Abstract

In mammals, it is well established that circadian rhythms in physiology and behavior, including the rhythmic secretion of hormones, are regulated by a brain clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. While SCN regulation of gonadal hormone secretion has been amply studied, the mechanisms whereby steroid hormones affect circadian functions are less well known. This is surprising considering substantial evidence that sex hormones affect many aspects of circadian responses, and that there are significant sex differences in rhythmicity. Our previous finding that "core" and "shell" regions of the SCN differ in their expression of clock genes prompted us to examine the possibility that steroid receptors are localized to a specific compartment of the brain clock, with the discovery that the androgen receptor (AR) is concentrated in the SCN core in male mice. In the present study, we compare AR expression in female and male mice using Western blots and immunochemistry. Both of these methods indicate that ARs are more highly expressed in males than in females; gonadectomy eliminates and androgen treatment restores these sex differences. At the behavioral level, gonadectomy produces a dramatic loss of the evening activity onset bout in males, but has no such effect in females. Treatment with testosterone, or with the non-aromatizable androgen dihydrotestosterone, restores male locomotor activity and eliminates sex differences in the behavioral response. The results indicate that androgenic hormones regulate circadian responses, and suggest an SCN site of action.

Keywords: Circadian rhythms; Mouse; Gonadal hormones; Dihydrotestosterone; Testosterone; Androgen receptor; Locomotor activity

Introduction

In all species, appropriate timing of physiological and behavioral processes is necessary for optimal functioning in the environment. The circadian (daily) timing system ensures that incompatible biochemical and behavioral rhythms are temporally segregated within individual cells and tissues, as well as in the organism as a whole. In mammals, circadian timing is regulated by a master clock within the suprachiasmatic nucleus (SCN) of the hypothalamus, and this nucleus is necessary for the generation and maintenance of circadian rhythms (Klein et al., 1991). In proof, lesions of the SCN abolish circadian rhythms, and neural transplantation of the SCN from a donor to a lesioned host restores circadian rhythms in the host (Lehman et al., 1987; Ralph et al., 1990).

In addition to controlling daily rhythms, the SCN is also essential for the synchronization (or entrainment) of an organism’s internal circadian time to the external environmental world, integrating internal and external signals. Both environmental and internal stimuli can set the phase of SCN oscillators. The most salient environmental timing cue is the daily cycle of light and darkness (Morin and Allen, 2006). Photic input from the retina reaches the SCN via a direct projection via the retinohypothalamic tract (RHT), which terminates with greatest density within the core region of the SCN (Abrahamson and Moore, 2001; Antle and Silver, 2005). The core compartment also receives afferent input from the intergeniculate leaflet (IGL) and the raphe nucleus (RN) (Kriegsfeld et al., 2004; Moga and Moore, 1997; Zhang and Rusak, 1989). As discussed below, internal cues...
such as hormonal signals, many of which are secreted on a circadian basis, also target the core SCN compartment.

Much experimental work done in laboratory rodents indicates that the gonadal hormones estrogen (E) and testosterone (T) modulate circadian activity rhythms (Jechura et al., 2000; Morin, 1986). Additionally, field studies demonstrate hormone-dependent effects, with some species even changing seasonally from diurnality to nocturnality (Yokota and Oishi, 1992). Though few studies have been performed in mice, they suggest that circadian period and precision, as well as the organization of daily activity bouts, are dramatically affected by gonadal hormones (Daan et al., 1975; Karatsoreos et al., 2007). Thus, following gonadectomy (GDX) of males there is a loss of the onset component of daily activity, lengthening of free running period, a decrease in precision, a reduction in duration of daily activity bouts, and a decrease of total daily activity. In contrast, in female rats and hamsters, ovariectomy (OVX) produces an overall reduction of total daily activity levels, and hormone replacement shortens the free-running period (Albers, 1981; Morin, 1980; Morin et al., 1977; Zucker et al., 1980).

Many of the circadian effects of E and T are thought to occur outside of the SCN, either on SCN afferents or efferents (de la Iglesia et al., 1995, 1999). This assumption has been supported, in part, by reports of sparse steroid receptor localization in the SCN (Mitra et al., 2003; Shughrue et al., 1997; Shughrue and Merchenthaler, 2001). In contrast, we found that androgen receptors (AR) in male mice are highly localized to the mid-caudal region of the SCN, termed the “core” (Karatsoreos et al., 2007). This distribution of AR may have been missed in earlier studies performed when intra-SCN regional differences were unknown, as it was thought that all SCN cells were equivalent oscillators (Reppert and Weaver, 2001). Today, there is general agreement that functional specializations map to these anatomically distinct ventral core and dorsal shell regions (reviewed in: Antle and Silver, 2005). In the present study, we explore sex differences in AR expression and in circadian locomotor activity. Because SCN AR expression in castrated males resembled that of females, we studied the effect of testosterone replacement on the androgen-dependent responses.

