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Abstract

Do animals form task-specific representations, or do those representations take a general form that can be applied to
qualitatively different tasks? Rhesus monkeys (Macaca mulatta) learned the ordering of stimulus lists using two different
serial tasks, in order to test whether prior experience in each task could be transfered to the other, enhancing performance.
The simultaneous chaining paradigm delivered rewards only after subjects responded in the correct order to all stimuli
displayed on a touch sensitive video monitor. The transitive inference paradigm presented pairs of items and delivered
rewards when subjects selected the item with the lower ordinal rank. After learning a list in one paradigm, subjects’
knowledge of that list was tested using the other paradigm. Performance was enhanced from the very start of transfer
training. Transitive inference performance was characterized by ‘symbolic distance effects,’ whereby the ordinal distance
between stimuli in the implied list ordering was strongly predictive of the probability of a correct response. The patterns of
error displayed by subjects in both tasks were best explained by a spatially coded representation of list items, regardless of
which task was used to learn the list. Our analysis permits properties of this representation to be investigated without the
confound of verbal reasoning.
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Introduction

Animal cognition is no longer an oxymoron. During the last 50

years, hundreds of experiments have shown that animals can solve

problems by using representations of events that are not physically

present during test, the sine qua non of cognitive processing [1]. In

human participants, transfer of serial representations can be

mediated by verbal and logical rules, but such rules can obscure

underlying cognitive functions. Since neither language nor

deliberative reasoning are available to rhesus monkeys [2], their

performance on transfer tasks affords a more direct examination of

those mechanisms.

Consider, for example, an experiment in which naı̈ve rhesus

monkeys were presented with the four adjacent pairs of items from

an ordered set of alternatives, A, B, C, D, and E. Whenever a

subject selected the earlier item in each pair, a reward was

delivered. Subjects were then presented with non-adjacent pairs to

test whether they could make a transitive inference (TI), such as ‘‘A

comes before C,’’ on the basis of their previous training with AB

and BC. Non-human primates were highly proficient at this task,

such that their performance was indistinguishable from that of 4-

and 6-year-old human children [3,4]. This similarity raised two

questions: How does a primate (human or otherwise) encode the

information required to make this inference, and how similar are

the serial representations used by non-human primates to those

used by humans?

One clue suggesting a common mechanism is the symbolic distance

effect (SDE), a ubiquitous phenomenon in studies of TI, as well as in

other forms of serial reasoning [5–8]. Given an ordered list of

items, judging the ordering of items is most difficult when the items

have adjacent list positions, but becomes easier as the distance

between items increases. For example, the SDE predicts that, all

else being equal, the pair BE should be easier than the pair BD,

which in turn should be easier than BC. If serial distance effects

are an inherent property of the serial representation of list items,

subjects should transfer those effects from one serial task to

another, so long as the ordinal position of list items do not change.

The cognitive interpretation of these results is that subjects

generate an implicit linear ordering of the full implied list (e.g.

ABCDE), even though only two list items appear on each trial [9].

However, critics have correctly noted that humans can use logical

and semantic tools to assist in the transfer of ordinal knowledge

from one TI problem to another [10]. Those tools make it difficult

to assess any underlying non-verbal representations of list items.

Studying TI and its corresponding SDE in animals negates that

criticism.

Most studies of serial learning in animals, including those that

seek to explain SDEs, rely on an ‘‘associative’’ approach that

eschews representative phenomena [11–13]. Serial learning has

also been studied using computational simulations of neural

networks inspired by neuroanatomy [14,15]. Although these

approaches to serial learning are not mutually exclusive and can

indeed complement one another [16,17], associative and compu-

tational accounts also share substantial weaknesses. Experiments

studying TI typically use a very narrow range of experimental

methods in which extensive training of adjacent pairs is followed
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by testing on non-adjacent pairs [13]. The resulting analytic focus

on the ‘test’ phase provides very little information about initial

learning. Instead, the models that this approach has produced are

tailored to their test paradigms and are unable to account for

performance in serial tasks other than ‘‘train adjacent,’’ followed

by ‘‘test non-adjacent’’ at a later time. In order to overcome this

limitation, we employed two paradigms that allowed us to

examined learning on a trial-by-trial basis.

