MEETING REPORT

Signals that go with the flow

Cerebrospinal fluid (CSF) is to the brain what the Great Lakes and waterways are to North America: a system of interconnected fluid spaces that influence the local climate and the environment of the territory that encloses them, while providing a conduit for traffic in goods and services. The 3D representation of these spaces is complicated, but Fig. 1 shows a section through the whole system. In humans, the total cranial volume of CSF is about 140 ml with some 115 ml located in the subarachnoid space. An additional 25 ml surrounds the spinal cord. The major site of CSF production is the choroid plexus, a vascular expansion found in the third, fourth and lateral ventricles. In living animals, this highly vascularized choroidal epithelium resembles bright-red seaweed.

Total production of CSF in humans is about 500 ml in 24 h so the total volume of CSF turns over two to three times per day, which could be important when considering the termination of the actions of signals.

The CSF circulates in a regular manner that enables it to carry chemical information in a predictable way. From the lateral ventricles, CSF passes into the third ventricle and then moves on to the fourth ventricle. The small volume of the latter two ventricles ensures a relatively fast flow. Cerebrospinal fluid leaves the ventricular system at the level of the medial olfactory and enters the subarachnoid space, where it ascends the lateral convexity and eventually flows downward into the space that surrounds the spinal cord. Cerebrospinal fluid drains into venous channels of the subarachnoid space via arachnoid villi. This circulation is caused by pressure waves that are generated by pulsatile arterial blood flow and brain expansion, and by pressure gradients that result from the production and absorption of CSF. Fast magnetic-resonance imaging has visualized these flow patterns.

Mike Bradbury (London, UK) described how the CSF is contained in a system of ventricles and subarachnoid spaces over the major brain surfaces. The 3D representation of these spaces is complicated, but Fig. 1 shows a section through the whole system. In humans, the total cranial volume of CSF is about 140 ml with some 115 ml located in the subarachnoid space. An additional 25 ml surrounds the spinal cord. The major site of CSF production is the choroid plexus, a vascular expansion found in the third, fourth and lateral ventricles. In living animals, this highly vascularized choroidal epithelium resembles bright-red seaweed.

Total production of CSF in humans is about 500 ml in 24 h so the total volume of CSF turns over two to three times per day, which could be important when considering the termination of the actions of signals.

The CSF circulates in a regular manner that enables it to carry chemical information in a predictable way. From the lateral ventricles, CSF passes into the third ventricle and then moves on to the fourth ventricle. The small volume of the latter two ventricles ensures a relatively fast flow. Cerebrospinal fluid leaves the ventricular system at the level of the medial olfactory and enters the subarachnoid space, where it ascends the lateral convexity and eventually flows downward into the space that surrounds the spinal cord. Cerebrospinal fluid drains into venous channels of the subarachnoid space via arachnoid villi. This circulation is caused by pressure waves that are generated by pulsatile arterial blood flow and brain expansion, and by pressure gradients that result from the production and absorption of CSF. Fast magnetic-resonance imaging has visualized these flow patterns. Glia on the ependymal cells that line some of the ventricles could help to move the CSF.

Are there sources of CSF other than that produced by the choroid epithelia? Joan Abbott (London, UK) explained that if such sources existed, they were likely to be the blood vessels of the brain, which might produce 10% of total CSF. However, such production implies that blood must flow through the brain parenchyma where the interstitial fluid is distinct from the CSF. The likely conduits for such flow are the Virchow-Robbin spaces around major vessels. This confined flow could have a relatively high velocity in a particular direction and could carry signals from one region to another. The late Helen Casper and her colleagues provided evidence of this by showing that markers of very different molecular weights were removed from the brain with similar rates of diffusion.

Fluid–brain interfaces

Just as the shores of a lake are the sites of crucial interchange between the body of water and the land, so the interfaces of the CSF system and the brain have a crucial role in any discussion of signaling. The ventricles are lined with a layer of non-neuronal cells, the ependyma. Milton Brightman (Bethesda, MD, USA) noted that horseradish peroxidase (43 kDa) and ferritin (560 kDa), could enter brain tissue from the ventricles, which indicates that the spaces between ependyma were generally not closed by tight junctions. Many ependyma are coupled through gap junctions and so have potential for intracellular signaling.

