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Representation of the Numerosities 1-9 by
Rhesus Macaques (Macaca mulatto)

Elizabeth M. Brannon and Herbert S. Terrace
Columbia University

Three rhesus monkeys (Macaca mulatto) were trained to respond to exemplars of 1,2,3, and 4

in an ascending, descending, or a nonmonotonic numerical order (1—»2—>3—>4,4—>3—*2—'1,

3—•!—»4—>2). The monkeys were then tested on their ability to order pairs of the novel

numerosities 5-9. In Experiment 1, all 3 monkeys ordered novel exemplars of the

numerosities 1-4 in ascending or descending order. The attempt to train a nonmonotonic order

(3—"1—>4—*2) failed. In Experiment 2A, the 2 monkeys who learned the ascending numerical
rule ordered pairs of the novel numerosities 5-9 on unreintorced trials. The monkey who

learned the descending numerical rule failed to extrapolate the descending rule to new

numerosities. In Experiment 2B all 3 monkeys ordered novel exemplars of pairs of the

numerosities 5-9. Accuracy and latency of responding revealed distance and magnitude

effects analogous to previous findings with human participants (R. S. Moyer & T. K. Landaeur.

1967). Collectively these studies show that monkeys represent the numerosities 1-9 on at least

an ordinal scale.

It is often assumed that numerical thought is beyond the
reach of animals because all human numerical systems use
arbitrary symbols, (e.g., Hurford, 1987). That assumption
can be questioned on both theoretical and empirical grounds
(Carey, 1998; Dehaene & Changeux, 1993; Meek & Church,
1983). Recent experiments on species as diverse as pigeons,
rats, raccoons, ferrets, dolphins, and monkeys provide
evidence that animals have numerical abilities that do not
require knowledge of symbols (see Boysen & Capaldi,
1993; Davis & Perusse, 1988; Dehaene, 1997; Dehaene,
Dehaene-Lambertz, & Cohen, 1998; Gallistel & Gelman,
1992, for reviews). Indeed some laboratories have reported
evidence that chimpanzees and a parrot can learn to pair
arbitrary symbols with particular quantities (Boysen &
Berntson, 1989; Matsuzawa, 1985; Mirofushi, 1997; Pepper-
berg, 1987). Other experiments suggest that primates can
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sum collections of objects and symbols (Boysen & Bernt-
son, 1989) and track additions and deletions of objects

(Mauser, MacNeilage, & Ware, 1996).
The paradigms used to test the numerical abilities of

animals are as varied as the species tested. Animals have

been trained to respond differentially to a variety of numeri-

cally defined stimuli: the number of tones (e.g.. Meek &
Church, 1983; Roberts & Mitchell, 1994), the number of

abstract visual stimuli (e.g., Davis, 1984; Emmerton, Loh-
mann, & Niemann, 1997; Hicks, 1956; Honig & Stewart,
1989; Thomas, Fowlkes, & Vickery, 1980), the number of

responses to a manipulandum (Fetterman, 1993; Mechner,
1958; Platt & Johnson, 1971;RiUing, 1967), and the number

of reinforcers (Olthof, Iden, & Roberts, 1997; Washburn &

Rumbaugh, 1991).
The experiments described in this article address three

basic issues that have been the focus of the growing

Literature on the numerical abilities of animals: the degree to
which animals can discriminate number when nonnumerical

cues are eliminated, the salience of number as a stimulus
dimension, and how animals represent number.

Controlling for Nonnumerical Factors

To conclude that an animal can discriminate number, one
must rule out control by other stimulus dimensions (e.g.,

area, time, or hedonic value). This has rarely been done in
experiments on the numerical ability of animals. For ex-
ample, when stimuli are presented simultaneously, surface
area or density covaries with numerosity (e.g., Honig &
Stewart, 1989), and when stimuli are presented successively
at a constant rate, time covaries with numerosity (e.g.,
Rilling, 1967). When food is used as a discriminitive
stimulus, hedonic value covaries with numerosity (Wash-
burn & Rumbaugh, 1991).
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The prodigious memory animals have for particular
stimuli raises another important methodological issue. In
some circumstances, animals solve complex problems by
memorizing a large number of stimuli rather than by
learning a "simple" cognitive rule. For example, Farrar
(1967) trained chimpanzees on a matching-to-sample task in
which the sample was presented with three distractors. The
chimpanzees were trained to a criterion of 90% and were
then tested in the absence of the sample. Surprisingly,
performance was not significantly disrupted. Thus, instead
of learning an identity matching rule, the chimpanzees had
learned 17 conditional discriminations. Similarly, Greene
(1983) showed that pigeons could memorize hundreds of
distinct photographs on a pseudoconcept formation task.
The only way to rule out memory of a specific set of stimuli
on a conceptual task is to present first-trial data to show that
a subject's performance is not disrupted by the introduction
of novel stimuli.

The Salience of Numerical Stimuli

Capaldi and Miller (1988), Gallistel and Gelman (1992),
and Dehaene (1997) argued that animals perceive number
naturally and that they make numerical computations in
daily foraging decisions. By contrast, Davis and his col-
leagues claimed that animals rely on number only as a
strategy of "last resort," that is, when there is no alternative
solution available for the task at hand (Davis & Memmott,
1982; Davis & Perusse, 1988).

An influential experiment by Meek and Church (1983)
provided evidence against the last-resort hypothesis by
training rats to discriminate numerosity when it was con-
founded with time. Subjects were trained on a successive
discrimination problem in which they were given a choice of
two levers. They were rewarded for pressing Lever A on
trials on which two tones were presented and for pressing
Lever B on trials on which eight tones were presented. Both
stimuli consisted of alternating tone-on and tone-off periods,
each lasting 500 ms. Subjects could therefore learn the
discrimination on the basis of stimulus duration (2 vs. 8 s),
stimulus frequency (two vs. eight tones), or both stimulus
dimensions.

After learning to discriminate the short two-tone stimulus
from the long eight-tone stimulus, the rats in Meek and
Church's (1983) experiment were given a generalization test
to determine which feature(s) of the stimulus controlled their
performance. Two types of test stimuli were used. For one
type, the duration of all stimuli was held constant at 4 s, and
the number of tones was varied from trial to trial (two, three,
four, six, or eight tones). For the other, the number of tones
was held constant at four, and the duration of the sequence
was varied (2,3,4, 6, and 8 s).

The rats responded appropriately when the test stimulus
matched the training stimulus in either duration or fre-
quency. For example, they chose Lever A when the 4-s test
stimulus contained two tones and Lever B when the 4-s test
stimulus contained eight tones. The critical finding of the
Meek and Church (1983) experiment was that the rats
generalized equally on the basis of duration and number

even when the duration or the frequency of the test stimuli
did not match the values of the training stimuli. For example,
the likelihood that the rat would choose Lever A following a
three-tone stimulus of 4-s duration was the same as the
likelihood that it would choose Lever A following a 3-s
stimulus consisting of four tones.

The results of Meek and Church's (1983) experiment
would appear to contradict the last-resort hypothesis in that
subjects did not require any special training to respond to
test stimuli on the basis of their frequency. However, a
failure to replicate the performance of Meek and Church's
rats when other dimensions of the compound stimuli used
during training were varied elucidates the difficulty of
defeating the last-resort hypothesis. Like Meek and Church
(1983), Breukelaar and Dalrymple-Alford (1998) trained
rats on a discrimination task on which number and time were
confounded. However, Breukelaar and Dalrymple-Alford
obtained no evidence of control by number in a generaliza-
tion test in which they varied the temporal pattern of the
tones and held signal duration constant. As in Meek and
Church's study, the likelihood of choosing a particular lever
varied as a function of the duration of the signal when the
number of tones was held constant. By contrast, the likeli-
hood of choosing Levers A and B did not vary as the number
of test stimuli was varied between two and eight.

Ordinal Versus Nominal Representation of Number

Once control by the numerical value of a stimulus has
been demonstrated it is possible to ask, how does an animal
represent number? Do animals simply form nominal catego-
ries for different quantities or do they also represent
numerosity on an ordinal scale? For example, having
learned to assign collections of four elements to Category A,
collections of five elements to Category B and collections of
two elements to Category C, does an animal know that
Category B is greater than Category C? To answer that
question subjects have to be tested on their ability to order
novel numerosities after learning to discriminate two or
more numerical stimuli.

One commonly used method for investigating stimulus
control is to give subjects a generalization test with novel
stimuli from the dimension in question (Terrace, 1966). That
method is illustrated by the study described earlier by Meek
and Church (1983). After rats were trained to respond to
one lever following the presentation of two tones and
another lever following the presentation of eight tones, they
were tested on intermediate values (two, three, four, five,
and six tones). Subjects responded to the test stimuli in a
graded manner, suggesting that numerosity was the underly-
ing dimension. However, as mentioned earlier, the perfor-
mance of Meek and Church's (1983) subjects appears to
have been influenced by the temporal rather than by the
numerical properties of the discriminative stimuli (Breuke-
laar & Dalrymple-Alford, 1998). It should also be noted that
all of the novel values in Meek and Church's experiment fell
within the range denned by the training values. It is unclear
whether an animal would respond appropriately to stimuli
outside the training range.
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Using a different paradigm for assessing ordinal knowl-

edge, Thomas et al. (1980) trained monkeys to discriminate

random dot patterns containing different numbers of dots on

a simultaneous discrimination task. Pairs differing in the

number of dots they contained were presented simulta-

neously. Subjects had to choose the stimulus containing the

smaller numerosity. Training began on the pairs 1-2 and

then shifted progressively to larger numerosities (2-3, 3-4,

4-5, 5-6, 6-7 and 7-8). Thomas et al. controlled for surface

area by varying the size of the dots across trials. Subjects

nevertheless discriminated patterns containing 7 and 8 dots

suggesting that they may have learned to order stimuli with

respect to numerosity. However, as Thomas et al. acknowl-

edged, the design of their study did not allow them to rule

out the possibility that their monkeys learned a series of
pairwise associations based on nominal categories (e.g.,

choose 5 when paired with 6, and choose 7 when paired with

8). To demonstrate that monkeys represent number as an

ordered dimension it is necessary to show that subjects could

order novel numerical pairs the first time they are presented.