The first of these paradigms was the simultaneous chain

(SimChain) task [18]. On each trial, subjects were presented with

arbitrary photographic stimuli, denoted as A, B, C, D, & E. To

earn a reward, subjects had to touch each item in the correct

order, A?B?C?D?E. The physical locations of items in the

SimChain were scrambled on each trial to ensure that subjects

didn’t simply learn lists as motor sequences.

Our second task was a variation of the traditional TI paradigm.

Only two stimuli were presented during each trial, and a food

pellet was delivered whenever a subject selected the item with the

earlier list position. Throughout training, subjects were shown all

pairs (sampled randomly without replacement) rather than only

adjacent pairs. We call this a counterbalanced TI task because

exposure to each pair of items was uniform across the session, even

as trials themselves were randomized. This method ensured that

exposure to all pairs was consistent with respect to session time,

which allowed learning for every pair to be examined in parallel

with the others. Overall, our novel approach permitted a finer-

grained analysis than traditional methods of training that

presented only adjacent pairs.

Previous studies have shown that knowledge of serial order

learned using one task can transfer to a distinctive serial task

[8,19–22]. Such demonstrations provide evidence that both tasks

rely on the same representation. However, due to lengthy training

paradigms, two-way transfer is not generally examined. Without a

balanced and rigorous demonstration of bi-directional transfer, a

skeptic can form a post-hoc argument that transfer effects are

merely incidental side-effects of associative learning. Here, we

tested for the transfer of serial knowledge in both directions.

Task performance was assessed in four different conditions. In

two novel conditions, subjects learned lists in the SimChain or TI

paradigms. In two transfer conditions, subjects first learned a list

using one task, and later earned rewards performing the other task,

using the ordering of stimuli they had initially learned. By

comparing novel list learning to list transfer, we assessed their

ability to transfer serial knowledge obtained from the first task to

the second. Rather than rely on exhaustive training, subjects had

no more than 160 trials in which to initially learn any list. Each

condition required that subjects learn between 16 and 34 lists.

Results

Subjects (n = 3) learned ordered lists composed of arbitrary

photographic images in one of two paradigms: The SimChain

paradigm [8,18,19,23] and our counterbalanced TI paradigm.

During the SimChain task, all of the list items were presented

simultaneously on a touch-sensitive video monitor, with their

configuration randomized on each trial. A food pellet was

delivered after all of the items were selected in the correct

sequence. The same lists were also trained using the TI task, in

which only two items were presented on each trial. All possible

pairs appeared in random order, counterbalanced such that each

pair was presented n times before before any pair was presented

n+1 times. A food pellet was delivered when the earlier of the two

items was selected. See Materials & Methods for details about our

procedure and our analytic methodology.

Evidence of a Spatial Representation
One advantage of our counterbalanced TI paradigm is that it

enabled training of much longer lists than those used in most other

studies of TI. Subjects learned 34 novel 9-item TI lists. Each list

was trained in a single 144-trial session that consisted of four

presentations of each of the 36 possible pairings. Subjects learned

each list rapidly, despite only having a few opportunities to see

each stimulus pairing. The rate of acquisition varied as a function

of the distance between items. Figure 1A presents performance for

Coltrane (a representative subject) in 18-response blocks, with

pairs grouped by ordinal distance.

We performed logistic regressions for the 36 stimulus pairings,

each in isolation of the others, in order to predict accuracy as a

function of trials. The slopes provide strong evidence for the SDE,

despite being drawn from independent subsets of the data.

Figure 1B shows Coltrane’s fitted functions for pairs spaced apart

by two, four, and six ordinal ranks. Individual pairwise regression

coefficients for each of our three subjects are shown in Figures 2A–

C.

In order to make an inference about the distance between list

items in a subject’s mental representation, we made the

assumption that each item had a position on a linear continuum,

with Gaussian error. If all error distributions had uniform

variance, then a subject’s probability of making a correct response

for any given pairing can be transformed into a z-score based on

the cumulative normal density function, a process outlined in

Figure 3A. This z-score provides a measure of the subjective

distance between items. Using each item as a reference point, we

obtained nine independent assessments of relative subjective

distance. As shown in Figure 3B, the relative distances between

items (as measured by error rates) were a linear function of their

symbolic distance. Furthermore, those subjective distances were

uniform regardless of which item was used as a reference point.

Studies of numerical reasoning in monkeys have reported similar

results [24].