Although some receptors for chemical signals probably are found on cells located in the walls of the ventricles, many signals will have to penetrate further into the brain to reach their targets and signals that originate within the brain parenchyma must make their way to the CSF. Charles Nicholson (New York, NY, USA) discussed the constraints encountered by molecules within the brain. Although the interstitial flow discussed by Abbott could have a role, the most ubiquitous transport process is diffusion. In water, diffusion of a molecule obeys Fick’s Laws and is governed by the diffusion coefficient, D. In brain tissue many molecules are confined to move in the extracellular space (ECS), which has a foam-like geometry. Surprisingly, within this space, Fick’s Laws are still obeyed, but D is replaced by an apparent diffusion coefficient, D*. The value of which is about two-fifths that of D, so that it takes longer for molecules to move between locations in brain than in water. Owing to the reduced volume of the ECS, now known to constitute about 20% of total brain volume, released substances become more concentrated in this confined space. Molecules up to several hundred kDa/Mo can diffuse through the ECS (Ref. 5). In some cases the degradation or uptake processes are such that they limit the spread of dopamine unless the amount released saturates the uptake system when overflow of dopamine into the ECS occurs. By contrast, in regions such as the substantia nigra and ventral tegmental area, where dopamine was released at soma–dendritic, extraparietal sites, the spread was controlled by diffusion. Rice mentioned experiments from Ralph Adams’ laboratory showing that, after electrical stimulation of the substantia nigra, signals go with the flow.

Charles Nicholson
Dept. of Physiology and Neuroscience, NYU Medical School, New York, NY 10016, USA.

*Workshop on the CSF as a communication pathway of the brain. Held in Los Angeles, USA, 7 November 1998.

0166-2236/99 – see front matter © 1999 Elsevier Science. All rights reserved. DOI: 10.1016/S0166-2236(98)01388-5 TINS Vol. 22, No. 4, 1999 143

Fig. 1. The circulatory pathway of cerebrospinal fluid (CSF; arrows) in the brain and spinal cord. Most of the CSF is produced in the ventricles and enters the subarachnoid space at the base of the brain. Cerebrospinal fluid drains away mainly through the arachnoid villi into the dural venous system. Adapted, with permission, from Ref. 1.
nigra, homovanillic acid (HVA), a dopaminergic metabolite, appeared abruptly in the CSF, but with a delay of between 15 and 60 min.

Much of our knowledge about the way in which substances move from ventricles to brain has been obtained by Joe Fenstermacher (Detroit, MI, USA) and colleagues. These researchers have shown that there are four classes of material, which are identified according to the way they behave in the brain after leaving the CSF. Some substances, such as EDTA, do not cross the blood–brain barrier (BBB) and remain confined to the ECS, where they obey the diffusion laws outlined by Northrop. Other substances, such as mannitol and methotrexate, are mainly confined to the ECS but show moderate cellular uptake, while substances such as hydroxypyrine enter cells readily, but cross the BBB slowly and might behave in the same way as dopamine in the striatum. Finally, substances such as cycloleucine and thiotepa both enter cells and are then removed across the BBB (Ref. 7).

Fenstermacher also revealed that after infusion of radiolabeled sucrose directly into the lateral ventricle, the sucrose flowed throughout the ventricular system and into various subarachnoid spaces within a matter of minutes, but moved surprisingly slowly over the cerebral and cerebellar cortices. The sucrose also diffused freely into the brain over many interfaces but was restricted at others, such as the circumventricular and subfornical organs. These results indicate the importance of understanding regional differences in transport characteristics.

**Targets at the interface looking for signals**

The hypothalamus is adjacent to the ventricles, which also contain specialized structures such as the circumventricular organs. Other areas at the interface have cells with a specialized morphology. These structures all seem to be potential receptors for signals or donors of substances.

Bob Moore (Pittsburgh, PA, USA) showed that the way in which molecules crossed the interface in predictable patterns suggested specificity of CSF-mediated signals. When olfactory toxin (LL) subunit (11.5 kDa) and FluoroGold (0.5 kDa) were injected into the lateral or third ventricle of the rat, neurons were labeled in the medially hyalopenhic regions while ependymal cells were labeled in the circumventricular organs. Neurons of the dorsal raphe were also labeled, which probably reflected uptake by axons in the suprapinealplexus. Moore also draws attention to the presence of dopaminergic and serotonergic nerve terminals located in the CSF, which must surely release their contents there, although the consequences of such release would depend on whether the local CSF moved with a systematic flow or random eddies.

These data raised the issue of whether the cells at the interface might show specializations that indicate a role in the sampling of the ventricular environment. Bala Vigh (Budapest, Hungary) explained that the system of CSF-contacting neurons represented a very ancient system. In the seadwelling proto-chordate, Branchiostoma lanceolatum, the central canal is open to the seawater. Later in evolution, the central canal and ventricles became sealed off from the outside environment, the CSF-contacting cells were retained and sampled the internal environment, even in humans. Many CSF-contacting cells have chloride channels that resemble the mechanoreceptors of the lateral line system. Maria Manzano e Silva (Lisbon, Portugal) noted that some CSF-contacting neurons of the hypothalamus contain opsin and can be classified as ‘deep encephalic photoreceptors’. Indeed, retinal and pineal photoreceptors possess features in common with CSF-contacting neurons.

In addition to specialized cells embedded in the interface, Patrick Card (Pittsburgh, PA, USA) said that there were entire intraventricular neuronal networks. They are found on the floor of the third ventricle where these suprapineal cells form dense clusters. Some axonal processes ramify and terminate within the ventricle but others proceed through the ependymal layer to unknown targets within the brain.