The issue of ordinal knowledge of numerosity and the

last-resort hypothesis are the focus of the two experiments

described in this article. A brief description of some of the

findings of each experiment was presented in an article by

Brannon and Terrace (1998). One experiment from that

article showed that rhesus monkeys learned an ascending

rule (1 —> 2 —> 3 —'4) for responding to the numerosities

1—4 on a task that could have been mastered by memorizing

35 sets of stimuli. A second experiment from that article

showed that the monkeys, who learned the ascending rule

for responding to the numerosities 1—4, spontaneously

ordered pairs of the numerosities 5-9. In this article we

describe new data showing that monkeys can also learn a

descending rule (4 —> 3 —> 2 —> 1) but not a nonmonotonic

rule (3 —• 1 —> 4 —> 2). We also describe psychophysical

functions that show the influence of numerical distance and

magnitude on latency and accuracy of responding.

Experiment 1

The task used in Experiment 1 differs from previous tasks

used to assess animal numerical competence in that subjects

were trained to respond in a fixed order to four numerical

stimuli (1-4) and then tested with novel exemplars of those

numerosities. The purpose of Experiment 1 was to compare

a monkey's ability to respond to numerical stimuli in an

ascending, descending, and a nonmonotonic order.

Method

Subjects

The subjects were three 3-year-old rhesus monkeys (Macaca
mulatto), Rosencrantz, Benedict, and Macduff. They were housed
in a rhesus colony room with 7 other monkeys who participated in
similar experiments. Monkeys were housed in pairs in two
adjoining cages (each measuring 0.74 deep X 0.61 wide x 0.89
high m). During experimental sessions an opaque divider separated
the cages. Subjects were fed daily between 1300 and 1400 (Purina

monkey chow [Ralston Purina, Richmond, IN], fruit). Water was
available ad libitum.

Apparatus

Experimental sessions, which lasted approximately 40 min, took
place in each subject's home cage, typically between 1000 and
1300. A mobile cart, which housed a Microtouch touch-sensitive
15-in. video monitor and a Gerbrands pellet dispenser, was
positioned in front of the subject's cage before each session. The
guillotine door in front of the cage was raised after the cart was
secured to provide the subject with unimpeded access to the
monitor. Subjects were unrestrained during testing. The experi-
menter, who had no contact with monkeys during testing, could
observe each session by remote video from an observation room
located 10m from the colony room. A Power Macintosh computer
using PsyScope software (Cohen, MacWhinney, Flatt, & Provost,
1993) controlled experimental events and data collection. Reinforc-
ers were 190-mg Noyes (Noyes, Lancaster, NH) pellets (banana,
orange, or grape flavored).

Previous Training

We pretrained monkeys by the simultaneous chaining paradigm
on a list-production task (Terrace, 1984) to provide them with
experience in producing 4-item lists. List training began immedi-
ately after magazine training and shaping. For each list, all of the
items were presented simultaneously and continuously on the
touch-sensitive video monitor in configurations that varied ran-
domly from trial to trial. We varied the configuration of the items to
prevent subjects from relying on a fixed motor pattern of responses
to execute the sequence. List items were digitized color photo-
graphs (3.5 X 3.5 cm) of human-made objects. The subject's task
was to touch the photographs in a particular order to receive a
reward (e.g., car —> motorcycle —* table —* building). Each correct
response was followed by brief (100 ms) auditory and visual
feedback to indicate that the response had been detected by the
monitor. Feedback for correct responses conveyed no information
as to the subject's progress in the sequence. For example, in the
sequence described earlier, a response to the car provided no
information that the next item the subject should touch was the
motorcycle (as opposed to the table or the building). Accordingly,
subjects had to keep track of their place in the sequence after
responding to each item.

Any error terminated the trial immediately and resulted in a 15-s
time-out (TO) during which the screen of the video monitor was
darkened. A food pellet was dispensed only after the subject
touched all four stimuli in the correct order. The intertrial interval
(FTI) varied from 5 to 13 s with a mean of 8 s. Sixty trials were
given in each session.

Given the conservative assumption that a subject did not return
to a previously selected item, the probability of responding
correctly by chance to the first item of a 4-item sequence is .25; to
the second item, .33; to the third item, .5; and to the fourth item,
1.0. Thus, the chance probability of responding correctly to all four
stimuli was .25 X .33 X .5 X 1 = .04.' Subjects were trained on
seven 3-item and eleven 4-item lists of photographs. A detailed
description of subjects' performance on these lists can be found in
Terrace, Son, and Brannon (2000).

1 If we allowed for backward errors, chance performance would
be lower (.25 X .33 X .33 X .33 = .009). Both calculations ig-
nore repeat responses because they had no consequence (e.g.,
ABBBBBCD).
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Figure 1. Exemplars of the seven different types of stimulus sets. All types were used with equal
frequency in both 4-item training and 4-item testing. Equal size: Elements were of same size and
shape. Equal area: Cumulative area of elements was equal. Random size: Element size varied
randomly across stimuli. Clip art: Identical nongeometric elements selected from clip art software.
Clip art mixed: Clip art elements of variable shape. Random size and shape: Elements within a
stimulus were varied randomly in size and shape. Random size, shape, and color: Same as previous
with background and foreground colors varied between stimuli.

Stimuli

Exemplars of numerosity were composed of stimuli that con-
tained one, two, three or four abstract elements. Examples of the
stimuli are shown in Figure 1. Elements, which were circles,
ellipses, squares, rectangles, or complex clip art figures, were
positioned randomly within each stimulus. The color of each
element was red, blue, green, cyan, yellow, or black. The back-
ground color was selected from one of the five remaining colors.
Clip art elements were gray or black. All of the 30 possible
foreground-background color combinations were used with approxi-
mately equal frequency. The stimuli were generated by a graphics
program.

A stimulus set contained one exemplar of each of the four
numerosities. Seven types of stimulus sets were used to minimize
the possibility of stimulus control by nonnumerical dimensions.
These were equal size, equal surface area, random size, clip art, clip
art mixed, random size and shape, random size, shape, and color.
Examples of each type of stimulus set are shown in Figure 1.

For the equal size sets, the elements of all four stimuli were of
identical size and shape. For the equal surface area sets, the sum of
the elements' area within each stimulus was equal for each of the
four stimuli within a set. Subjects could infer stimulus order on sets
in which stimuli were of equal size by applying an increasing
surface area rule. Similarly, they could infer stimulus order on sets
in which the surface area of the elements were equal by applying a
decreasing size rule. Those bases for inferring order were elimi-
nated in the random size stimulus sets for which the size of the
elements was selected at random.

Clip art stimulus sets contained stimuli with a single clip art
shape (one leaf, two leaves, etc.). We used both "natural" objects
(e.g., dogs, leaves) and human-made objects (e.g., heart shapes,
cars). Mixed clip art sets were composed of stimuli that contained
more than one shape (e.g., an exemplar of two might contain a dog
and a cat). For the random size and shape sets, the size and shape of

the elements varied randomly. Similarly, for the random size,
shape, and color sets, the size and shape of the elements varied
randomly within each stimulus as did the background and fore-
ground colors.

Stimuli, which were each 3.5 X 3.5 cm, were programmed to
appear on the video monitor in one of 16 positions, each equidistant
from one another. On each trial the stimuli were displayed in a
novel configuration that was selected at random from 43,680 pos-
sible configurations. Sample configurations are shown in Figure 2.

Task and Procedure

The task used was identical to that described for pretraining
except that we used exemplars of the numerosities \-^ instead of
photographic stimuli. Subjects were required to respond to each
stimulus on the video monitor, in a specific order. A particular

Example Trial One Exam

•

pie Trial Two

.*.

:••

.•

Figure 2. Example configurations. On each trial the four stimuli
were displayed in a random spatial configuration. Sixteen spatial
locations allowed for 43,680 possible configurations.
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MACDUFF (1-2-3-4)

MACDUFF(3-1-4-2)

13 15 17 19 21 23 25 27 29 31 33 35

Stimulus Sets

Figure 3, Comparison of I monkey's (Macduff) performance on 13 nonmonotonic stimulus sets
(3 —» 1 —'4 —> 2) and 35 monotonic stimulus sets (1 -^ 2 —* 3 —k 4). Performance did not improve
across the 13 nonmonotonic sets but quickly improved once he was switched to a monotonic rule.
The dashed lines reflect the best-fit linear models.

numerosity was assigned to each ordinal position in the response
sequence for each monkey. For Rosencrantz, the order was
ascending (1 —*2 —>3 —*4); for Benedict, it was descending
(4 —> 3 —> 2 —> 1). Macduff was initially trained on a nonmono-
tonic order (3 —• 1 —•• 4 —> 2). After showing no evidence of
learning the nonmonotonic rule during training on 13 stimulus sets,
he was shifted to the ascending rule (1 —» 2 —> 3 —» 4).