Methods

Animals and housing

Male and female C57BL/6J mice (Charles River Laboratories, Kingston, NY) aged 8–10 weeks were group housed for at least 2 weeks following arrival. Animals used for the behavioral experiments were placed in individual cages equipped with running wheels, as described below. All other animals were group housed. To determine the phase of the estrus cycle, vaginal smears were taken every morning (at lights on) for at least two consecutive cycles.

All animals were provided with ad libitum access to food and water, and maintained in a 12:12-h light:dark (LD) cycle (unless otherwise noted) in a 12:12-h light:dark (LD) cycle (unless otherwise noted) in translucent plastic cages (36×20×20 cm) equipped with a running wheel (13 cm diameter) with the number of wheel revolutions recorded by a computerized data acquisition system (VitalView, Respironics, Inc, Murrayville, PA). The free-running behavior of intact (INT) mice was recorded for at least 3 weeks (n = 14 males, 26 females). Animals were then orchidectomized (GDX, n = 14) or ovariectomized (OVX, n = 24), with time of surgery performed during the animal’s subjective day so as to avoid a light induced phase shift. The behavior of gonadectomized animals was monitored for 3 weeks, after which some of the mice were implanted with Silastic capsules containing either testosterone propionate (TP; males, n = 8, females, n = 9) or 5α-dihydrotestosterone (DHT; males, n = 6, females, n = 8), and returned to DD for an additional 3 weeks. The behavior of male mice was previously reported in Karatsoreos et al. (2007); for this report, a new analysis was performed on activity, period and precision to permit comparisons with the behavior of females maintained in the same housing conditions.

To evaluate sex differences and androgen effects on circadian behavior in males and females, analysis was carried out on at least 10 consecutive days of data, and at least 7 days following any manipulation. Data were analyzed using Clocklab (Actimetrics Inc., Wilmette, IL) for Matlab (The MathWorks Inc., Natick, MA).

Gonadectomy and hormone replacement

Mice were deeply anesthetized with ketamine (70 mg/kg, i.p.) and xylazine (5 mg/kg, i.p.), and buprenorphine (0.5 mg/kg, s.c.) was used as an analgesic. In males, GDX was performed by abdominal incision and removal of both testes. Females were ovariectomized by bilateral flank incisions, and removal of both ovaries. In both cases, muscle and fascia were closed using surgical silk, and the overlying skin was sutured. For controls, animals were anesthetized but not surgically manipulated.

Steroid implants

Implants were prepared as previously described (Lindzy et al., 1998; Wersinger et al., 1999). Briefly, Silastic capsules (Dow Corning, I.D. 0.98 mm, O.D. 2.16 mm) were filled with crystalline TP (5 mm long) or DHT (10 mm long; Steraloids Inc., Newport, RI), sealed with Silastic glue and allowed to dry overnight. All capsules were primed in a 37 °C 0.9% saline bath for 36 h before implantation.

Western blotting

For Western blots, animals (n = 6 males; 6 females) were euthanized with CO2, and their brains removed and placed in ice-cold 0.9% saline. Using a Vibratome, 400 μm sections of hypothalamus were collected in ice-cold saline, and the SCN were harvested bilaterally with the aid of a dissecting microscope. To prepare SCN lysates, the tissues were homogenized by sonication in lysis buffer (1% SDS in dH2O with Roche complete, Mini, EDTA-free protease inhibitor cocktail), and then incubated in a boiling water bath for 10 min. Lysates were spun in a microfuge (13,000 rpm for 30 s) to remove insoluble material. The protein concentration of the cleared supernatant was determined using the BCA method (Pierce, Rockford, IL). Lysates (5 μg/lane) were subjected to SDS gel electrophoresis, blotted to a nitrocellulose membrane and probed with the AR antibody (Santa Cruz Biotechnology, Santa Cruz, CA). Proteins were determined using the BCA method (Pierce, Rockford, IL). Lysates (5 μg/lane) were subjected to SDS gel electrophoresis, blotted to a nitrocellulose membrane and probed with the AR antibody (Santa Cruz Biotechnology, Santa Cruz, CA).
visualized by chemiluminescence, according to the manufacturer’s instructions (Lumiglo; Cell Signaling, Beverly, MA). Relative optical density (ROD) of the Western blots was measured using image analysis software (MCID, St. Catharines, ON). A specific band was observed at \(\approx 98 \) kDa, the molecular weight for AR.