**Signals at the interface looking for targets**

There is much evidence for significant levels of neuroactive substances in the CSF as well as targets for these substances. Jim Kroger (Pullman, WA, USA) addressed the search for some of the most tantalizing putative CSF signaling molecules, namely the substances responsible for sleep. In classic experiments, Pappenheimer had transferred CSF from sleep-deprived goats to rats, which became sleepy as a consequence, but the attempt to isolate a single factor responsible for sleep has been unsuccessful. It seems that many compounds are involved in causing sleep. One well-established candidate is interleukin-1 (IL-1), a compound that increases non-rapid eye movement (non-REM) sleep. Furthermore, IL-1 levels increase with sleep deprivation. IL-1 receptor knockouts in mice do not respond to IL-1, however they do respond to tumor necrosis factor-α (TNF-α), which shows that substances other than IL-1 are involved in sleep.

To demonstrate the controversies of current sleep research, Milan Herkenham (Bethesda, MD, USA) questioned the data on IL-1 receptor localization in brain. He then discussed his own work showing that intravenous injection of IL-1 produces an increase of the expression in non-neuronal cells in the archrondplexus, blood vessels and choroid plexus. After 1 h this pattern disappeared but at 3 h another pattern of activation appeared in regions more deeply inside the brain. The circumventricular organs might behave in the brain after leaving the CSF with a delay of between 15 and 60 min.

The theme of diffusible factors in juxta-ventricular locations and their role in reproduction was taken up by Doral Skinner (Nouzilly, France). She believes that understanding what controls the release of gonadotropin releasing hormone (GnRH) is crucial to understanding reproduction itself. Recent work by Skinner and colleagues had found that GnRH could be detected in the CSF of the ewe. The appearance was pulsatile and coincided with the estradiol-induced lutotizing-hormone surge, which accurately reflects the changes measured in hypophysal portal blood.

The theme of diffusible factors in juxta-ventricular locations and their role in reproduction was taken up by Doral Skinner (Nouzilly, France). She believes that understanding what controls the release of gonadotropin releasing hormone (GnRH) is crucial to understanding reproduction itself. Recent work by Skinner and colleagues had found that GnRH could be detected in the CSF of the ewe. The appearance was pulsatile and coincided with the estradiol-induced lutotizing-hormone surge, which accurately reflects the changes measured in hypophysal portal blood. The consequences of the presence of GnRH in CSF are unknown.

Reproduction is an immensely complex behavior and it can be expected that a wealth of chemical mediators will be involved. Benoit Malpaux (Nouzilly, France) noted that malpighian neurosecretion was involved in reproductive behavior via its actions in the hypothalamus in the pre-mammillary area. Melatonin could reach the hypothalamus...
around the ventricles melatonin receptors are widely distributed in neural tissue. There is evidence that ventricle, creating a large concentration that diffuses from the pineal gland into the third ventricle. The simplest explanation of which suggests that melatonin enters at the in the CSF of the lateral ventricles is less artery plasma. The melatonin concentration directly through the third ventricle. These idea that melatonin could act more through a circuitous vascular pathway, but in addition of encapsulated SCN cells16 was the host. Lehman and Silver asked whether period can change the circadian rhythm in suprachiasmatic nucleus (SCN). Moreover, established that the clock is located in the involved ablation and transplantation, experiments on the golden hamster, which on 24 h circadian rhythm. Numerous Lehman and Silver described their studies because the sampling procedure perturbs warned that many conclusions were invalid must have access to and enter the com-

Concluding remarks
The presentations at this meeting left no doubt that many neuroactive substances could be detected in the CSF and that many receptors for substances were located in the vicinity of the CSF system. But are these substances just by-products that spill over into the ventricles after accomplishing their function in the brain? Are they a useful means to eavesdrop on activities elsewhere but of no functional consequence themselves? Do the hydro-
dynamics of CSF flow disrupt the move-
ment of these signals or are they real sig-
nals that make use of the characteristics and flow patterns of the ventricular-sub-

nals that make use of the characteristics and flow patterns of the ventricular–sub-

are involved ablation and transplantation, established that the clock is located in the suprachiasmatic nucleus (SCN). Moreover, the transplantation of an SCN from a mutant donor that has a different clock period can change the circadian rhythm in the host. Lehman and Silver asked whether SCN transplants communicated with host via a diffusible factor. In the hamster, the addition of uncapsulated SCN cells was sufficient to restore the circadian rhythm. When the implanted capsule or graft was in the ventricle, the target had to be downstream of the source and efficacy varies depending on the separation be-
tween source and target. These results all pointed to a diffusible factor being re-

References
14 Skinner, D.C. et al. (1997) *Biological Psychology* 218, 469–473

Coming next month in TINS
Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome, by U. Bellugi, L. Lichtenberger, D. Milli, A. Galaburda and J.R. Kosenberg
Seeing is coming: building collision-sensitive neurones, by F.C. Kind and F.J. Simmons
Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same, by G.G. Turrigiano
Plus much more!