Based on this linearity, we fit a logistic regression model in

which pairs were pooled according to the ordinal distance between

items (Equation 1, below). Figure 1C shows the fitted model of

Coltrane’s performance as a function of trials and distance

between items. Figure 2D presents the compound learning rate

parameters for all subjects. Full regression statistics are provided in

Information S1.

Evidence of Transitive Inference during Initial Learning
To rule out the possibility that rote memorization was

responsible for TI (particularly SDEs), we performed a logistic

regression on only those trials falling in the first block of stimulus

pairs for the novel 9-item lists (i.e. the first 36 responses). Thus, this

subset of the data consisted of responses to pairs of stimuli never

before seen by the subject. All subjects displayed a reliable SDE

over this period (pv:05 according to a Wald’s x2 test for the

coefficient b). This result cannot be accounted for by memoriza-

tion, and strongly implies that the transitive interrelationships

between pairs were being integrated into their representations

during this initial block of responses. The coefficients and other

regression statistics are provided in Information S1.

Transfer from SimChain to TI
To test for transfer from the SimChain task to the TI task,

subjects were first trained for four consecutive days on a 5-item

SimChain with elements A, C, E, G and I (4 sessions, 160 trials

total). On the fifth day, subjects performed the TI task, using lists

in which four unfamiliar items were interleaved among the five

Serial Transfer between Tasks by Rhesus Macaques
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familiar ones, resulting in the 9-item list ABCDEFGHI. The odd-

numbered list items (in bold) were previously learned in the

SimChain task, while the even-numbered items (in italics) were

unfamiliar. As a result, the stimulus pairs could fall into one of

three categories: ‘‘familiar’’ pairs’’ (in which both were previously

learned from the SimChain task), ‘‘unfamiliar pairs’’ (in which

neither item had been seen previously), and ‘‘mixed’’ pairs

(consisting of one familiar and one unfamiliar item).

We performed a logistic regression that included parameters for

estimating accuracy on the very first trial (Equation 2, below). As

can be seen in Figure 4, there was clear evidence of SDEs for both

familiar and unfamiliar pairs (see Information S1). Accuracy to

familiar pairs was nearly asymptotic on the first trial (albeit subject

to the SDE), whereas accuracy to unfamiliar pairs increased

gradually, as one would expect from trial and error learning.

Figure 1. Learning function for the transitive inference (TI) task for one subject, Coltrane. ‘‘D1’’ corresponds to adjacent pairs, ‘‘D2’’ to
pairs of items two positions apart, and so forth. A: Mean accuracy in 18-trial blocks, as a function of implicit distance between items. B: Logitistic
regression model fit performed in isolation on each pair of distance 2 (orange dashed), distance 4 (green), and distance 6 (blue dotted). C: Logistic
regression model fit for Equation 1 presented for each of the eight distances between items.
doi:10.1371/journal.pone.0070285.g001

Figure 2. Slope parameters obtained from independent pairwise logistic regressions. Parameters are reported for Benedict (A), Coltrane,
(B), and Oberon (C), as well as the compound slope from Equation 1 for all subjects (D). The ‘teardrop’ form of each point corresponds to the
parameter’s probability density function over the 99% confidence interval. In general, larger parameters displayed correspondingly larger uncertainty.
doi:10.1371/journal.pone.0070285.g002

Serial Transfer between Tasks by Rhesus Macaques
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Transfer from TI to SimChain
To test for transfer from TI to SimChain, subjects first learned a

5-item list during a single session of TI training (120 trials) that

consisted of twelve exposures to each of the ten possible pairings of

items. Knowledge of that 5-item list was tested 24 hours later with

a single session of SimChain (40 trials). Subjects repeated this

process 25 times, each with a new list. Performance during the

SimChain task was enhanced for transfer lists relative to novel lists.

Figure 5 shows the mean number of consecutive response made

without an error for novel lists (blue) and transfer lists (red). Also

depicted is the level expected by chance, assuming no backwards

errors (dashed black line). Backwards errors occurred on fewer

than 1% of trials.

