Metacognitive Control and the Spacing Effect
Lisa Son
(Barnard College)
Unnara Sethi & Janet Metcalfe
(Columbia University)

ABSTRACT.
The purpose of this study was to see if forcing adult and child learners to use a spacing strategy (even when they chose to mass study) would benefit their performance. After making JOLs, participants chose to mass or space study of word pairs. A third of their selections were dishonored. That is, they got massed when they chose spaced; spaced when they chose massed. Results showed that the spacing effect obtained for both adults and children when choices were honored. However, dishonoring choices in order to force a spacing strategy improved performance for only the children, but not for adults. The data suggest that spacing is an effective strategy for learning. However, particularly for more expertise learners, metacognitive control of spacing is crucial for enhancing learning and should be honored.

The Spacing Effect
In the literature, it has been found that as the spacing, or lag, between repeated study trials is increased, long-term memory performance of the studied items also increases (Glenberg, 1979; Melton, 1970; Underwood, 1970). This is known as the spacing effect.

The phenomenon is so effective in the literature that it has even been mandated a law:

Nisbett’s law
(Taken from Byrk, 1888, p.399)

You can get a good deal from rehearsal,
If it has just been in the proper sequence.
You would just be an ass
To do it in mass.
Your remembering would turn out much worse.

DISCUSSION.
The results show that for the study pairs that were honored, the usual spacing effect occurred. That is, people remembered the spaced items better than the massed items. For the dishonored items, however, the spacing effect did not hold. Performance was no better for the (forced) spaced items than those items that were massed. These data indicate that a spacing strategy is not a universal benefactor. In particular, one’s own metacognitive choice -- even one that consists of using the thought-to-be-harmful massing strategy -- may be more critical for optimizing final performance. Does that mean that we leave all decision making to the learner? Not necessarily. The children’s data showed that, in fact, forcing a spacing strategy (while dishonoring their decisions) helped significantly in boosting final performance. In general, these findings suggest that only when people’s metacognitive decisions are likely to be very flawed, as in the case with young children, is it advantageous to “advocate” a strategy already known to be helpful.

Methods and Hypothesis
Methods: The general procedure came from Son, 2004. Adults (Experiment 1) and children in grades 3-5 (Experiment 2) and studied synonym pairs for 2 seconds each, and then made JOLs. They then chose whether they wanted to mass (study now) or space (study later) their learning on that particular item. If they chose to mass, the same pair would be presented again immediately for 3 seconds. If they chose to space, then the pair would not be re-presented until after having studied the entire list.

However, their choices were honored only a third of the time. On the remaining third of the trials, their choices were dishonored (in red). That is, the computer forced subjects to space when they chose to mass, and vice versa. A test followed a distractor task.

Question: Is spacing always the best strategy? That is, even if metacognitively, the learner chooses to mass, is it beneficial to ignore their decisions and to force them to use a spacing strategy?

Which is better: A spacing strategy or one’s metacognitive choice?

Results

Adults

![Adults Results Graph]

Children

![Children Results Graph]

References

Acknowledgements. This research was funded by IES grant R305B03107. The Janet Metcalfe and Lisa Son. We’d like to thank the elementary school students at PWS and all of the research assistants from Barnard and Columbia who helped.