to those in the first list, and the re-
sponse terms are identical in the two lists,
transfer ranges from maximum positive to

A-B A-D Paradigm With MMFR Testing in Simulation 6

Number of repetitions of A-D pair

Response | 3 5 ' 7
B
Mean resonance 2.92 (1.01) 2.92 (1.32) 2.93 (1.76) 2.94 (2.26)
% recall 100 88 59 46
D
Mean resonance 76 (1.11) 2.26 (1.19) 3.76 (1.40) 5.26 (1.69)
% recall 21 62 91 99

Note. Standard deviations are in parentheses. MMFR = modified modified free recall.
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Table 11 ‘
Contingency Tables Illustrating Response
Independence in the A-B A-D

Paradigm in Simulation 6

Item B B Total
One repetition of A-D
D 21 0 21
D 79 0 79
Total . 100 0 100
Three repetitions of A-D
D 53 9 62
D 35 3 38
Total 88 12 100
Five repetitions of A-D
D 52 39 91
D 7 2 9
Total 59 41 100
Seven repetitions of A-D
D 45 54 99
D . 1 0 1
Total 46 54 100

neutral (i.e., A-B A-B > A-B A'-B > A-B
. C-B, where A-B A-B gives maximum pos-
itive transfer and A-B C-B gives no transfer).
" (¢) When the stimulus terms in the two lists
are identical and the response terms of the
second list range from being identical to sim-
ilar to unrelated to those of the first list, trans-
fer ranges from maximum positive to max-
imum negative (i.e., A-BA~-B> A-BA-B' >
A-B A-D, where A-D A-B gives maximum
positive transfer and A-B A-B yields maxi-
mum negative transfer). (d) When the re-
sponses are unrelated in the two lists and the
stimulus terms of the second list range from
being unrelated to similar to identical to
those of the first list, transfer ranges from
maximum negative to neutral (i.e., A-B
C-D > A-B A'-D > A-B A-D, where A-B
A-D gives maximum negative transfer and
A-B C-D is neutral),

Martin (1965) has argued that the Osgood
surface is attributable to the nature of the
(forward) associations. He has further argued
that two other surfaces may contribute to
observed transfer relations. One of these is
a backward-association surface—the mirror

image of the forward-association, or Osgood, °

surface. If CHARM can produce the forward-
association surface when the stimulus terms
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are presented as cues, it will also generate the
backward-association surface when the re-
sponse terms are given as cues, by virtue of
the fact that the association in the model is
symmetric,

The third surface delineated by Martin
(1965) was the R surface. In contrast to either
the forward- or backward-association sur-
face, Martin attributed the R surface not to
the associations themselves but rather to re-
sponse learning or availability. Because this
article is concerned with the problem of how
items are associated, stored, and retrieved,
and not with other processes or stages of
learning, such as response learning or avail-
ability, no attempt will be made to model
this third, R surface, even though it is not
questioned that the stage of learning reflected
by this surface may influence observed trans-
fer relations in particular experimental situ-
ations. ‘

A problem that I immediately encoun-
tered in attempting to simulate the Osgood
surface was that if a single association is con-
sidered in isolation, it makes no difference
whether that association is repeated. A-B
A-B does not produce a higher level of recall
than does A-B alone. The reason for this
anomaly in the model is that when a single
association is doubled, for instance, both the
signal and the internal noise are doubled, and
exactly the same selection errors will occur
when the retrieved item is compared to the
lexical items as would occur had the associ-
ation not been doubled. This anomaly occurs
only when the composite trace is assumed to
start with values of zero on all of its features.
It is because there was another association
in the composite trace in Simulation 6 that
the problem was not obvious in that simu-
lation. When the composite trace does not
start out as a blank slate, the problem does
not arise. Accordingly, in the simulation that
follows, two extraneous unrelated associa-
tions, whose purpose was to provide “back-
ground noise,” were stored in the composite
trace in each condition, as were the associ-
ations of main interest.

Simulation 7

Method. A lexicon of 14 unrelated 31-feature items
was constructed as in the previous simulations. Item 1
was designated as A, Item 3 as B, Item 5 as C, and Item
7 as D. In order to mimic the similarity relation between
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A and A’, Item 2 was reassigned feature values to be
identical with those of Item | on 15 randomly chosen
features. In a similar manner, though with different ran-
domizations, Item 4 was reassigned values on 15 features
to be identical with those of Item 3 and, likewise, Item
6 with Item 5 and Item 8 with Item 7.