We fit a learning curve (Equation 3, below) to each subject’s

data as a model of performance with respect to trial number and

condition. The curve consisted of an effort parameter (corre-

sponding to the speed of learning, with lower numbers being

better) and a prior knowledge parameter (corresponding to the y-

intercept). As compared to the novel condition, there was

significant improvement for both parameters (Welch’s t-test, all

tw2:91, all df v46, all pv:005). The most dramatic change was

observed in the rate parameter. The learning rate was approxi-

mately twice as rapid in the transfer condition as in the novel

condition. Further details are provided below, and in Information

S1.

Figure 3. Method for inferring distance between items from pairwise logistic regressions, demonstrated using Coltrane’s
parameters. A: Estimated probability of a correct response on the last trial of a session (based on the parameters from Figure 2B) is converted to a z-
score using the normal inverse cumulative distribution. B: Comparison of relative item positions, based on inferred z-scores. Adjacent sitmuli were
estimated to be separated by an average of 0:412s z-scores, arrayed along a linear continuum.
doi:10.1371/journal.pone.0070285.g003

Figure 4. Learning functions for the TI task under the Transfer condition. These were based on the parameter fits for Equation 2, presented
for familiar (dashed) and unfamiliar (solid) pairs.
doi:10.1371/journal.pone.0070285.g004
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Discussion

Subjects learned serial orderings using two paradigms. Although

the demand characteristics of the SimChain and the TI tasks were

qualitatively different, our subjects had no difficulty mastering

them. This finding is consistent with previous results [23]. To

demonstrate that both tasks made use of a common representa-

tion, we showed that prior experience with a list in one task

enhanced performance in the other. In each instance, the benefits

of transfer were visible from the first trial. We also observed

symbolic distance effects (SDEs) in both novel and transfer

conditions, supporting the claim that these distance effects arose

not from the particular demands of each task, but rather from

characteristics of their common representation. The learning

curves we observed (Figure 2) support the hypothesis that list items

were represented on a linear continuum (Figure 3).

Our data pose a difficulty for associative interpretations of the

SDE because they assume that each item is associated with

reinforcement and that distance effects were the result of

contrasting associative strengths. Indeed, the ‘‘train adjacent first,

test non-adjacent later’’ approach is intended to ensure that list

items, other than the first and last, always have a 50% chance of

being correct [13]. In this instance, there was no empirical support

for the theoretical claim that differential reinforcement is a

necessary and sufficient explanation of TI. Our methods (which

ignored this concern) look identical to those obtained using

traditional methods, suggesting that this concern is overblown.

Computational models that emulate properties of known neural

networks have had considerable success in describing the specific

patterns of learning in traditional TI tasks [14,15,17]. However,

even though their designs are neurologically grounded, computa-

tional models have also been engineered to perform a narrow

range of tasks. A neural network can be designed to approximate

any behavioral output, but any given behavior could result from

any one of a great many networks. Additionally, computational

models often disregard the principle of parsimony [25]. Thus,

while computational modeling qualifies as impressive engineering,

the theoretical primacy of any one network has yet to be

determined.

Differential reinforcement cannot easily account for perfor-

mance in the SimChain task [26] because food pellets were only

delivered after a subject responded to all items correctly. In

designing a ‘‘perfect learning algorithm’’ for SimChain, a subject

need only know the ordinal position of each item and the last item

it touched. Nevertheless, when serial knowledge acquired from the

SimChain task was used during the execution of the TI task, SDEs

emerged in the differing asymptotic levels of performance that

were observed in our present study (Figure 4), as well as in earlier

experiments on one-way transfers from SimChain to TI [8].

It is not surprising that associationist models have struggled with

(or ignored) the SimChain task. When all list items are visible

throughout each trial, it is difficult to specify how credit for each

reward should be assigned to the multiple stimuli that are

simultaneously visible, unless one is willing to consider cognitive

functions like memory or attention. This shortcoming renders the

associative literature difficult to interpret outside of a handful of

narrowly defined scenarios. Although associative models seem able

to account for performance in the TI task, they are limited because

they cannot adequately describe or predict SimChain performance

[26]. This raises serious questions about claims regarding the

parsimony of those models. A simpler model buys very little if it

only explains a small range of scenarios.

Previous research has shown that SDEs can be obtained in one-

way transfer experiments in which subjects were tested on two-

item pairs that were selected from lists trained by the SimChain

paradigm [8,9,27], as well as in traditional experiments that used

the ‘‘train adjacent pairs, then test non-adjacent pairs’’ paradigm

[13,17,18]. Our analysis showed that SDEs emerged during the

first block of responding in the TI task, even though each of the

possible pairs was presented only once in that portion of a session.