The experiment was carried out in three phases: training on
individual lists, multilist training, and transfer. During the training
phase, subjects were trained on 35 different stimulus sets. The
purpose of the training phase was to provide subjects with a basis
for learning the relationship between numerosity and ordinal
position in the required response sequence (rather than to overtrain
them on any given stimulus set). Each set was trained until subjects
correctly ordered the stimuli on 20% of the trials in a single session
(12/60 trials) or until they completed three sessions. New stimulus
sets were always introduced at the start of a session.

The purpose of multilist training was to prepare subjects for the
transfer sessions in which a novel stimulus set was presented on
each trial. During multilist training, the number of stimulus sets
used during each session was gradually increased. During die first
five sessions, subjects were retrained on 15 of the original 35
stimulus sets. Three stimulus sets were presented during each
session, in separate 20-trial blocks. The same 15 stimulus sets were
subsequently presented in a random order within the same session.
Training continued until the subjects responded correctly on 70%
of the trials within a single session or until eight sessions of training
on the randomly alternating stimulus sets were completed. During
the final phase of multilist training, all 35 of the original stimulus
sets were presented in a random order during each session. Training
continued until subjects executed 60% of the trials correctly within
a single session or until they completed six sessions.

The purpose of transfer sessions was to determine whether
monkeys could respond in the correct sequence to stimuli from
novel stimulus sets solely on the basis of numerosity. We presented
150 novel stimulus sets over the course of five successive sessions,
30 novel stimulus sets per session. During the first half of each
session, 30 novel stimulus sets were presented in a random order.
The same 30 stimulus sets were presented in a different random

order during the second half of the session, but we used only
first-trial data to assess transfer performance. Sets from each of the
seven stimulus categories were presented during each session with
approximately equal frequency. During the transfer test, the
consequences of correct and incorrect responses were the same as
those that were in effect during the training sessions. Correct
responses produced brief auditory and visual feedback, errors
terminated a trial and a complete sequence of responses produced
food reward.

Results and Discussion

All subjects trained on monotonic sequences (ascending
or descending) became progressively more efficient at
ordering exemplars of the numerosities 1-4. Although the
attempt to train 1 monkey to learn a nonmonotonic sequence
was unsuccessful, that subject subsequently mastered the
ascending monotonic sequence. All subjects also responded
as accurately during the transfer tests as they did on the last
block of training sets. The absence of a decrement in
accuracy during the transfer test, which consisted of ]50
trial-unique stimulus sets, provides unequivocal evidence
that subjects learned a numerical rule.

Training

Nonmonotonic sequences. Macduff, who was trained to
respond to exemplars of numerosity in the nonmonotonic
sequence 3 —» 1 —» 4 —> 2 showed no evidence of learning.
After he was switched to stimulus sets in which he was
required to respond in an ascending order, Macduffs
performance improved rapidly and was indistinguishable
from that of the other subjects. Figure 3 shows Macduffs
performance on the 13 stimulus sets trained by the nonmono-
tonic rule and on the 35 stimulus sets trained by the
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Figure 4.
stimulus
sets.

(A) Percentage of correctly completed trials during the first session for each of 35 training
sets in blocks of five sessions. (B) Percentage of correctly completed trials on the 150 test

ascending rule. His first-session accuracy did not exceed 5%
on any of the nonmonotonic stimulus sets.2

That Macduff was unable to learn the nonmono-
tonic sequence 3 —* 1 —* 4 —• 2 stands in marked contrast
to the ease with which he acquired the monotonic sequence
1 —<• 2 —» 3 -* 4. His difficulty with the 3 — > 1 -^ 4 —> 2
sequence suggests that monkeys can perceive ordinal rela-
tions between numerical stimuli without specific training. It
also raises the interesting question, could a monkey ever
learn a 3 -+ 1 —* 4 — 2 sequence (or other nonmonotonic
sequences)? It would also be of interest to determine the
relative difficulty of similar sequences for young children.

Monotonic sequences. Accuracy of responding on the
35 monotonic training sets increased progressively as sub-
jects were exposed to new sets. The percentage of correct
trials during the first session of training on a new list is
shown in Figure 4A for each monkey. In each instance,
accuracy was well above the level expected by chance, for
Rosencrantz, r{34) = 11.93, p < .01; for Macduff, f(34) =
8.80, p < .01; for Benedict, r(34) = 9.44, p < .01. The
slopes of each of the regression lines shown in Figure 4A
were also significant (Rosencrantz, r2 = .25, p < .01; Mac-
duff, r2 = .63, p < .01; Benedict, r2 = .26, p < .01).

The increase in first-session accuracy shown in Figure 4A
could be attributed to knowledge of a numerical rule, to
growing expertise in learning arbitrary sequences (Harlow,
1949; Terrace et al., 2000), or to both factors. Because sub-
jects were trained for at least 60 trials on each stimulus set,
they could have developed expertise in associating some
nonnumerical feature of each stimulus with its ordinal posi-
tion, for example, the configuration of the elements within
each stimulus. That explanation of the increase in first-
session accuracy was ruled out by analyses of correct and
partially correct sequences on the first trial of each new set.

The probability of responding correctly by chance to all
four stimuli when presented with a new set of stimuli is .04.

The only way a subject could exceed that level of accuracy
on the first trial of a new stimulus set was to use a numerical
rule. Two of the 3 monkeys exceeded that level of accuracy
on the first trial of training on new lists (Rosencrantz, 17%;
Benedict, 20%). The conditional probabilities of responding
correctly by chance to the first, second, third, and fourth
numerosities are, respectively, .25, .33, .5, and 1. Three
subjects exceeded the chance level of accuracy with their
first response to A (Rosencrantz, 60%; Macduff, 46%;
Benedict, 51%). Two subjects also exceeded the chance
level of accuracy with their first response to B (Rosencrantz,
43%; Benedict, 78%). One subject exceeded the chance
level of accuracy with his first response to C (Rosencrantz,
67%).

Multistimulus set training. Subjects' reliance on a nu-
merical rule to order stimuli was also evident in their
performance during sessions in which more than one
stimulus set was presented. As can be seen in Table 1, the
increase from 1 to 35 sets had no discernable effect on
accuracy. Other than using a numerical rule, the only
explanation of the high level of accuracy during training
with multiple stimulus sets is that subjects remembered the
order in which to respond to each stimulus of each of die 35
stimulus sets. This "brute memory" explanation is unlikely.
A marked decrease in accuracy occurs when monkeys are
trained to respond to more than one 4-item list of arbitrary
items (photographs) during the same session (Swartz, Chen,
& Terrace, 1991). That decrease is not surprising. Respond-
ing correctly to multiple lists of arbitrary items increases
memory load. In contrast, responding correctly to multiple

2 We occasionally allowed Macduff to exceed the three-session
maximum for training on each set to see if he could master any
nonmonotonic set. Although his performance improved slightly
with extended training, his first session performance never improved.
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Table 1

Percentage Correct on Blocks of Multiset Training Sessions

Rosencrantz

Phase

Macduff Benedict

Session 3 1

1

2

3
4

5
6

7

62
50
78
52
62

55

63
68
63
75

50
57
63
60
57

50

38
53

53
50
51

62
52

57
57
65
64

53

43

45
50
37

28
40

52
22

53

38
40

38
37

43
49
46
45
45

53
40

33
35
52

38

60 57

Mean 61 65 56 49 59 41 41 45 42

Nate. In Phase 1 of multilist training, 15 of the 35 training
stimulus sets were retrained. Three sets were presented in each
session in blocks of 20 trials each. In Phase 2, the same 15 sets were
presented in a random order within each session. In Phase 3, all 35
training sets were presented in random order in each session.

lists of numerical items does not increase memory load if a

numerical rule is used.

Testing

Each subject's performance on the transfer test provides

unequivocal evidence that monkeys can detect the numerosi-

ties 1-̂ t and that they deduced the ascending or descending

rule that was common to the training sets. Despite the abrupt

shift from familiar to novel stimulus sets, accuracy of

responding to the novel sets remained at the same level as it

was during the last block of training. Accuracy of respond-

ing to the novel sets is shown in Figure 4B. A repeated

measures analysis of variance (ANOVA) comparing the last

five blocks of training to the five transfer sessions

(Subject X Type of List) revealed no main effects, subject,

F(2, 11) = 3.69, p > .06; training versus novel lists, F(l,

2) = .62, p > .45, and no interaction between those factors,

F(2, 11) = .84, p > .46. Performance on partially correct

transfer trials provided additional evidence that subjects

detected the numerosities of the novel stimuli. Each monkey

responded at greater-than-chance levels of accuracy at each

transition in the sequence. Table 2 summarizes the values of

the conditional probabilities at each transition on the 150

novel sets. One-sample t tests showed that the value of each

conditional probability exceeded the value predicted by

chance. The results of the t tests are summarized in Table 3.

Table 2

Percentage Correct at Each Transition on 150 Test Trials

Monkey

Rosencrantz
Macduff
Benedict

Mean
Chance

1(4)

81.00
69.00
86.00
78.67
25.00

2(3)

79.00
69.00
70.00
72.67
33.00

3(4)

67.00
76.00
72.00
71.67
50.00

4(1)

99.00
96.00

100.00
98.33

100.00

Table 3

t Tests Comparing the Percentage Correct at Each

Transition to Chance Expectations

Monkey

Rosencrantz
Macduff
Benedict

A

t(4)

22.79
29.25
16.10

B-A

P<

b
o

b

t(4)

24.35
15.09
13.12

P<

b
o

b

C-AB

r(4)

4.80
3.30
3.97

P<

.01

.03

.02

Note. Headings in parentheses are the values for Benedict, who
was required to respond in descending order.

Note. Percentage correct = 25%, 33%, and 50% for A, B-A, and
C-AB, respectively. An average for each of the five transfer
sessions was used for each monkey.