Nine separate traces were constructed to represent the
following conditions: (a) A~B A-B, (b) A-B A-B', (c)
A-B A-D, (d) A-B A'-B, (¢) A-B A-B, (f) A-B A'-D,
(g) A~B C-B, (h) A-B C-B/ and (i) A-B C-D. These
anine conditions define a 3 X 3 design in which three
levels of stimulus similarity (identical, similar, and un-
related) are factorially combined with three levels of re-
sponse similarity (identical, similar, and unrelated) to
produce the main conditions represented in the Osgood
surface.

“In all nine conditions, two unrelated pairs—Item
9«Item 10 and Item 11sItem 12—were convolved and
added to the 31-tuple representing the composite mem-

" ory trace. In addition to these two unrelated pairs, the
nine conditions were constructed, respectively, as fol-
lows: (a) Item 1*Item 3 + Item I«Item 3, (b) Item 1xItem
3 + Item lxltem 4, (c) Item lsltem 3 + Item lsltem
7, (d) Item 1«Item 3 + Item 2+Item 3, (e) Item 1«Item
3 + Item 2+«Item 4, (f) Item 1xItem 3 + Item 2xItem
7, (g) Item 1sltem 3 + Item 5sItem 3, (h) Item 1sltem
3+ Item S5«item 4, and (i) Item 1sltem 3 + Item
S«ltem 7,

To simplify the programming, Item 1 was correlated
with each of the nine traces, and recall of Item 3 was
compared across conditions. The correlation of Item 1
with each of the nine traces produced nine retrieved
items, each of which was matched, as in prior simula-
tions, to all (14) lexical items. The best match (i.e., the
most resonant lexical item) was chosen as the item that
would be recalled. The simulation was replicated 100
times, using different random values of the lexical items.
Means and standard deviations of the resonance scores
for each lexical item were computed.

Results. The pattern of correct (Item B)
recall produced by the simulation is shown
in Table 12 and can be seen to correspond
closely to the transfer relations represented

Table 12
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by the Osgood surface. More specifically, the
simulation produced all of the ordinal rela-
tions that define the four edges of the Osgood
surface: (a) A-B C-B=A-B C-B' = A-B
C-D, (b) A-B A-B> A-BA'-B > A-BC-
B, (c) A-B A-B-> A-B A-B' > A-B A-D,
and (d) A-B C-D > A-B A'-D > A-B A-D.
I have rerun this simulation using different
randomizations, different numbers of extra-
neous unrelated pairs, and different numbers
of features in the items. In all cases, the re-
sults were similar to those obtained in Sim-
ulation 7, as illustrated in Table 12.

Relation to Other Models

In the preceding sections, I showed that
CHARM makes a number of predictions about
what would be recalled in several cued-recall
situations. By and large, these predictions
were confirmed experimentally. I also showed
that the model can account for a variety of -
well-known results that have been obtained
in associative-learning paradigms. In this sec-
tion I will compare CHARM to several other
associative models.

Liepa’s Holographic Model

CHARM was developed from the holo-
graphic model proposed by Liepa (Note 1;
also see Murdock, 1979) and so, in many
respects, it is similar to that model. In par-
ticular, the convolution-correlation algebra
of Borsellino and Poggio (1973) and the con-
struct of a composite memory trace are com-
mon to both models. Liepa’s model is more

The Osgood Transfer-Retroaction Surface in Simulation 7

Response similarity

Stimulus similarity Identical (B) Similar (B) Unrelated (D)
Identical (A) .

Mean resonance 1.54 (.39) 1.15 (.36) .76 (.34)

% recall 98 54 . 36,
Similar (A’)

Mean resonance 1.14 (.35) 94 (.32) 77 (.34)

% recall 93 73 66
Unrelated (C)

Mean resonance 77 (.34) .76 (.31) .76 (.32)

% recall 72 73 72

" Note. Standard deviations are in parentheses.
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general than CHARM insofar as it applies to
item, associative, and serial-order informa-
tion, which are stored in a single trace. It is
less general than CHARM, however, in that
it deals only with orthogonal vectors—sim-
ilarity is not represented. One reason for the
orthogonality constraint in Liepa’s model
(and other holographic models as well; e.g.,
Willshaw, 1981) is that when this constraint
is relaxed, the retrieved item may be ambig-
uous.