Our transfer experiments show that the experience of learning a

serial task enhances performance from the first transfer trial on a

Figure 5. Number of correct responses before making an error in the SimChain task, as a function of trial and averaged across
subjects. Chance responding is depicted as a dashed line.
doi:10.1371/journal.pone.0070285.g005
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qualitatively different task. Our results also support the hypothesis

that the serial knowledge learned during the simultaneous

chaining and the TI paradigms had the properties of a spatial

representation reliant on relative item positions. Because SDEs

need not arise from the task demands of the SimChain task, a

common representation of list items provides a better explanation

of error patterns than item associations. Figure 4 is especially

informative in this regard because the SimChain paradigm does

not require subjects to learn about non-adjacent pairs in order to

execute the required sequence. Nevertheless, SDEs were obtained

during the Transfer condition when subjects responded to familiar

pairs. The consistency of SDEs and of transfer in both directions is

all the more impressive when one considers that a 24-hour period

separated the two tasks in all transfers we report.

The representation we propose is the most parsimonious

mechanism for explaining serial learning and transfer of ordinal

knowledge between distinct paradigms. The necessary parameters

in this model are each item’s position on a linear continuum and

the uncertainty associated with that position. These properties are

can be captured by representing items as overlapping Gaussian

distributions placed along that continuum (Figure 3).

In one sense, our proposal is conceptually compatible with an

associative account. If we substitute ‘‘linear position’’ for

‘‘associative strength’’ and posit that associations display Gaussian

error functions, then the difference between the models becomes

semantic. In practice, it is associative processes that impose limits

due to their strict reliance on rigid interpretations of ‘‘reinforce-

ment.’’ Reinforcement learning models assert that associations

only form when there is contiguity between behavior, the relevant

stimuli, and the reinforcing outcome. Such models are constrained

not by the possible forms that ‘‘associations’’ might have once

learning has occurred, but rather by the narrow learning

mechanisms that they are willing to consider. Although some

argue that associative strength is sufficient to account for most

results in the TI literature [13], most demonstrations of TI in

animals use methodologies that are limited by associationism’s

conceptual constraints. Since our subjects had no such difficulty

learning lists using our two distinctive tasks, our results favor the

cognitive account as providing a more general account of the

observed phenomena.

Serial Learning and Comparative Cognition
Our results are are best explained by a cognitive account, not

only in terms of overall performance, but also with respect to

observed patterns of error. Our spatial model permits better

generalization across tasks than tailoring a custom equation for

each task in isolation. It seems reasonable to conclude that our

subjects ‘‘learned each list’’ in a general sense, rather than merely

‘‘learning each task’’ in the narrow sense of a circus trick.

The benefits of general representation are greatest when

subjects must apply their knowledge to different tasks whose

structural similarity is not immediately obvious from the surface

features of each task. Traditionally, studies of human cognition

have focused on analogical mechanisms to investigate how

knowledge is applied across tasks [28]. Although humans can

analogize in a conscious, deliberative fashion, there is no reason to

suppose that this style of reasoning is available to non-human

primates [2]. However, recent studies have demonstrated that

humans also engage in entirely implicit analogical inferences in

tasks requiring abstract serial cognition [29] and spatial processing

[30]. These results closely resemble the generalization of serial

knowledge we observed in rhesus macaques [27].

The systematic similarity of serial learning in human and non-

human primates [3,4,31–33], and their mutual dissimilarity with

more distantly related species, e.g., pigeons [32], suggests that the

serial learning system underlying performance in SimChain and

TI tasks is based on a cognitive mechanism that is common to

primates. One possibility is that primates developed sophisticated

serial representations to accommodate the increased complexity of

their social structures. This hypothesis is consistent with evolu-

tionary comparisons of multiple primate species in which transitive

reasoning ability correlates with the social complexity typical of

each species [34]. A convergent case has also been reported when

comparing the transitive reasoning and social complexity of

several species of corvids [35].

Recent advances in primate neurophysiology also shed consid-

erable light on broad mechanisms underlying animal cognition.