With but one exception, accuracy of responding to each of

the seven stimulus classes exceeded the chance level of

accuracy for all 3 monkeys. The exception was Benedict's

performance on stimulus sets composed of heterogeneous

clip art. Accuracy of responding on each of the seven
stimulus classes and the rank orders of accuracy for each

monkey are shown in Table 4. The heterogeneous classes

were generally more difficult than the homogeneous classes.

A two-way ANOVA (Subject X Stimulus type) revealed a

significant main effect of stimulus type (homogeneity vs.

heterogeneity), F(l, 2) = 13.3,p < .01, but no main effect of

subject and no interaction between stimulus type and

subject. The differential influence of stimulus class on the

discriminability of numerosities is an interesting phenom-

enon that deserves further study. It should not, however,

detract from the fact that subjects were able to order the

numerosities 1-4, even those represented by the most

difficult stimulus classes.

Experiment 2A

The results of Experiment 1 provide clear evidence that

rhesus monkeys can order novel exemplars of the numer-

osities 1—4 in an ascending or a descending order. That

ability suggests that monkeys can also perceive the ordinal

values of the numerosities. It is possible, however, to explain

the results of Experiment 1, without appeal to knowledge

of ordinal numerical relations. The monkeys could have

discriminated exemplars of the four numerosities as nom-

inal categories (A, B, C, and D) and learned to order them

as they might the stimuli of an arbitrary sequence

(A —' B —• C —• D). Experiments on sequence learning have

shown that monkeys readily learn to execute arbitrary

sequences composed of photographs of natural objects, for

example, cat —> rose — apple —• beetle (Swartz et al, 1991)

or geometric stimuli (D'Amato & Colombo, 1988). Indeed,

prior to their training on numerical sequences, each of the

subjects of Experiment 1 learned seven 3-item and eleven

4-item lists, each composed of novel photographs. It is

therefore conceivable that Rosencrantz, Benedict, and Mac-

duff learned to assign exemplars of each numerosity to a

nominal category (e.g., A = stimuli with 3 elements,

B = stimuli with 4 elements, C = stimuli with 2 elements

and D = stimuli with 1 element) and then learned to respond

to these categories in the arbitrary orders (D —> C —> A —> B

for "ascending" sequences and B —» A —• C —• D for "de-
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Table 4

Percentage Correct and Rank Orders for Each Stimulus Clans in the Transfer

Sessions of Experiment I

Stimulus class

Rosencrantz Benedict Macduff

% Correct Rank % Correct Rank % Correct Rank

Equal size
Equal surface area
Random size
Heterogeneous clip art
Homogeneous clip art
Heterogeneous random size and color
Heterogeneous random size

60
56
50
47
31
28
22

1
2

3
4
5
6
7

48
66
31
22
54
13
19

3
1
4
5
2

7
6

57
59
23
48
50
19
38

2

1
6
4
3
7
5

scending" sequences). Solving the task in this fashion would

constitute evidence of a nominal numerical rule.

The purpose of Experiment 2 was to provide evidence that

the subjects who served in Experiment 1 had in fact acquired

ordinal numerical rules (ascending or descending) for

responding to numerically defined stimuli, rather than a

specific rule for ordering nominally defined exemplars of the

numerosities 1—4. This was done by testing Rosencrantz,

Benedict, and Macduff on their ability to order the novel

numerosities 5-9. If the numerosities 1—4 functioned as

exemplars of nominal categories in Experiment 1, then

subjects would be expected to respond at chance levels of

accuracy to exemplars of the numerosities 5-9.

We tested Rosencrantz, Macduff, and Benedict on their

ability to order the 36 pairs of numerosities that can be

derived from the values 1-9. All 36 combinations of those

numerosities were tested: 6 familiar-familiar pairs drawn

from the familiar numerosities 1—4, 20 familiar-novel pairs

composed of one familiar and one novel numerosity, and 10

novel-novel pairs drawn from the novel numerosities 5-9.

No differential feedback was given on trials on which

novel-familiar or novel-novel pairs were presented. Accu-

rate performance on novel-novel trials cannot be attributed

to learning ordinal relations between those numerosities.

Accordingly, accurate responding on novel-novel trials

would show that monkeys can extrapolate an ascending or

descending ordinal rule outside the range of numerosities on

which they were originally trained.

Method

Subjects and Apparatus

The subjects of Experiment 1 were the subjects of Experiment 2
(Rosencrantz, Benedict, and Macduff). The apparatus was also the
same as that used in Experiment 1.

Stimuli

We constructed exemplars of the numerosities 1-9 as in Experi-
ment 1 with the following modifications. Only circles, ellipses,
squares, and rectangles were used as elements. Neither heteroge-
neous stimuli nor clip art shapes were used. The elements of each
stimulus were homogeneous with respect to size, shape, and color.
The same six colors used to construct stimuli in Experiment 1 were
used in Experiment 2A. However, a few color combinations that
seemed difficult to discriminate to the human eye were eliminated

(black and blue, cyan and yellow, green and yellow, green and
cyan). To minimize nonnumerical differences, the shape of the
elements, their color, and the background color were identical for
each pair of stimuli. Elements were positioned randomly within
each stimulus.

To prevent subjects from using surface area as a cue, the total
area of the elements was smaller for the larger numerosity for half
of the stimuli and larger for the other half. Examples of the stimuli
used in Experiment 2A are shown in Figure 5. Novel exemplars of
each of the 36 numerosity pairs were used on each trial during each
of the 20 sessions of Experiment 2A. We used a total of 1,680
stimuli in Experiment 2A.

Task and Procedure

Two stimuli, each of a different numerosity, were presented on
each trial. As in Experiment 1, the spatial configuration of the
stimuli on the video monitor was varied randomly from trial to trial
within a 4 X 4 matrix. The task was to touch the stimuli in the same
ascending or descending numerical order that the subject learned in
Experiment 1 (Rosencrantz and Macduff ascending; Benedict
descending). The ITI was the same as that used in Experiment 1.

Differential reinforcement was provided only on trials on which
both stimuli were familiar. For those six pairs (1-2, 1-3, 1-4, 2-3,
2-4, 3-4), a correct sequence produced a 190-mg pellet; an
incorrect response, an 8-s TO. Neither food pellets nor TOs were
provided on trials on which any of the novel numerosities were
presented. Instead, brief visual and auditory feedback followed a
response to each numerosity regardless of the order in which the
monkey responded. Figure 6 provides a summary of the reinforce-
ment contingencies for each of the 36 pairs.

Each session consisted of 90 trials. The relative frequency of
trials on which each type of stimulus pair was presented was
adjusted so that reinforcement would be available on two thirds of
the trials. Each of the six familiar-familiar pairs (1-2, 1-3, 1-4,
2-3, 2—4, lt-4') was presented 10 times per session (60 trials). The
other 30 numerosity combinations were presented only once per
session (30 trials).

Results and Discussion

Both monkeys who learned the ascending rule in Experi-

ment 1 (Rosencrantz and Macduff) correctly ordered approxi-

mately 75% of the pairs of the novel numerosities 5-9.

Benedict, who learned the descending rule, performed at a

chance level of accuracy on the novel-novel comparisons.

Rosencrantz's and Macduff s performance shows that rhesus

monkeys do not require explicit training to discriminate
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Smaller Numerosity Has:
Smaller Area Larger Area Equal Area

- 1
I- I
-"l i

Figure S. Examples of stimulus sets used in Experiment 2. In Experiment 2A the smaller
numerosity had a larger cumulative surface area than the larger numerosity on 50% of all trials, and
elements within each stimulus were identical in size, shape, and color. In Experiment 2B a third
stimulus type was added; the smaller and larger numerosity had equal cumulative surface area.

novel numerosities and that they perceive ordinal relations
between untrained numerosities.

Figure 7 shows each monkey's performance on trials with
familiar-familiar, familiar-novel, and novel-novel pairs.
Performance on novel-novel pairs was lower than perfor-
mance on familiar-familiar pairs for all subjects, Rosen-
crantz, f{19) = 7.76, p < .001; Macduff, r(19) = 4.26, p <
.001; and Benedict, t(19) = 10.5, p < .001. A two-way
ANOVA (Subject X Condition) revealed a significant main
effect of subject, F(2, 4) = 58.08, p < .001, a significant
main effect of condition (familiar-familiar, familiar-novel,
novel-novel), F(2, 4) = 99.4, p < .001, and a significant

interaction, F(4,171) = 3.9,p < .01. The interaction reflects
Rosencrantz's and Macduff s uniformly high performance
on familiar-familiar and familiar-novel pairs and lower
performance on novel-novel pairs, and Benedict's graded
performance (highest levels on familiar-familiar pairs and
lowest levels on novel-novel pairs). A Fisher's post hoc test
revealed that the main effect of subject resulted from
Benedict's poor performance, as compared with Rosen-
crantz and Macduff (p < .01). Fisher's post hoc tests also
revealed that performance was significantly worse on novel-
novel pairs than on familiar-novel and familiar-familiar
pairs (p < .01).

3

'£ *
cO
LL 2

Familiar (F)
1 2 3 4

Novel (N)
6 7 8

FN FN FN FN NN NN NN NNX

FN FN FN FN

FN FN FN FN

FN FN FN FN

FN FN FN FN

FF FF FF

FF FF

FF

NN NN NN,

NN NN,

NN,

Unreinforced
Reinforced

Figure 6. Diagram of the 36 pairs of the numerosities 1-9 used in Experiment 2A. These are
segregated into three types that were defined with respect to the subjects' prior experience with the
constituent numerosities: familiar-familiar (FF), familiar-novel (FN), novel-novel (NN). Only the
red entries (FF) were reinforced.
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ROSENCRANTZ (1-2-3-4)

MACDUFF (1-2-3-4)

BENEDICT (4-3-2-1)

40-

20-

Familiar-Familiar Familiar-Novel Novel-Novel

Figure 7. Performance on familiar-familiar, familiar-novel, and novel-novel numerosity pairs in
Experiment 2A. Only familiar-familiar pairs were reinforced.