In CHARM, the orthogonality assumption
is abandoned and similarity is represented in
a traditional psychological way. The resulting
ambiguity in retrieval produces some of the
most psychologically interesting properties of
the model: that certain types of errors of re-
call will be made, that prototypes will be
formed, and that interference will occur. To
be sure, CHARM is not a maximally efficient
memorizing device in terms of producing a
veridical copy of the original items or events.
However, it is precisely because CHARM
transforms and combines events that the
model is psychologically interesting.

A second major difference between CHARM
and Liepa’s model is that the former includes
a semantic-memory-pattern recognizer
whereas the latter is a single-layer model.
This pattern recognizer is essential for CHARM
to be applied to experimental situations in
which the items retrieved by correlation are
either ambiguous or represent combinations
of two or more items, and yet, the responses
emitted by subjects are discrete. Further, as
Martin (1965) has noted and schematized in
his R surface, there appears to be a stage of
learning that is separable from association
formation itself. The results of Experiments
3 and 4, and also those of Simulation 5 con-
cerning prototype retention, point to the im-
portance of a level of information distinct
from that represented by the composite trace,
Thus, the construct-of a semantic-memory-
pattern recognizer is formally necessary if
CHARM is to be broadly applicable to psy-
chological data and also appears to be in-
dependently supported by the data them-
selves.

J. A. Anderson’s Neural Model

CHARM uses the idea of a composite mem-
ory trace, and this idea derives, in part, from
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the neural model given by J. A. Anderson et
al. (1977). Both models account for the for-
mation of prototypes by allowing for the su-
perimposition of items in the composite
{race.

However, the associations in the two mod-
els are different. The association in the J. A.
Anderson et al. (1977) model is directional
rather than symmetric, as it is in CHARM. As
such, the J. A. Anderson et al. (1977) model
cannot account for or predict backward in-
trusions (Experiment 1), differential cue in-
trusions (Experiment 2), or recall of the cue
when an item similar to the target is given
as a retrieval cue (Experiments 3 and 4).
J. A. Anderson (1977) has noted that there
is a problem in associating two responses to
a single stimulus in his model. It is not ob-
vious that the feedback mechanism Ander-
son proposed in conjunction with the asso-
ciation in his model solves this problem. The
semantic-memory-pattern recognizer in-
cluded in CHARM does allow for the removal
of ambiguity of responses in situations where
two responses are associated with a sin-
gle cue.

Multicomponent or Feature Models

A number of feature models of recall have
been proposed for purely psychological rea-
sons (e.g., Bower, 1972; Medin & Schaffer,
1978; Underwood, 1969). CHARM, t0o, uses
the idea that items are composed of sets of
features, making explicit the link between the
vector elements in neural models and the fea-
tures that have been proposed for psycho-
logical reasons, as was suggested by Estes
(1979). Similarity is represented in CHARM
in much the same way as it is in feature
models—that is, in terms of feature over-
lap—and I showed that this variable pro-
duces a number of psychologically interest-
ing results, such as the Osgood transfer sur-
face, prototype formation, and intrusions in
recall.

CHARM differs from other feature models
in that all of the associations are stored in a
single composite trace. However, it may not
be possible to distinguish psychologically the
construct of a composite trace from the idea
that associations are stored separately but are
combined at time of retrieval. Mathemati-
cally, it makes no difference to the end result
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whether associations are combined at time
of storage or at retrieval. Thus, there is a for-
mal similarity between CHARM and models
such as those proposed by Medin and Schaf-
fer (1978) and Hintzman and Ludlam (1980)
that add the results of a variety of retrieved
items at time of retrieval. Similarly, features
have usually been coded as positive values,
with the absence of a feature coded as zero.
In CHARM, features are coded as positive and
negative values around zero, which permits
representation of common as well as con-
trasting features (Tversky, 1977). However,
it may be that the apparently different views
of feature coding will in some sense prove
equivalent. Nevertheless, the combination of
the construct-of a composite trace and the
zero-centered feature coding makes it easy
to see certain relations among phenomena
that might not otherwise be obvious. For in-
stance, interference and the abstraction of
prototypes both depend on the addition of
features and differ only in the expected re-
sultant values. The same combination of
constructs also allows for the observation of
certain conceptual differences. For instance,
a loss of discriminability in CHARM reflects
an increase in the randomness of retrieved
items and is not conceptually equivalent to
an increase in the similarity of retrieved items
(as it is in Medin and Schaffer’s, 1978, model
of prototype learning).