For example, parietal cortex, and particularly the lateral

intraparietal area (LIP), is unambiguously implicated in spatial

cognition [36]. Rather than merely encoding proximal stimulus

information, these spatial representations are flexible, relying on

reference to relative landmarks rather than mapping absolute

position [37]. A growing body of electrophysiological work

suggests that LIP is not merely spatial, but is instead involved in

very general comparison-based reasoning, such as numerical

reasoning [38] and comparisons of relative probability [39]. When

analogous regions of the posterior parietal sulcus are examined in

human subjects, selective activity is observed in TI tasks that can

be dissociated from activity correlated with verbal processing [40].

Until recently, evidence of comparative cognition faced the

criticism that ‘‘animal cognition’’ was an oxymoron. Such

categorical rejections have become increasingly rare. Given

unambiguous evidence of non-human cognitive processes, the

next step is to assess how these processes apply to a variety of tasks,

and to investigate their underlying mechanisms. In this paper, we

have shown that monkeys can use a general cognitive mechanism

to form serial representations applicable to two qualitatively

different serial tasks. We hope that this demonstration will

encourage further application of tools from human cognitive

psychology to the study of similarities and differences in the

cognitive mechanisms of humans and other animals.

Materials and Methods

Subjects
The subjects in our study were three rhesus macaques (Macaca

mulatta), Benedict, Coltrane, and Oberon. All had prior experience

using a touchscreen to earn food rewards. The daily food ration

for these subjects was made available after they participated in our

experiments.

This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health (NIH).

This work was conducted at the Nonhuman Primate Facility of the

New York State Psychiatric Institute with permission from its

Department of Comparative Medicine’s (DCM) Institutional

Animal Care and Use Committee (IACUC), protocol number

200, approved on 09/08/11, and with permission from the

Columbia University IACUC, protocol number AC-AAAB1238,

approved on 08/10/11.

Subjects were individually housed in rectangular Primate

Products Enhanced Environment Housing, each with a nine-

square-foot floorspace. Cages were maintained in colony rooms

under 12-hour dark and light cycles, and the animals were given

access to water ad libitum. Set amounts of Purina Monkey Chow

(between 6 and 12 biscuits) and fruit were given after behavioral

testing every day. The amounts of food dispensed were determined

by the animals’ weight histories; weights were monitored on a

Serial Transfer between Tasks by Rhesus Macaques
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weekly basis by research and veterinary staff to ensure subjects

stayed at healthy weights. Subjects were given a variety of

psychologically enriching tasks to complete at their discretion,

beyond those required by behavioral testing. Primate Products

enrichment mirrors, puzzle feeders, puzzles tosses, and kong toys

were all provided to each individual in their cage; at least once a

week, every subject was given sole access to an activity module

containing additional kong toys and a prima-swing. No subject was

physically harmed or knowingly exposed to potential infection.

Apparatus
The apparatus consisted of a custom-built chamber with a

touch-sensitive computer monitor mounted on one wall. This

touch-screen both presented experimental stimuli and provided

subjects with a user interface. Food rewards (Bioserve-brand

pellets) were delivered to subjects in a receptacle that was located

to the lower-left of the touchscreen. The apparatus was identical to

that used in earlier experiments on monkey cognition [41].

Procedure
Subjects completed sessions of TI and the SimChain as part of a

daily battery of cognitive tasks. An ordered list of photographic

stimuli provided the basis of the schedule for each session.

Hereafter, we distinguish between item positions using letters, such

as A for the first image of a list, B for the second, etc. The ordinal

distance between any two items is denoted using the variable D
(not to be confused with the item D). For example, because the

items in the adjacent pair BC were one rank apart, it follows that

DBC~1. We also distinguished between novel lists, in which all

stimuli were unfamiliar, and transfer lists, in which some or all of

the stimuli had been presented in a previous session, preserving

their original ordering.

Our SimChain task made use of 5-item lists. This task was

identical to procedures described in previous studies [27,41]. See

[8] for review. Each session consisted of 40 trials.

The TI task used 5- or 9-item lists. During each trial, two

images from the list were displayed on screen at random locations

within a 4 | 4 grid. The subject received a reward if it touched

the image that came earlier in the list. Thus, a response to A was

always rewarded, while responses to the last list item were never

rewarded. Whether intermediate items were rewarded depended

on the stimuli with which they were paired (touching C generated

a reward when the pair CD was presented, but not in the case of

the pair BC). A response to the image with a higher ordinal rank in

the list was counted as an error, and resulted in a 6 second

timeout.