Performance as a Function of Numerosity

Subjects' performance on the 10 novel-novel pairs was
idiosyncratic. This is not surprising given that there are only
20 data points for each monkey for each of the novel-novel
numerosity pairs. Each subject's performance on each
numerical comparison is summarized in Table 5. Rosen-
crantz and Macduff, who learned the ascending rule, ex-
ceeded the chance level of accuracy on all pairs except 6-8,
7-8, and 8-9.' In marked contrast, Benedict, the monkey
who learned the descending rule, failed to exceed the chance
level of accuracy on many of the 36 numerosity compari-
sons, including all hut one of the novel-novel numerosity
pairs. Anomalously, Benedict exceeded the chance level of
accuracy on the 8-9 novel-novel numerosity pair.

Preliminary analyses suggested systematic effects of
distance and magnitude on accuracy and latency. Because of
the small number of observations, we reserve discussion of
these effects until Experiment 2B, where we draw on a larger
data set.

Benedict's failure to extrapolate the descending rule to
novel numerosities should be interpreted in the context of
his impaired performance relative to the other 2 monkeys on
all pair types (familiar-familiar, familiar-novel, and novel-
novel). His poor performance on the numerical comparison
task could reflect individual difference or the asymmetry in
the requirements of extrapolating the ascending and descend-
ing rules. For familiar-novel pairs, the ascending rule
required an initial response to a familiar numerosity, whereas
the descending rule required the subject to avoid a familiar
numerosity and respond to a novel numerosity first. There
was, however, no evidence of a bias for Benedict to respond
first to the numerosity 4 on familiar-novel trials. Additional
research is needed to clarify whether there are reliable
differences in the manner in which monkeys leam ascending
and descending sequences.

Stimulus Controls

The surface area of the elements had no effect on
accuracy. When the smaller numerosity was depicted by a
smaller surface area, accuracy of responding for Rosen-
crantz, Macduff, and Benedict was, respectively, 92%, 91%,
and 79%; when it had a larger surface area, accuracy levels
were, respectively, 91%, 89%, and 76%. A repeated mea-
sures ANOVA (Stimulus Type X Subject) showed no main
effect of stimulus type, F(l , 2) = 2.0, p = . 16, a main effect
of subject, F(2, 57) = 5l4,p < .01, and no interaction between
stimulus type and subject, F(2, 57) = 0.28, p = .76. A Fisher's
post hoc test revealed that the main effect of subject was due to
Benedict's inferior performance relative to the other 2 monkeys

Experiment 2B

Experiment 2A is the first experiment in which animals
were tested on their ability to compare novel numerosities
outside the original training values. Both subjects trained on
an ascending series responded at above-chance levels of
accuracy on novel-novel numerosity pairs, albeit at a lower
level than they did on familiar-familiar and familiar-novel
pairs. The subject trained on the descending series re-
sponded at a chance level of accuracy on the novel-novel
numerosity pairs. Because there were only 200 trials on

3 The finding that Rosencrantz and Macduff were both below
chance on 6 versus 8 but not 6 versus 7 (a presumably harder
discrimination) prompted us to investigate whether the 2 subjects
were incorrect on the same exemplar pairs. We found no evidence
that this difference was the result of particular stimulus pairs. There
was no correlation between Rosencrantz's and Macduffs perfor-
mance on specific pairs.
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Table 5

Percentage Correct for Each Pairwise Numerical

Comparison (Experiment 2A)

1 2 3

1 _ 94 97
2 — 93
3 —
4

5

6
7
8

9

1 — 80 97
2 — 94

4̂

5
6
7

8

9

1 — 87 90
2 — 80
3 —
4
5
6
7

8
9

4 5

Rosencrantz

99 100

95 95

83 89

— 89

—

Macduff

100 100
96 95
83 85
— 75

—

Benedict

96 95

85 80

66 50

— 65
—

6

100
100

95
80
75

—

95

100
95
85
75
—

85
75
75

60
35
—

7

89
100
100
90

75
70

—

100
100

90
95
75
80
—

85

80
70
65

40
60

—

8

95
90
100
100
95

60
65

—

95

85
95
95
95

63
55

—

90
75
75

40
45

50
40
—

9

100
100
95
85
79

70
83
42

—

95
94

100
90
100

80
75
55

—

85

75
60
50

40

65
50

85

—

Note. Data is based on 20 trials for each of the 36 numerical
comparisons.

which novel—novel pairs were presented in Experiment 2A,

it seemed prudent to see if accuracy levels would increase

with additional training. In Experiment 2B, we tested

subjects for an additional 40 sessions on the same 36

numerical comparisons (400 novel-novel trials).

An additional motivation for Experiment 2B was to

compare animal and human representations of numerosity.

When human subjects are asked to compare Arabic numerals

or random dot patterns, they respond more accurately and

more rapidly as the numerical distance between the mem-

bers of a pair increases (Buckley & Gillman, 1974; Moyer &

Landaeur, 1967, 1973; see Holyoak, 1978, for a review). More-

over, when numerical distance is held constant, accuracy de-

creases and latency increases as numerical magnitude increases.

These findings have been interpreted as evidence that humans

use analog numerical representations in numerical comparison

tasks (e.g., Dehaene, 1997; Moyer & Landaeuer, 1967,

1973).4 One of the goals of Experiment 2B was to determine

whether similar accuracy and latency distance effects could

be obtained from animals in numerical comparison tasks.

Method

The same subjects and apparatus used in Experiment 2A were
used in Experiment 2B. The task was identical to that of Experi-
ment 2A with two exceptions. In Experiment 2B all correct
sequences were reinforced with food. Responses that did not
conform to the required sequence produced a TO and ended the
trial. The second difference was the relative frequencies of the
familiar-familiar, familiar-novel and novel-novel pairs. Because
reinforcement was available on every trial, the frequency of
familiar-familiar pairs was not weighted differentially as in
Experiment 2A. A unique pair of stimuli was used for each of the 36
numerosity comparisons during each of the 40 sessions. Each of the
36 numerosity pairs was presented twice during each session (72
trials). To ensure that accuracy data was not affected by learning of
specific stimulus pairs, accuracy analyses are reported only for the
first presentation of each stimulus pair. Latency analyses, however,
were based on all correct responses.

The experiment consisted of two blocks of 20 sessions each. The
same stimuli that were used in Experiment 2A were used in Block 1
of Experiment 2B (1,680 stimuli). The data obtained from Block 1
on trials on which the numerosities 5-9 were used, was equivalent to
first-trial data because no reinforcement was provided in Experiment 2A
on any of those trials. A new stimulus set was used in Block 2 (an
additional 1,440 stimuli). The stimulus set used in Block 2 differed in
two respects from that used in Block 1. The elements used to compose
each stimulus were black, and one third of the stimuli contained
pairs for which the smaller and larger numerosity had equal surface
area. During Block 2, subjects were also required to touch a start
signal (a white square on green screen) to initiate each trial. We did
this to maximize attention to each pair at the start of a trial.

Results and Discussion

All subjects responded more accurately in Experiment 2B

than in Experiment 2A. Most striking was the improvement

in Benedict's performance. Benedict responded to all pairs of

novel-novel numerosities at greater-than-chance levels of accu-

racy. This shows that his poor performance in Experiment 2A

cannot be attributed to an inability to discriminate large numerosi-

ties. Experiment 2B also showed that the accuracy and the

reaction time of the first response to each pair was strongly

influenced by the numerical magnitude of the stimuli and the

numerical distance between the stimuli in each pair.

Combining Accuracy and Latency Data From

Blocks 1 and 2

Accuracy of responding to familiar—familiar, familiar-

novel, and novel-novel pairs is shown in Figure 8. A

repeated measures ANOVA (Block X Subject) revealed no

main effect of either factor, block, F(l, 2) = 1.44, p > .23;

subject, F(2, 57) = 1.77, p > .18, and no interaction

between those factors, F(2, 57) = 0.62, p = .54. We

therefore combined accuracy data from Blocks 1 and 2.

Binomial tests on accuracy of responding to the 36 numeros-

4 Magnitude and distance effects are also found with continuous
dimensions such as line length (Welford, 1960).
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1:5-? 1:9, 2:5-> 2:9
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5:6, 5:7, 5:8, 5:9, 6:7
6:8, 6:9, 7:8, 7:9, 8:9

1:2, 1:3, 1:4,2:3,2:4,3:4

ROSENCRANTZ (1-2-3-4)

MACDUFF (1-2-3-4)

BENEDICT (4-3-2-1)

Familiar-Familiar Familiar-Novel Novel-Novel

Figure 8. Performance on familiar-familiar, familiar-novel, and novel-novel numerosity pairs for
40 sessions (Experiment 2B). All trials were reinforced.

ity pairs showed that performance was greater than that
expected by chance for each of the 3 monkeys on each of the
numerical comparisons.