CHARM uses a symmetric association,
whereas the association in other feature mod-
els is directional. The association in CHARM
allows it to address phenomend that depend
on the similarity relations between the stim-
ulus and response terms of a single pair. It
also gives rise to the predictions of equal fre-
quencies of stimulus and response intrusions
{Experiment 1), cue intrusions (Experiment
2), and the efficacy of extralist items similar
to the target to generate the cues (Experi-
ments 3 and 4). These predictions are not
made by other feature models.

Martin’s Encoding-Variability Model

Martin (1972) proposed that associative
recall depends critically on recognition of the
functional stimulus, reviving Hoffding’s ear-
lier view of recall (see Rock, 1962). This is
in marked contrast to CHARM, which does
not consider or include item recognition.
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When convolution and correlation serve as
the associative encoding and retrieval oper-
ations, it is not necessary that cue or stimulus
recognition precede target or response recall
(although a pattern-identification process that
might be related to recognition is included
in CHARM).

Martin has also argued that the construct
of variable encoding of stimulus terms is nec-
essary for a person to recall multiple respon-
ses to a single stimulus, as in the A-B A-D
situation. As Martin (1972) has stated, “If R,
and R, are two distinct behaviors and if S,
is the presumed stimulus for R, then any
assertion that S; can also be the stimulus for
R, is a mistake. . . . A learner cannot retain
both A-B and C-D where A and C are iden-
tically encoded” (p. 71). This “mistake” is
precisely what was committed in Simulation
6 that modeled the A-B A--D paradigm. The
result of that simulation was not only a good
approximation to the trade-off between B
and D recall but also showed independence
of recall of the two responses. The implica-
tion, then, is that it is not necessary to invoke
the assumption of encoding variability in
order to account for the capacity of a single
nominal stimulus to control two or more
distinct behaviors or responses. This does not
imply, however, that the representations in
CHARM are incompatible with the idea of
encoding variability. Indeed, CHARM goes
beyond the assumption of encoding vari-
ability by providing a memory mechanism
that may actually change the representation
of an item from encoding to retrieval, de-
pending on the nature of the associated item
and also the nature of the list.

Node/Network Theories

CHARM is radically different from node/
network theories of associative recall (e.g.,
J. R. Anderson, 1972, 1976; J. R. Anderson
& Bower, 1973). To cite just a few obvious
differences, network theories do not consider
the question of how new associations arc
formed (see Postman, 19735), which is a mat-
ter of prime importance in CHARM. Also,
CHARM places no emphasis whatever on item
recognition, whereas this process is quite im-
portant for recall in network theories. The
representation of items as conceptual nodes
in network theories differs from the feature
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representations in CHARM. Further, the idea
that retrieval is a search or that it consists of
spreading activation is metaphorically far re-
moved from the filterlike operation of cor-
relation proposed in CHARM. And the single-
layer semantic memory given by network
theories differs from the dvual memory sys-
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tem—composite-holographic trace and se-
mantic-memory-pattern recognizer—em-
ployed in CHARM.

The basic assumptions, or the approach
to the problem of recall, are also different.
It seems that one assumption made about the
nature of the association in network theories

Table 13
Predictions and Applications of CHARM
Favorable
Prediction or phenomenon Simuiation Yes No Evidence
Interaction between correct recall 1 X Experiment 1
and intralist intrusions
depending on whether paired-
associate list consists entirely of
similar or of unrelated items
Equal frequency of stimulus- and 1 X Experiment 1
response-term intralist intrusions .
Greater proportion of cue 2 X Experiment 2
intrusions when cue and target
items are similar than when they
are unrelated -
Stimulus generalization .3 X Experiment 4;
Gibson, 1941.
Extralist item similar to target 3 X \ Experiment 4
evokes recall of cue rather than
target
Responses of a particular pair — X Tulving, Note 3
learned less well in a
homogeneous than in a
heterogeneous list
Interaction between number of 4 X Homa, Cross,
category exemplars presented Cornell,
and cue efficacy of prototype as Goldman, and
compared to exemplars Schwartz, 1973
Prototype more resistant to 5 X Posner and Keele,
forgetting than presented 1970; Strange,
exemplars Keeney, Kessel,
and Jenkins,
1970
Non-association-specific Metcalfe and X . McGovern, 1964
interference: A~-B C-D gives Murdock, 1981
worse recall than A-B alone
Trade-off between B and D recall .6 X Barnes and
in A-B A-D paradigm with Underwood,
MMEFR testing 1959
Independence of B and D responses 6 X Martin, 1971
in the A-B A-D paradigm
All of the transfer or retroaction 7 X Osgood, 1949;
relations given in the Osgood Martin, 1965
surface