There were ten possible response pairs in a 5-item list (AB, AC,

AD, AE, BC, BD, BE, CE, CD, and DE), while a 9-item list

entailed 36 possible pairs. TI sessions were divided into blocks,

within which each pair of images was presented in a random

order. Thus, each pair was presented n times before any pair was

presented n+1 times. This counterbalanced the exposure that

subjects received to each of the pairs with respect to overall session

time. Sessions using 5-item lists had 12 blocks (in which each pair

appeared 12 times, totaling 120 trials), while sessions using 9-item

lists had 4 blocks (totaling 144 trials).

To test for transfer from TI to SimChain, subjects first

completed a single session of TI, using a novel 5-item list.

Twenty-four hours later, the same list was presented during a

single session of SimChain. A total of 27 such transfers were

executed. Performance on these transfer lists was compared to

performance on 25 novel 5-item SimChain lists, also presented for

only one session each.

To test for transfer from SimChain to TI, subjects completed

four sessions of SimChain on consecutive days using a 5-item list

consisting of the items ACEGI. On the fifth day, subjects

completed a session of TI using the 9-item list, ABCDEFGHI.

This 9-item transfer list consisted of both familiar items (A, C, E,

G, and I, previously seen during the SimChain task) and

unfamiliar items (B, D, F, and H, never used previously). Accuracy

on 16 transfer lists was then compared with accuracy on 34 novel

lists consisting of nine entirely unfamiliar items.

Transitive Inference Analysis: Novel Lists
Accuracy in our transitive inference (TI) task was modeled using

logistic regression as a way to interpolate across the different

randomized orderings of pairs in each block of trials. Although this

study alone does not provide sufficient data to build a compre-

hensive model of how information about item pairs is translated

into a coherent representation, certain features of the represen-

tation can be inferred from patterns of acquisition.

Figure 1A shows the mean percentage of correct responses for

the subject Coltrane in consecutive, non-overlapping 18-trial

blocks, as a function of the distance D between list items (for

example, since the pairs AC and BD are two ranks apart, D~2 in

both cases). Coltrane’s data were representative of the other

subjects. Although these block averages intermix different pairs of

stimuli, they nevertheless resemble the diminishing returns shape

characteristic of a logistic function.

Figure 1A also shows a symbolic distance effect. Asymptotic

accuracy was higher for more distant pairs, and distant pairs were

also discriminated more rapidly. Despite nearly perfect accuracy to

pairs like AG and BH after one session, subjects still made many

errors when presented with adjacent pairs. Accuracy for adjacent

pairs was well above chance, but not at a ceiling level.

By pooling data from the 34 novel 9-item lists learned by each

subject, acquisition functions for each of the 36 distinct items pairs

could be obtained using the logistic regression

y~ 1z exp {axð Þð Þ{1
. No constant was included because sub-

jects were presumed to initially respond at chance levels. Figure 1B

shows fitted curves of Coltrane’s performance for each of the pairs

of distance 2 (dashed orange), 4 (green), and 6 (dotted blue).

Despite being drawn from independent subsets of the data, the

learning rate for each pair appears to be consistently related to the

distance between items. This is confirmed by an examination of

the regression coefficients obtained for all 36 pairs, presented in

Figure 2A (Benedict), Figure 2B (Coltrane), and Figure 2C

(Oberon).

Given the consistency with which the learning curve was

predicted by distance D, we fit the following logistic regression as a

model of novel TI responding:

p xð Þ~ 1

1z exp {ax{bDxð Þ ð1Þ

Here, the probability of success p(x) on trial x is determined

both an overall learning rate parameter a (the ‘general’ learning

rate) and a distance-related learning rate parameter b that is

multiplied by that pair’s ordinal distance D (the ‘distance-specific’

learning rate). Figure 1C shows the model fit for Equation 1 given

Coltrane’s data, while Figure 2D presents each subject’s

compound learning rate as a function of D.

Serial Transfer between Tasks by Rhesus Macaques

PLOS ONE | www.plosone.org 7 July 2013 | Volume 8 | Issue 7 | e70285



Evidence For A Spatial Representation
Given the apparent consistency with which the ordinal distance

between items predicted the learning rate, we sought to determine

whether the pairwise regression parameters presented in Figure 2

could be used to infer the confusability of stimulus pairs and,

following the logic of basic signal detection, the distance between

items.