We also combined latency data from Blocks 1 and 2
because the trend within each block was the same. A
repeated measures ANOVA (Numerical Distance X Block)
on the latencies of the first response to each pair revealed
main effects of both factors, distance, F(7, 100) = 15.8, p <
.0001; block: F(l, 100) = 22.6, p < .0001, but no
interaction between those factors, block X Distance, F(7,
100) = 1.05, p - A. The main effect of block was due to an
overall decrease in latency from Block 1 to Block 2. That
decrease could have resulted from either or both of the

following factors: practice effects and the introduction of a
start stimulus at the start of Block 2.

Accuracy and Latency Distance Effects

Accuracy and latency of responding to the 36 pairs of
numerosities were influenced by the numerical difference
between the members of each pair (distance effect). We
obtained distance effects for all 3 subjects in Experiment 2B
for both accuracy and latency. As shown in Figure 9,
accuracy increased and latency decreased as the numerical
distance between response alternatives increased. The slopes
of the regression lines between distance and accuracy and

1100

1000̂ 1

-g 900̂
c
g 800
<D
Jj 700:

^ 600:

500J

400

LATENCY ACCURACY

ROSENCRANTZ (1-2-3-4)
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BENEDICT (4-3-2-1)

-100

-90 ™
O
(D

FSO 2-
O

:70 §
CD
O

F60 "*

50
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Numeric Distance

Figure 9. Accuracy and latency as a function of numerical distance for 40 sessions (Experiment
2B). Latency reflects correct responses. The dashed lines reflect the best-fit linear models.



REPRESENTATION OF NUMBER 43

between distance and latency were significant for each
monkey, for accuracy, Rosencrantz, r2 = .46, p < .01;
Macduff, r2 = .56,p < .01; Benedict, r2 = 33,p< .01; for
latency, Rosencrantz, r2 = .51, p < .01; Macduff, r2 = .64,
p < .01; Benedict, r2 = .60,;; < .01.

As shown in Figure 10A and 10B, we obtained an
accuracy distance effect (gray functions) even when the
value of the first numerosity was held constant. For example,
for the monkeys who learned the ascending rule, accuracy
was 80% for the 3-4 comparison but 98% for the 3-9
comparison. This effect would probably have been greater
were it not for a ceiling of 100%.

Figures IOC and D (dashed gray functions) illustrate that
latency distance effects were also apparent when the value of
the first numerosity was held constant. For example, the
average latency to the first response for the monkeys who
learned the ascending rule was 950 ms for the 3-A compari-
son and 800 ms for the 3-9 comparison. Similarly, Benedict
(descending rule) took over 1,100 ms to order the 3^4 pair
but only 900 ms to order the 3-9 pair.

Accuracy and Latency Magnitude Effects

Accuracy of responding was also influenced by the
magnitude of the numerosities being compared, irrespective
of numerical distance between the members of each pair.
Consider, for example, the pairs 1-2, 2-3, 3-4, 4-5, 5-6,
6-7, 7-8, and 8-9. Although the numerical distance between
the members of each pair is 1, Figures 10A and 10B (solid
black functions) show that accuracy of responding generally
decreased with increasing numerical magnitude for all 3
monkeys. The linear relationship between accuracy and
magnitude was significant for Rosencrantz and Benedict at
distances of 1, 2, and 3 (p < .01) but was not significant for
Macduff.

The effect of numerical magnitude on latency of respond-
ing presents a more complicated picture. Figure IOC (solid
black function) shows that the latencies of both monkeys
who learned the ascending numerical rule increased with
increasing magnitude when distance is held constant. How-
ever. Figure 10D (solid black function) shows that magni-
tude did not influence Benedict's latency of responding in
the same manner. For example, Benedict took longer to
correctly compare the numerosities 1 and 2 than to correctly
compare the numerosities 8 and 9. However, as mentioned
earlier his accuracy was similar to that of the other 2
monkeys on these pairs.

Stimulus Controls

The surface area of the elements of each stimulus had no
systematic effect on accuracy. Indeed, the level of accuracy
was at least 84% for each monkey under all three stimulus
conditions (smaller numerosity had a smaller surface area;
larger numerosity had a smaller surface area; surface area
was equal for both numerosities). The relevant data are
shown in Table 6, and the statistical analyses are summa-
rized in Table 7.

General Discussion

We assessed the numerical ability of rhesus monkeys by
two new paradigms: serial learning of numerical stimuli and
numerical comparisons of novel numerosities. The perfor-
mance of monkeys on the serial learning task provides clear
evidence that monkeys do not rely on number as a "last-
resort" strategy, as suggested by Davis and Perusse (1988).
Instead of memorizing different sets of stimuli by rote (as
predicted by a last-resort strategy), monkeys relied on the
numerical attributes of stimuli to determine the correct order
of responding on both ascending and descending sequences.
The performance of monkeys on the numerical comparison
task provides the strongest evidence to date that monkeys
naturally represent numerosity on an ordinal dimension. The
reaction time functions obtained on this task also revealed
numerical magnitude and distance effects, the first such
effects obtained from an animal.

Last-Resort Strategy

Opinion is divided about the interpretation of experiments
purporting to show that animals have numerical ability. One
view holds that animals naturally detect variations in
numerosity; another, that they attend to numerical differ-
ences only as a last resort, that is, when all nonnumerical
cues are eliminated. In support of the last-resort hypothesis,
Davis and Perusse (1988) argued that animals avoid using
numerosity when nonnumerical cues are available and that
animals generally need a large number of training trials to
produce evidence of numerical competence. By contrast,
Gallistel and Gelman (1992) contended that animals attend
to number routinely and automatically.

The debate over the salience of numerosity has focused on
comparisons of numerosity and other stimulus dimensions,
for example, time. In a seminal study, Meek and Church
(1983) showed that rats encoded both time and numerosity
during training on a bisection task on which the duration and
the numerosity of the discriminative stimuli were con-
founded. They concluded that their data contradict the
last-resort hypothesis. They also argued that rats use the
same underlying mechanism to keep track of numerosity and
time automatically.

The results of Meek and Church's (1983) experiment have
been widely cited as strong support for the claim that
animals are naturally attuned to the numerosity dimension
(e.g., Gallistel & Gelman, 1992). However, a recent study by
Breukelaar and Dalrymple-Alford (1998) provided support
for the last-resort hypothesis. When lime and number were
confounded during training, time, but not number, exerted
control of behavior during a generalization test. When time
and number were trained separately, the rats' behavior was
controlled by number; however, control by time was greater
than control by number. Furthermore control by time was
acquired more rapidly than control by number.

In the present study, numerosity was the only dimension
along which subjects could order stimuli. Accordingly, the
performance of our subjects is not directly relevant to the
issue of the relative salience of number. Certain features of
our results are, however, relevant to the issue of the



44 BRANNON AND TERRACE

o
o oo § s s 0°-

oo
CM

o
o
o

o
o
00 § oo

LU
_1
ID
DC
_]
<o
DC
LU

01

LU
o
CO
LU
Q

6-1

6-Z
8-1

6-E
8-Z
Z-l

6-t
8-E
Z-Z
9-1

UJ
6-S D8-t =
Z-E t
9-Z Z
S-l O

6-9

9-E
S-Z
t-l

6-Z
8-9
Z-9
9-*
S-E

6-8
8-Z
Z-9
9-S
S-t
t-£
E-Z
Z-l

6-S
,,.„

1-3

6-S
9-S
z-s
9-S

6-t UI
8-t O
Z-t Z
9-t <

™%
6-£ D
8-S (3
Z-E g
9"£ S
S-£ <2

6-Z g
*S_T %*

9-S
s-z

6-1
8H
Z-l
9-1
S-l
t-l
6-1
Z-l

6-Z
8-1

6-E
8-Z
Z-l

8-E
Z-Z
9-1

6-S
111

t
9-Z Z
9-1 O

9-£
S-Z
t-l

6-Z
8-9
Z-9
g-t,
9-E

6-8
8-Z
Z-9
9-S
9-t
t-s
E-Z
Z-l

6-Z
8-Z

6"S
8-9
Z-9

8-S
9-S
Z-S
9-S

8-» Ul l
8t 0|
Z-t
9-t

*•»«
6-E O
8-E Q
Z-E -
9-£
s-e
ITS <

111
1C

8-Z
Z-Z =|
9-Z
S-Z
t-z
s-z

8-1
8-1
Z-l
9-1
8-1
*-l
S-i.
Z-l

LU
_l
D
DC

O
DC
LU

O

LU
O
CO
<

8 1
1 is °>1 ns
5 S

6-Z
8-1

6-E
8-Z
Z-l

6-fr
8-E
Z-Z
9-1

6-S
UJ

i-E
9-Z
s-t (5

6-9

S
9-E —
s-z W

i

6-Z g
8-9 S
Z-S =
9-t
S-E
t-Z
E-l

6-8
8-Z
Z-9
9-S

E-Z
Z-l

8-8

a i,
9-i

6-9
8-9
Z-9

8-S
8-S
i-S
9-S

8-» UJ
8-t O
z-» Z
9^<M fe
6-£ O
8-S
i-C

f jS
«2S

- CC

9-Z
s-z
*-z
E-Z

8-1
8-1
Z-l
9-1
S-l
if-I
S-l
Z-l

G

6-Z
8-1

6-E
8-Z
Z-l

6-V
8-E
z-z
9-1

6-8
8-Z
Z-9
9-S

e-z
z-i

8-Z
S-Z

£-9

6-9
8-S
z-s
9-S

8-t UJl
a-t a I
Z-»
9-t <l

8-S Q
s-e a

-1S-E W

« 2

6-Z o
8-Z
Z-Z
9-2
s-z

S-l
8-1
i-l
9-1
9-1
tfl
8-1
Z-l

ooo| S
loauaoo

oto CO o
o
CM

o
o
O

(oasui)
00 (O

3SNOdS3U



REPRESENTATION OF NUMBER 45

Table 6

Percentage Correct for Each Stimulus Type in Blocks 1 and 2 of Experiment 2B

Smaller
numerosity

has

Smaller area
Larger area
Equal area

Rosencrantz

84
94
NA

Block 1

Macduff

86
92
NA

Benedict

90
86
NA

Rosencrantz

90
96
92

Block 2

Macduff

86
96
95

Benedict

85
89
89

Note. Block 1 differed from Block 2 in that novel stimuli were used in Block 2, and a start signal
was used in Block 2. Each block contained 20 sessions.