Perfusion and immunochemistry

Animals were deeply anesthetized (pentobarbital: 200 mg/kg i.p.) and perfused intracardially with 50 ml saline followed by 100 ml of 4% paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.3. Brains to be used in ICC were post-fixed for 4 h at 4 °C, and cryoprotected in 20% sucrose in 0.1 M PB overnight, and sliced at 35 \(\mu \)m on a cryostat.

Immunocytochemistry (ICC)

For hormonal regulation of AR, males (\(n = 4 \) per group INT, GDX, GDX+TP) and females (\(n = 6 \) per group, estrus, diestrus, OVX, and OVX+TP) were killed as above. Cycling females were killed on the morning of diestrus (low E) or the afternoon of estrus (high E).

For counting of the number of AR-containing cells, DAB staining was used. Here, free-floating sections were incubated in 1% hydrogen peroxide, washed 3 × 10 min in phosphate buffered saline (PBS), incubated in normal goat serum for 1 h, and placed in anti-AR made in rabbit primary antibody (Santa Cruz; 1:5000) for 48 h. Sections were then washed 3 × 10 min with PBT, and then placed into a donkey secondary conjugated to CY2 (anti-guinea pig for) or CY3 (anti-rabbit for AR) fluorophores (1:200, Jackson ImmunoResearch, West Grove, PA) for 1 h. Sections were washed in PBS, mounted onto gel-coated slides, and dehydrated in a graded series of alcohols (50–100%). Coverslips were then applied with Krystalon (EM Science, Gibbstown, NJ), and slides allowed to dry overnight.

Quantification

Cell counts of DAB stained tissue were done to evaluate AR expression in the SCN. For each animal, two sections, representing the mid-caudal aspect of the SCN were analyzed bilaterally. An investigator blind to the experimental condition of the animal placed the SCN within a 200×200 \(\mu \)m grid on an Olympus-BH2 microscope. All cells within this grid were counted to ensure that uniform measures were made across animals, and that the entire SCN was
Results

Gonadectomy and androgen replacement alter circadian behavior in a sex dependent manner

The effects of gonadectomy and androgen replacement on circadian patterns of locomotor activity in female and male mice are shown for individual animals in Fig. 1, with the quantification given in Fig. 2. In males, GDX alters the period, precision, activity duration, and total amount of activity. Compared with INT males, period is lengthened ($p<0.05$), precision is greatly reduced ($p<0.001$), activity duration is reduced ($p<0.001$), and...
total amount daily of activity is lower ($p<0.001$). Treatment with TP restores all of these responses to normal, while treatment with DHT restores all but total amount of daily activity ($p>0.05$). However, DHT treatment does increase total daily activity above levels observed in GDX males ($p<0.01$).

In females, there is no effect of OVX on period or activity duration. However, there is a significant reduction in both precision and total amount of daily activity, compared to INT females ($p<0.05$ and $p<0.001$, respectively). Precision is restored to that of intact animals with either TP or DHT treatment. Amount of daily activity is increased following treatment with either TP or DHT over that of OVX animals ($p<0.05$), though neither hormone treatment restores activity levels to that of INT animals ($p>0.05$).

Comparison of males and females reveals sex differences in the effects of GDX and androgen replacement (Figs. 3A–D). Amount of daily activity is higher in females than in males ($p<0.01$). However, this sex difference disappears following gonadectomy ($p>0.05$). TP or DHT treatment of castrates increases overall activity levels in both sexes, and a sex difference is no longer observed ($p>0.05$). Activity duration is also different in the sexes, with intact males having longer activity duration than females ($p<0.05$). However, upon GDX, activity duration is much shorter in males than in females ($p<0.001$). As for activity, replacement with either TP or DHT eliminates the sex differences in activity duration observed in INT animals. Precision tends to be lower in females than in males ($p=0.06$), and this sex difference is eliminated following GDX, or GDX and androgen replacement. Period of free-running activity did not differ between INT males and females. However, in males the period lengthened following GDX, while no effect was seen in females ($p<0.05$). There were no sex differences after GDX animals were treated with TP or DHT.