Each of the pairwise logistic regression models was used to

estimate the probability of choosing an item at the end of the first

session of learning (that is, on trial 144). For example, in the case of

the pair AE, the pairwise logistic regression of Coltrane’s data

suggests a probability of 1z exp {0:033xð Þð Þ{1
~0:992. This

probability was converted to a z-score based on the normal inverse

cumulative distribution. Thus, the subjective distance from item E

to item A, denoted by dAE , was estimated to be {2:39s. Figure 3A

shows how this was applied to four of Coltrane’s 36 pairs. The

hypothetical pair EE is also depicted to show how chance

performance would look in the case where subjects would be

presented with two identical stimuli.

Nine subjective distances dAA,dBA, � � � ,dIA were estimated using

independently obtained regression coefficients of each pair

including the item A, and these were compared as a factor of

the ordinal distance between items D. A similar comparison was

made using each of the eight other stimuli as a reference point.

The relative distance between these items was highly consistent, as

displayed in Figure 3B for Coltrane’s data. The subjective

distances inferred from the observed symbolic distance effects

resulted in linear relationships for all nine items, each displaying a

similar slope. This means that subjects consistently responded as

though items were arrayed at consistently-spaced intervals along a

linear continuum, with overlapping Gaussian uncertainty about

their position.

Transitive Inference Analysis: Transfer Lists
In order to examine the effects of transferring list knowledge

from the SimChain task, a more complex logistic regression was

required:

p xð Þ~ 1

1z exp {ax{bDx{cD{kð Þ ð2Þ

This model was identical to Equation 1, except for the addition

of two additional parameters that allowed the model intercept to

begin at a value other than 0.5. These included a general constant

k that allowed responding to begin above chance generally, and a

distance-influenced constant c that changed the intercept as a

function of the ordinal distance between list items D.

Figure 4 shows the model fit parameters for familiar pairs

(dashed lines) and unfamiliar pairs (solid lines) at three different

pair distances for each of the subjects. Two key conclusions can be

drawn from these model fits. The first is that transfer unambig-

uously occurred, with subjects responding at asymptotic levels to

the familiar pairs despite being naı̈ve about unfamiliar pairs. The

other is that the familiar pairs displayed a symbolic distance effect,

despite the fact that those items were learned by performing the

SimChain task (in which learning about non-adjacent relationships

is not required).

Simultaneous Chain Analysis
In order to obtain a descriptive model for SimChain learning,

we used the following learning curve equation [42]:

y~
L xzPð Þ
xzPzR

ð3Þ

Here, the performance y (whose minimum is 0.0 and whose

maximum is L) is described as a function of x trials, prior

knowledge P, and learning cost R, where lower values of R
correspond to faster learning. If L is unknown, the best-fitting

parameters must be determined numerically. However, because

our SimChain task always made use of 5-item lists, L~5 in all

subsequent computations. This permits straightforward parameter

estimation. The resulting model fits are depicted in Figure 5.

The learning cost R is best understood in terms of the cost in

time of making additional progress. The first 50% of performance

(over the range y~0:0to L
2
) is expected to take R trials, and each

additional 50% improvement should take twice again as long.

Thus, if R~20, it would take 20 trials to go from 0% to 50%

accuracy, an additional 40 trials to go from 50% to 75% accuracy,

an additional 80 trials to go from 75% to 87.5% accuracy, etc.,

with performance reaching L at asymptote.

Prior knowledge P indicates the benefit of knowledge that was

obtained before to the first trial. Thus, if R~20 and P~20,

performance will begin at y~ L
2
. The value of P is relative to the

value of R.

When L is known, estimating the parameters P and R can be

converted to a linear form:

L

y
{1

� �{1

~
x

R
z

P

R
ð4Þ

Since it is known that L~5, we can compute the slope 1
R

and the

intercept P
R

using a regression model. Because of the transforma-

tion of the dependent measure, ordinary least squares regression is

inappropriate. The variance of L
y
{1

� �{1

grows in an approx-

imately exponential fashion as y?L. We can then fit Equation 4

using weighted least squares, with the inverse of the sample

variance as weights [43].
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