"naturalness" of number as a stimulus dimension. In

Experiment 1, subjects could have memorized each of the 35

training lists and ignored the numerical dimension. Because
each stimulus set was trained for at least 60 trials, the

subjects could have learned the correct order in which to

respond to those sets by trial and error. Indeed, these

monkeys had previously learned to produce arbitrary lists of

photographs in an experiment in which responding by trial

and error and rote memorization were the only bases for

learning the required sequence (Terrace et al., 2000).

The results of Experiment 1 provide two types of evi-

dence that our monkeys used a numerical rule spontane-

ously. Rosencrantz and Benedict performed at above-chance

levels of accuracy on (he first trial of each of the 35 training

sets. Such performance cannot be explained by appeal to

memory of previously learned sets. There was also no

difference in performance between training sessions where

subjects could have memorized particular stimulus sets and

transfer sessions during which memorization could not have

been a factor. These two findings suggest that the monkeys

took advantage of the opportunity to use a numerical rule

rather than memorize 35 distinct stimulus sets.

Experiment 2 provided additional evidence that rhesus

monkeys naturally attend to numerosity. Both monkeys who

learned the ascending rule ordered the novel numerosities

5-9 spontaneously after training on the numerosities l^t.

This shows that monkeys do not need to be taught to

discriminate and order a new range of numerosities after

those skills were trained on a different range.

Stimulus Control by Numerosity

The complexity and variety of the training stimuli ruled

out stimulus control by nonnumerical cues as an explanation

Figure 10 {opposite). (A) Accuracy for each of the 36 numerical
pairs (Experiment 2B) averaged for the 2 monkeys who learned the
ascending numerical rule. (B) Accuracy for each of the 36
numerical pairs (Experiment 2B) for Benedict who learned the
descending numerical rule. (C) Latency for each of the 36
numerical pairs (Experiment 2B) averaged for the 2 monkeys who
learned the ascending numerical rule. (D) Latency for each of the
36 numerical pairs (Experiment 2B) for Benedict who learned the
descending numerical rule. In all four panels, the solid black
functions reflect accuracy or latency as a function of increasing
magnitude when distance is held constant. The dashed gray
functions show accuracy or latency as a function of increasing
distance when the magnitude of the first item is held constant.

of our subjects' ability to discriminate exemplars of the

numerosities V-4. In Experiment 1, subjects responded with

the same accuracy to stimulus sets for which surface area

was held constant as they did to sets for which the size of the

elements was held constant. Memorization of particular

motor sequences as an explanation of correct sequences was

ruled out by between-trial variation of the configurations of

each of the 35 sets of training stimuli. Rote memorization of

particular stimuli was ruled out by testing subjects with 150

trial-unique stimulus sets.

Stimulus control by nonnumerical cues was similarly

ruled out in Experiments 2A and 2B as an explanation of

performance on the numerical pairs task. In contrast to other

studies (e.g., Honig & Stewart, 1989), the surface area and

size of the elements of exemplars of novel numerosities

were varied randomly. In addition, we used novel stimuli

during each session to prevent subjects from memorizing

stimulus order (e.g., Hicks, 1956). To eliminate the possibil-

ity of cueing by the experimenter, subjects were trained and

tested by automated equipment in an isolated room. To

ensure that numerosity was not confounded with hedonic

value (e.g., Washburn & Rumbaugh, 1991), we held con-

stant the amount of reinforcement provided on each trial.

Ascending and Descending Numerical Rules

In Experiment 1, the task of responding to numerical

stimuli in an ascending or a descending order was equally

difficult.5 In Experiment 2A, however, the subject who

learned to respond in a descending order to the numerosities

1—4 (Benedict) could not extrapolate that rule to the

numerosities 5—9. In Experiment 2B, Benedict was able to

discriminate novel exemplars of the numerosities 5-9.

Any or all of the following factors could have contributed

to Benedict's inability to discriminate novel exemplars

of the numerosities 5-9 in Experiment 2A. It may have

been more difficult to apply the descending than the as-

cending rule to novel numerosities. The ascending rule

(1 —> 2 —> 3 —• 4*****) may be easier than the descending

rule (*****4 — 3 —> 2 —* 1) because of the salience of the

numerosity 1. In the case of the ascending rule an initial

5 Note that Benedict's success at ordering novel exemplars of the
numerosities 1, 2, 3, and 4 supports the claim that he either learned
a specific numerical rule (1, then 2, then 3, then 4) or a more
abstract descending rule. His failure on the unreinforced novel-
novel numerosity pairs in Experiment 2A suggests that he may not
have learned an abstract descending numerical rule.
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Table 7
F Values for ANOVAS (Subject X Stimulus Type)

Variable Block 1 Block 2

Main effect of
subject F(2,57) = 0.31 F(2,55) = 12.12*

Main effect of
stimulus type F(l, 57) = 9.03* F(2, 110)= 11.55*

Interaction F(2, 57) = 7.81* F(4, 110) = 1.43

Note. Block 1 and Block 2 differ in that there were 3 stimulus sets
in Block 2 (smaller numerosity had smaller, larger, or equal surface
area).
*p < .05.

response to 1 was correct on any trial that contained that
value. In contrast, 4 may be a much less salient value. It is
also possible that Benedict's initial failure resulted from the
particular values of the numerosities used during training
and testing.

To determine the relative influence of the direction of the
training rule (ascending or descending), it would be inter-
esting to train monkeys on 4 —• 5 —• 6 and 6 — - 5 — - 4
sequences and then test them on all possible pairs of the
numerosities 1-9. If the descending rule is more difficult to
extrapolate, then one would predict poorer performance on
the 1-2, 2-3, and 1-3 pairs following 6 — 5 —• 4 training
than after 4 —> 5 —> 6 training. Alternatively, if magnitude
and distance are the major factors influencing the ease of
discrimination, performance should be equivalent on the
1-2, 2-3, and 1-3 pairs after 6 ̂  5 ̂  4 and 4 —• 5 — > 6
training.

Nonmonotonic Versus Monotonic Rules

Monotonic and nonmonotonic sequences pose different
representational problems. Both monotonic and nonmono-
tonic sequences can be represented as a series of specific
numerosities. By contrast, monotonic rules can be repre-
sented direclionally without regard to specific numerosities.
A subject could learn to find the largest (or smallest)
numerosity, than the next largest (or smallest), and so on.
That strategy doesn't require the subject to remember the
specific cardinal values of the numerosities.

A monkey who learned to execute a monotonic sequence
by using a directional rule, rather than by memorizing the
sequence as a series of particular numerosities, should be
able to execute sequences that do not include specifically
trained numerosities (see McGonigle & Chalmers, 1986, for
a similar argument using the size dimension). That predic-
tion was confirmed in Experiment 2 (but only in the case of
the ascending numerical rule). Monkeys trained to order the
numerosities l^t in an ascending sequence ordered pairs of
the numerosities 5-9.

Macduff s failure to learn the 3 —> 1 —• 4 — 2 rule and his
subsequent success on the 1 —• 2 —> 3 —> 4 rule indicates that
nonmonotonic rules are more difficult to learn than mono-
tonic rules. This finding is consistent with the results of other
studies of serial learning that have shown that children,
monkeys, and rats learn monotonic sequences more easily
than nonmonotonic sequences when the stimuli vary in size

or hedonic value (Hulse & Dorsky, 1977; McGonigle &
Chalmers, 1986; Oshiba, 1997).

Macduff s inability to leam the nonmonotonic rule could
have resulted from difficulty in making cardinal numerical
judgments. For example, in the case of a nonmonotonic
sequence, for example, 3 —* 1 —> 4 —* 2, the subject must
represent the cardinal value of each numerosity and its
ordinal position (i.e., 3 comes first, 1 comes second, 4 comes
third, and 2 is last). Alternatively, Macduff's difficulty with
the nonmonotonic sequence may have resulted from interfer-
ence from reversals in the valence of successive numerosi-
ties. To address those issues, it would be of interest to train
monkeys on different kinds of nonmonotonic rules. For
example, monkeys might be able to learn nonmonotonic
rules with only one reversal, for example, 4 —• 3 —• 1 —• 2 or
4^ 1^2 — 3.

Distance and Magnitude Effects Based on Accuracy

and Latency

The distance and magnitude effects obtained in Experi-
ment 2B were based on both accuracy and latency data. They
are the first such effects obtained from an animal that can
unequivocally be attributed to numerosity. Subjects re-
sponded more accurately and more rapidly as the numerical
distance between the items in a test parr increased. When
distance was held constant, increases in the magnitude of the
items resulted in a decrease in accuracy and an increase in
latency, in the case of the ascending rule. These robust
distance and magnitude effects provide strong additional
evidence that monkeys rely on ordinal representations of
number when judging the relative numerosity of pairs of
stimuli.