Daily activity is re-organized following GDX in males but not females

Comparisons of the temporal organization of locomotor activity in free-running animals in each of 6 h time epochs in INT, GDX/OVX and hormone replaced animals is shown in Fig. 3. INT females and males show similar partitioning of daily behavior (Fig. 3A). However, following GDX, male behavior was dramatically re-organized, with almost all of the activity restricted to the late night (Figs. 3A vs. B). No such effect was seen in females. Following GDX/OVX, males and females differ.
significantly from each other (males vs. female, $p<0.001$). TP or DHT restored pre-castration temporal organization in males (Figs. 3B vs. C), with no sex differences seen in animals given similar hormone treatment (Figs. 3C and D, $p>0.05$).

Sex differences in SCN AR

Western blots of SCN indicate a two-fold sex difference in total amount of AR protein in the SCN of INT males and females (Fig. 4; $p<0.001$), with higher levels observed in males.

Expression and hormonal regulation of SCN AR

Using double label immunofluorescence for AVP (a marker of the SCN shell) and AR, we examined the pattern of SCN AR expression in males and females (Fig. 5A). In both sexes, AR-immunoreactivity (-ir) is localized to the core region of the SCN, though the female SCN has fewer AR-containing cells than does the male. Single label immunocytochemistry (Fig. 5B) indicates that GDX reduces AR expression in males, while OVX does not affect levels of AR in females. However, treatment with TP increases AR staining in both sexes.

Given the effects of GDX and androgen treatment on behavior, we explored whether AR was modulated by hormones in males and cycling females. Fig. 6A shows quantification of AR-ir in gonadally intact animals, and demonstrates that the number of AR cells is higher in intact males than estrus (E) or diestrus (D) females ($p<0.001$), while the latter did not differ from each other ($p>0.05$). Upon replacement of GDX males and OVX females with TP, SCN AR staining increases, though TP treated males show higher levels of AR staining than TP treated females ($p<0.001$).

Discussion

A major finding described here is the sex differences in AR density in the core SCN region. This is noteworthy as cells of
the core region of the SCN differ from the rest of the nucleus in their morphology, afferent and efferent connections, pattern of rhythmic and stimulus-induced gene expression, and peptidergic phenotypes (reviewed in: Antle and Silver, 2005; Van den Pol, 1980; van den Pol and Tsumoto, 1985). Neurons within separate SCN sub-regions serve distinctly separate functions in the overall organization of the circadian clock. Upon exposure to a light pulse, an increase in the expression of the immediate early gene FOS, and the circadian clock genes Per1 and Per2 is observed. Directly retinorecipient cells lying in the core SCN rapidly respond to photic stimulation whereas shell cells respond with a longer latency (Hamada et al., 2001; Karatsoreos et al., 2004; Silver et al., 1996; Yan and Silver, 2002, 2004). The coordinated interaction of these functionally distinct cells is integral to the coherent functioning of the brain clock (Yan et al., in press). One view of integration of function between these SCN regions is the “gate-oscillator model” (Antle et al., 2003, 2007). Here, we hypothesize that cells in the core area act as a “gate,” sometimes open and sometimes closed. The biological basis for this suggestion derives from the fact that light phase shifts circadian rhythms during the night or subjective night, but not during the day or subjective day. When the signal from activated gate cells reaches shell oscillators, it acts to limit the phase dispersion of the SCN’s independent cell-based oscillators. Given that the core SCN region receives neural afferent inputs, including those from the RHT and the IGL (Abrahamson and Moore, 2001; Moore, 1996; Moore and Silver, 1998), the present demonstration of sex differences in density of AR localized to the core SCN, points to a convergence of endocrine and neural input to this SCN compartment. This sets the stage for the male–female differences in integration of environmental and internal cues modulating circadian rhythmicity.

The present results provide several insights into the neural mechanisms that mediate sex differences in the circadian system. First, AR expression is highly localized to the core ventrolateral region of the SCN in both males and females, with significantly greater expression in males. These results were confirmed using two different methods, namely Western blots and immunocytochemical analyses. The sex differences seen in intact animals disappear following gonadectomy, and treatment of gonadectomized mice with TP eliminates the sex differences. Surprisingly, in males the response to the same dose of hormone produces a greater AR response than in females, indicating a sex difference in the adult response to hormones.