Note. MMFR = modified modified free recall.
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is that if the association between two items
A and B has been tagged and the tag is still
present at time of retrieval, A will automat-
ically lead to B. When this assumption is
made about the nature of associations, the
problem then becomes one of inferring,
whether, and with what probability, the
tagged association exists. An additional prob-
lem is that of delineating what is associated
with what; for instance, is Item A associated
with context, which meaning node of A is
associated with B, and so on. ,

In CHARM, the problem of recall is not
formulated in terms of inferring what is as-
sociated to what and with what probability.
Rather, it was assumed early on that the ex-
perimenter had control over what was asso-
ciated with what. Thus, if an A-B pair was
presented by the experimenter, it was allowed
that A and B were associated. The explana-
tory burden in CHARM was placed on how
associations are formed, stored, and re-
trieved.

The approach taken in CHARM of focusing
on the microstructure of association forma-
tion, storage, and retrieval seems to have sev-
eral advantages over the “higher level” ap-
proach taken in network theories. For in-
stance, in discussing how human associative
memory (HAM) accounts for some of the
basic findings of interference theory, Ander-
son and Bower (1973) appeal to context, rec-
ognition, a construct roughly equivalent to
unlearning, spontaneous recovery, rehearsal
differences in some conditions, medijated se-
mantic associations, and both forward and
backward associations between stimuli and
responses. In contrast, as has been demon-
strated, CHARM can account for a consider-
able number of paired-associate learning re-
sults by detailing only how the pairs pre-
sented by an experimenter are associated,
stored, and retrieved. In addition, CHARM
can account for list-context effects, associa-
tive-context effects, and the abstraction of
prototypes. Further, CHARM makes predic-
tions about errors of recall (see Experiments
1, 2, 3, and 4) that network theories certainly
do not predict and may not be able to ac-
commodate. The simplicity with which both
well-known and counterintuitive (but exper-
imentally confirmed) findings are produced
by CHARM indicates the value of attempting
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to specify at a “micro” level how associations
are formed, stored, and retrieved.

Conclusion

In this article, a composite holographic
associative recall model was proposed as a
solution to the problem of how it is that peo-
ple associate pairs of items, store the asso-
ciations in memory, and then later, when
given a retrieval cue, use that cue to evoke
recall, The model yielded predictions about
what people would recall in several cued-re-
call experiments. It was also applied in an
unelaborated form to a variety of well-estab-
lished phenomena that ostensibly depend on
associations. The results of the model are
summarized in Table 13. As can be seen from
the table, the model seems to be doing some-
thing similar to what people do when they
associate, store, and retrieve from memory.

CHARM is a highly interactive model of
human association formation, storage, and
retrieval. Nearly all of the predictions and
applications depend on the interactive nature
of the holographic association and of the
composite trace. The events stored in such
a memory combine and interfere with one
another so that the output from memory is
different from the input to it. Under certain
conditions, as when unrelated items are as-
sociated, the difference from input to output
may be that the retrieved items are noisier
than the encoded items. Under other con-
ditions, as when the items are similar to one
another, the retrieved items are systemati-
cally transformed from their encoded form.

It is an old notion that memory is not just
a passive store for holding ideas without
changing them but may in fact transform
those ideas. The Gestalt psychologists gave
a number of demonstrations showing that
what is retrieved may differ from what was
initially given, It seems intuitive that people
do not simply take ideas and passively store
them, Rather, people seem all the time to be
altering and mentally transforming what was
given. The holographic hypothesis of asso-
ciations may have many implications for the
study of human memory. It may turn out
that the most important of these is that it
may not only increase our understanding of
how ideas are associated, stored, and re-
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trieved but also provide some insight into the
question of how it is that people are able to
take old ideas and transform them into ideas
that are new.
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Appendix

Computational Hlustrations of Convolution and Correlation

The convolution of two items A = (+ -+ «, a_,,
ag, ay, ** .)andB = (' MY b—l’ b()’ bh v ') is
conveniently computed by constructing a matrix
as shown in Figure Al. The trace T that results
from summing across the positive diagonals is
given by T=(' sy by By, o Gy B2y 0t ‘)=
(*++,a1,by,a0b1+ a_,bo, aib_ + agho + a_,by,
aiby + aghy, a1b,), which conforms to the defini-
tion of convolution given in the text in the As-
sociation Formation section.