The magnitude and distance effects observed in our data
are consistent with two hypotheses regarding the manner in
which number is represented. One is that number is repre-
sented on a linear scale with scalar variability (i.e., the
standard deviation grows proportionally to the mean; Gallis-
tel & Gelman, 1992; Meek & Church, 1983); the other, that
number is represented on a logarithmic scale with insignifi-
cant variability (e.g., Buckley & Gillman, 1974; Dehaene,
1992; Holyoak, 1978). Distinguishing between these hypoth-
eses requires future research (e.g., see Gibbon & Church,
1981, for a comparison of linear and logarithmic representa-
tions of time).

In addition to a distance effect, the monkeys' performance
in Experiment 2 was strongly influenced by the numerical
magnitude of the stimuli. With distance held constant,
performance generally decreased with increasing magnitude
(e.g., accuracy was poorer on 6-7 comparisons than on 2-3).
Magnitude had a consistent effect on accuracy for both
monkeys who learned the ascending rule and for Benedict,
who learned the descending rule. However, the effect of
magnitude on latency differed for the ascending and descend-
ing rules. Latency increased as magnitude increased for both
monkeys who learned the ascending rule. However, Bene-
dict's response times were far less systematic. Superficially,
Benedict's response times suggest the opposite pattern of
faster responding to larger magnitudes (i.e., he was much
faster at differentiating 8 and 9 compared with 1 and 2).
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Further research is needed to clarify the basis of the different

effects of magnitude on reaction time on ascending and

descending sequences.

Magnitude and distance effects may contribute to the

apparent generalization decrement in novel-novel pairs

shown in Figure 7. Most of the adjacent novel-novel pairs

have smaller Weber fractions than familiar-familiar pairs

and have on average smaller numerical distances than the

familiar-novel pairs. Thus, both distance and magnitude

effects could contribute to the reduced performance on the

pairs composed exclusively of the numerosities 5-9. If this

hypothesis is correct, then the poorer performance on

novel-novel pairs results from the particular values we

chose rather than a generalization decrement. This hypoth-

esis could be tested in the hypothetical experiment described

previously in which monkeys would be trained on a 4 —>

5 —> 6 or a 6 —> 5 —> 4 rule and then tested on pairs

composed of the novel numerosities 1—3 and 7-9. The

generalization decrement hypothesis would predict a decre-

ment in performance on pairs composed of the novel

numerosities regardless of their magnitude. Alternatively, if

performance were controlled by the Weber fraction, perfor-

mance would be better on the novel-novel pairs composed

of the numerosities 1-3 than on familiar pairs composed of

larger numerosities (e.g., 4-6).

The similarity in the shape of the latency and accuracy

functions for humans and rhesus monkeys suggests that the

two species may be using similar processes to compare

different numerosities (Buckley & Gillman, 1974). At the

very least, these similarities indicate that symbolic training

on numerosity is not a necessary condition for the distance

effect. There remain, however, many details of the compari-

son process(es) used by each species that need to be clarified

before one can conclude that they are truly analogous. One

issue is the numerical proficiency of human participants and

monkey subjects at the time of testing. Human participants

are highly overtrained in judging the ordinal relations of

Arabic numerals and visual displays, and this is reflected in

their almost errorless performance.

Are Rhesus Monkeys Subitizing or Counting?

It is unclear how an animal translates the numerosity of a

stimulus into a numerical representation. It has been pro-

posed that humans use two distinct processes when enumer-

ating: subitizing and counting (e.g.. Kaufman, Lord, Reese,

6 Volkmann, 1949; Mandler & Shebo, 1982; Trick &

Pylyshyn, 1994). In contrast to counting, subitizing has been

characterized as a parallel process whereby the elements of

a visual display are automatically translated into a numerical

representation. Some investigators have also argued that

animal numerical discriminations can be explained by

subitizing (e.g., Davis & Perusse, 1988; Rumbaugh, Savage-

Rumbaugh, & Hegel, 1987). However, subitizing has yet to

be defined operationally, and there are no relevant reaction-

time data from animals (for an exception, see Mirof'ushi,

1997). Moreover, there is no consensus that subitizing is a

distinct process from counting (Balakrishnan & Ashby,

1992; Gallistel & Gelman, 1991).

The experiments presented in this article were not de-

signed to determine the validity of subitizing and counting

as explanations of numerical discrimination by animals.

There are, however, some features of our results that cannot

be explained by subitizing. Each of our 3 subjects made

accurate relative numerosity judgments of numerosities well

beyond the range of the numerosities that humans are said to

subitize. For example, in Experiment 2B all 3 monkeys

reliably discriminated novel exemplars of the numerosities 8

versus 9. It seems unlikely that a process that cannot

accommodate numerosities beyond 4 or 5 in humans can

handle numerosities as large as 9 in monkeys. It is also

unclear how subitizing could account for ordinal compari-

sons. If the numerical ability of animals were based entirely

on subitizing, then ordinal relations between the subitized

entities would have to be learned individually (e.g., A comes

before B). Our subjects' ability to order novel numerosities

spontaneously shows that monkeys rely on a general compari-

son process that does not require each pairwise ordered

relation to be memorized.

Although some researchers have argued that there is

sufficient evidence that animals count (Breukelaar & Dal-

rymple-Alford, 1998; Capaldi & Miller, 1988; Meek &

Church, 1983), others contend that animal numerical compe-

tence lacks important features of counting (Davis & Perusse,

1988). It is commonly agreed that counting involves three

essential principles (Gelman & Gallistel, 1978). First, the

one-to-one principle, which states that a unique cardinal tag

is applied in 1:1 correspondence to each to-be-counted

element. Second, the stable-order principle, which states that

the cardinal tags must be applied in a consistent order. Third,

the cardinal principle, which states that the last tag applied

serves to represent the numerosity of the set. Although

Gelman and Gallistel's definition does not exclude nonver-

bal organisms, finding evidence of these principles in

nonhuman animals has proven extremely difficult. There are,

however, reports in the literature on numerical competence

in animals that support one or more of the Gelman and

Gallistel counting principles (e.g., Boysen & Berntson,

1990; Capaldi & Miller, 1988; Meek & Church, 1983).

Meek and Church (1983) proposed a mode-control or

"accumulator" model of animal counting. The model posits

that each to-be-counted element causes a switch to be

closed, which allows a pacemaker to increment an accumu-

lator by a constant amount. The accumulation process

outlined by Meek and Church's model is consistent with all

of the counting principles described by Gelman and Gallistel

(1978). It is important to note, however, that this model was

developed as an explanation of a rat's ability to discriminate

stimuli that were presented sequentially and that it cannot

explain how an animal would discriminate stimuli that are

presented simultaneously.6

6 It is also interesting that the empirical latency values we
obtained are inconsistent with the specific claim of the mode-
control model that a switch is closed for 200 ms for each
to-be-counted event (Meek & Church, 1983). For example, when
the monkey is comparing two values, one possibility is that one
accumulator is incremented x times and a second accumulator is
incremented y times. The two accumulator values could then be
compared to determine which contained a greater magnitude. The
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Dehaene and Changeux's (1993) connectionist model of

nonverbal numerical discriminations does provide for simul-

taneously presented stimuli. Dehaene and Changeux pro-

posed that objects of varying size are normalized to produce

size-independent activation that is highly correlated with

numerosity. It is interesting that this model yields approxi-

mate numerical values and predicts both a distance and

magnitude effect even though it doesn't follow Gelman and

Gallistel's (1978) counting principles.

At the heart of the subitizing-counting debate is the

question of whether a rhesus monkey's enumeration process

is serial or parallel. Are each of the to-be-counted elements

attended to sequentially or is the numerosity of the set

apprehended in parallel? One way to address that question is

to track eye movements as subjects make numerical judg-
ments. Evidence of successive eye movements to each

to-be-enumerated item would suggest that the enumeration

process is serial as opposed to parallel and would lend

support to a counting hypothesis.

Conclusion

Experiment 1 showed that rhesus monkeys can differenti-

ate visual stimuli solely on the basis of numerosity on a task

in which they were required to order the numerosities 1 —4 in

an ascending or a descending order. The results of Experi-

ment 1 contradict the hypothesis that animals discriminate

number only as a "last resort" in that knowledge of an

ordinal rule was immediately apparent when subjects were

tested with novel exemplars of the numerosities 1-4.

Experiment 1 also showed that monotonic numerical rules

were more easily learned than a nonmonotonic rule. This

suggests that monkeys naturally attend to ordinal relations

between numerosities. Experiment 2A showed that monkeys

trained on an ascending numerical rule spontaneously infer

the ordinal values of novel numerosities when numerosity is

varied from 5 to 9. Experiment 2B provided the first

demonstration of numerical distance and magnitude effects

for accuracy and latency of responding in an animal. Taken

together the results of these experiments provide compelling

evidence that number is a meaningful dimension for rhesus

monkeys.

Our results demonstrate that neither language nor numeri-

cal symbols are necessary for discriminating and ordering

visual stimuli on the basis of their numerosity. The ease with

which our monkeys learned to discriminate and order

numerical stimuli suggests that the difficulty of the tasks we

used could be increased considerably before we would reach

the limits of a monkey's numerical ability. For example, it is

of considerable interest to determine whether monkeys can

discriminate values larger than 9, whether their cardinal

numerical skills are as advanced as their ordinal skills,

whether their numerical representations are abstract in the

latency to make such a judgment should then be at least as great as
200 ms times the greater numerosity. The empirical values we
obtained do not match such a prediction (e.g., 6 vs. 9 = 997 ms,
almost half that of the predicted minimum of 1,800). It is, however,
possible that the 200-ms value is not constant across species.

sense that they are not bound to a particular modality, and

the extent to which monkeys can learn to represent number

symbolically. Experiments designed to address these issues

should help to define how a monkey processes numerical

information and help delineate the precursors of human

mathematical ability.
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