In contrast to the present finding, previous work reported sparse AR expression in the brain clock in several species (Kashon et al., 1996; Rees and Michael, 1982; Wu et al., 1995; Zhou et al., 1994), including humans (Fernandez-Guasti et al., 2000; Kruijver and Swaab, 2002). It is possible that the pattern of dense and localized AR expression in the core is unique to the mouse. Alternatively, it may reflect the fact that many prior studies were done before the heterogeneity of the SCN was appreciated, and this core region was missed, as it lies in a fairly caudal position within the SCN of mouse and hamster (Hamada et al., 2001; Karatsoreos et al., 2004; Silver et al., 1996).

Consistent with the present results, the modulatory effects of gonadal hormones on circadian behavior and physiology have been reported in a number of studies, though most have focused on estrogenic effects (Albers, 1981; Gerall et al., 1973; Turek et al., 1987). In constant conditions, the period of activity is shorter in ovariectomized hamsters and rats after treatment with estrogen (Albers, 1981; Morin, 1980; Zucker et al., 1980). In animals housed in LD cycles, an interesting “scalloping” effect is seen, with shorter latency onset of activity in estrus hamsters and rats (Albers, 1981; Morin et al., 1977). The present study was done in DD, thus we cannot evaluate scalloping in mice. That said, it seems unlikely that scalloping is the explanation for sex differences in precision, as the male-female sex difference in precision (~29 min) is much greater than the hamster hormone-mediated scalloping effect (~7 min).

The precise effects of steroids on the SCN are not well known. T can be reduced to 5alpha-DHT, an androgen with higher biological activity at brain androgen receptors than testosterone, or aromatized to estrogens (Martini, 1982). 5alpha-reduced androgens cannot be metabolized to estrogens but may be metabolized into other androgens, such as 3β-androstanediol. The SCN appears to be a minor target for estrogen, as few estrogen receptors (ERs) have been demonstrated in this nucleus (Mitra et al., 2003; Shughrue et al., 1997; Shughrue and Merchenthaler, 2001), though the SCN projects to regions containing ERs, and ER-containing cells project to the SCN (de la Iglesia et al., 1995, 1999). Furthermore, the estrogen synthesizing enzyme, aromatase, is not localized to the adult SCN, but rather to the retino-hypothalamic tract (Horvath and Wikler, 1999). Given our results indicating that DHT paralleled the effect of T, we conclude that aromatization of estrogen is not a necessary mediating mechanism of gonadal hormone effects on period, precision, and activity duration reported in this paper. It is well established that period and precision are properties of the circadian clock itself, rather than extra-SCN effects (Pittendrigh and Daan, 1976).

The possible function of a sex differences in AR in the SCN is a topic on which we can only speculate. It is believed that direct SCN projections to neuroendocrine cells are associated with the generation of steroid-induced LH surges. SCN efferents contact GnRH neurons (Van der Beek et al., 1997), and such contacts increase around the time of puberty (Kriegsfeld et al., 2002). Given that SCN lesions disrupt these LH surges (reviewed in: de la Iglesia and Schwartz, 2006; Kriegsfeld and Silver, 2006), one possibility is that the sex differences in SCN AR reflect male–female differences in GnRH regulation.

Another interesting possibility is that androgen action on circadian rhythms, perhaps through SCN AR’s, enable male and female mice to inhabit overlapping temporal niches in their daily activity. Thus, as shown here, in the absence of androgens males and females have very different temporal patterns of activity, as gonadectomized males have severely reduced activity at the start of the night (Figs. 1 and 2). This could reduce the possibility of their meeting in the wild. In contrast, intact, and androgen-replaced males run at the start of the night, as do females. This temporal pattern of activity has been well characterized in a microanalysis of running behavior (Eikelboom and Mills, 1988). Thus, the androgenic hormones acting on SCN AR receptors may allow males and females to display...
similar temporal behavior patterns. It has been suggested that there are instances where in the absence of hormones, the sexes would differ in some manner that are not advantageous (De Vries and Boyle, 1998). In such a case they suggest that hormones may serve to make the sexes more similar. This is a clever idea, and the present study provides one example of such an instance.

Acknowledgments

The authors would like to thank Dr. Joseph LeSauter for assistance in setting up and with troubleshooting the equipment and with tissue collection, and Miss Alice Wang for assistance in data collection and analysis.

This work was supported by a Japan Society for the Promotion of Science fellowship to E.I., a Natural Sciences and Engineering Research Council of Canada Pre-doctoral Fellowship to I.K., and a grant from the National Institutes of Health (#NS37919) to R.S.

References