In order to correlate one of the items, say B,
with the trace T, a new matrix is formed as shown
in Figure A2. The retrieved item is R = (r_,, o,
r). The central n features of this retrieved item
provide an approximation to A, provided that the
initially convolved items are unrelated.

To illustrate the nonnoise components in the
resultant item R, it is necessary to expand the joint
convolution-correlation matrix. In the expanded
matrix, given in Figure A3, the components that
produce the retrieved item A have been under-
lined. Regardless of the dimension of the vectors
(i.e., the number of features in the items), if the
items are unrelated, there is one signal component
in each cell of the joint convolution—correlation
matrix for the central » features of R. It can be

T_z f_1 fo

Figure Al. A computational illustration of the convo-
lution of two items A = (a-, g, a,) and B = (b_,, by,
b)) to produce an association T = (1_,, 1_,, t, &1, 1)

seen that

rop = b]a_lbl + boa_|b0 + b_la_lb_l + blalb_,
+ blaobo + boaob_1
a_l(b|2 + boz + b-]z) + b,a|b_1
+ byagbo + boaoh-
a_,(B- B) + bla|b_| + blaobo + boaob_l
a_ + noise.
Similar computations can be carried out for all
of the central features of R and one will see that
the rg = ao + noise and r, = @, + noise. Thus,
B#(A*B) = A + noise.

Had A been correlated with T = AxB, the re-
trieved item would be an approximation to B. In
that case, r_, is as follows:

- = a|(l1b_1 + a]aobo + a,a_;bl + aoaob_l

il

+ apa- by + a_ja-_,b_,

= b_y(a? + as® + a_%) + a1apby
+ aya- by + apa_1by

= h_; + noise.

Similar computations can be carried out for rp and
ri, and they too produce the corresponding fea-

EIEEE
Figure A2. A computational illustration of the correla-
tion of an item B = (b, by, b,) with-the association given

in Figure Al to produce a retrieved item R = (r-), r,,
r,).
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04by
+
aob.y agbg a4bg
+ + +
aby a.4bg 0.4by agby aqby
» u " u "
t.2 f.q to 1] t2

by

bo
by 4by
+
B.40.4D4 b.apbo + b.404by by
+
b0_4by b.4agby

[ 0 ]

Figure A3. An expanded version of the joint convolution-correlation matrix that was given in Figure
A2. (The underlined components produce the retrieved item A when the initially convolved items A and

B are unrelated.)

tures of B, namely, by and b,. Thus, A#(A+B) =
B + noise.

Suppose A and B are convolved, as dia-
grammed in Figure A1, and then an item similar
to B is correlated with the result. A “weak” ap-
proximation to A is retrieved. For instance, sup-
pose that the retrieval cue B' = (b_,, by, X;) so that
two features are identical to the corresponding
features in B and one feature has a value inde-
pendent of the value of the corresponding feature
in B. In this case, the bottom two rows of the joint
expanded convolution—correlation matrix will be
identical to those given in Figure A3. However,
no nonnoise components will be systematically
produced in the top row, that is, for the x; feature.
Thus, instead of producing A + noise, B’ will re-
trieve (n common/n)A + noise. It may be noted
that all of the features of A are still retrieved, but
with a decreased strength.

If A = B, and B is correlated with the resultant
trace,

i}

a-l(B-B) + b,alb_l + blaobo + boaob_l
a_; + b_|(a12’+ aoz) + b]dobo .

-y

The term (a,? + ag?) results in a positive value but
is not quite equal to A+ A. In particular, there is
one missing component: in this case a_,% The
missing component stems from the cases, in the
original convolution matrix, where the a and b
subscripts were the same (i.e., from the negative
diagonal of the original convolution matrix).
There is thus exactly one missing component from
the dot product A- A in each reconstructed fea-
ture. However, as the number of features in the
convolved items becomes large, the difference be-
tween (n — 1/n) and 1 becomes vanishingly small,
and so

r_y = a-, + b_, + noise
= 2a_, + noise.

A similar result may be computed in a like man-
ner for all features.
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