Cultural Studies Expert Janet Wolff Named School of The Arts Associate Dean for Academic Affairs

BY KRISTIN STERLING

Janet Wolff, recognized internationally for her contribution to the field of cultural studies, has been named the School of the Arts associate dean for academic affairs in the School of the Arts. Wolff, who directed the program of Visual and Cultural Studies at the University of Rochester for the past ten years, will begin her new work at Columbia in August.

“We are thrilled to have Janet Wolff with us, because she is not only an academic power-house,” said Bruce Ferguson, dean of the School of the Arts, “but she is also a very creative contributor to thinking about the arts in practice.”

One of her immediate academic priorities will be to help create a single School of the Arts, a priority of Dean Ferguson’s stewardship. Wolff sees the move to Columbia as an opportunity to make investments in interdisciplinary initiatives and interacting with faculty on the administrative side of academia, including the intellectual challenge of program design.

Facilitating interaction among students, “I see it as a central to fostering a singular school identity. Interdisciplinary initiatives such as curriculum enhancements are key methods of advancing such interaction,” says Wolff.

Columbia University Record, Office of Public Affairs Welcome Changes

This fall marks the 27th year of publication for the Columbia University Record and some extensive changes in the paper’s appearance and staff. Due to the expansion and immediacy of Columbia’s Web site (www.columbia.edu), the Record has become a more magazine-like approach to bringing you news on the University.

The new Record will increase from eight to 12 pages in length and width to be published bi-weekly, or 16 times per academic year. Therefore, the total number of pages will remain the same, but we will try to include more photos and more feature stories in the paper.

Jason Holland has become the Record’s managing editor. Holland, a New York native, was the senior writer for the Record and has worked in Columbia’s Office of Public Affairs for more than three years.

After graduating from the University at Albany with a degree in English and political science, he worked in advertising and then at a commercial and television talent agency.

Hollander later spent time as a substitute English teacher in Queens, NY, before working as a fundraiser on a 1998 U.S. senatorial campaign.

Following Holland’s departure, Record editor Pamela Vu has joined the editorial staff at a consumer magazine in New York City.

New Addition to the Office of Public Affairs

Caroline Ladham is the new public affairs officer for the schools of Journalism, General Studies and Continuing Education. She came to Columbia by way of Austin, Texas, where she served as director of publications and media relations at the University of Texas at Austin and a College of Natural Sciences.

As editor of the College’s magazine “Focus on Science,” Sari Chayas, an assistant professor of conservation biology at the University of California, Davis, says, “I think that it can be of great value if students of the arts are given the opportunity to think about their own practice in a broader context – for example, to read and discuss the work of the physical sciences and the security of encrypted messages.

The third driving force for the research is Moore’s Law, which has held for some forty years, but is now believed to be nearing its end. The law is based on the empirical observation that computer power doubles about every 18 months. This is why millions of people own computers more powerful than those that only very large corporations could afford a few decades ago. For Moore’s Law to continue to hold, computer components must get smaller and smaller, but that is not possible because this will become impossible in some fifteen years. If we are to continue to have powerful computers, an entirely new technology will have to be found. Quantum computing is a prime candidate.

Fundamental laws of physics, such as decoherence, make quantum computers difficult to construct. Today they exist only as laboratory prototypes. Quantum computing is designed to solve problems very fast. Examples include path integrals (which occur in string theory), quantum chemistry, and mathematical finance, partial differential equations and operations research. Algorithms for solving these problems will be developed and implemented on laboratory prototypes. Also of interest is the identification of problems where quantum computing cannot be expected to deliver significant speed-ups over classical computation.

In some ways, I think my interest in the relationship between cultural studies and contemporary art, Wolff says, “I think that it can be of great value if students of the arts are given the opportunity to think about their own practice in a broader context – for example, to read and discuss the work of the physical sciences, and the security of encrypted messages.”

The third driving force for the research is Moore’s Law, which has held for some forty years, but is now believed to be nearing its end. The law is based on the empirical observation that computer power doubles about every 18 months. This is why millions of people own computers more powerful than those that only very large corporations could afford a few decades ago. For Moore’s Law to continue to hold, computer components must get smaller and smaller, but that is not possible because this will become impossible in some fifteen years. If we are to continue to have powerful computers, an entirely new technology will have to be found. Quantum computing is a prime candidate.

Fundamental laws of physics, such as decoherence, make quantum computers difficult to construct. Today they exist only as lab- oratory prototypes. Quantum computing is designed to solve problems very fast. Examples include path integrals (which occur in string theory), quantum chemistry, and mathematical finance, partial differential equations and operations research. Algorithms for solving these problems will be developed and implemented on laboratory prototypes. Also of interest is the identification of problems where quantum computing cannot be expected to deliver significant speed-ups over classical computation.

In some ways, I think my interest in the relationship between cultural studies and contemporary art, Wolff says, “I think that it can be of great value if students of the arts are given the opportunity to think about their own practice in a broader context – for example, to read and discuss the work of the physical sciences, and the security of encrypted messages.”

The third driving force for the research is Moore’s Law, which has held for some forty years, but is now believed to be nearing its end. The law is based on the empirical observation that computer power doubles about every 18 months. This is why millions of people own computers more powerful than those that only very large corporations could afford a few decades ago. For Moore’s Law to continue to hold, computer components must get smaller and smaller, but that is not possible because this will become impossible in some fifteen years. If we are to continue to have powerful computers, an entirely new technology will have to be found. Quantum computing is a prime candidate.

Fundamental laws of physics, such as decoherence, make quantum computers difficult to construct. Today they exist only as laboratory prototypes. Quantum computing is designed to solve problems very fast. Examples include path integrals (which occur in string theory), quantum chemistry, and mathematical finance, partial differential equations and operations research. Algorithms for solving these problems will be developed and implemented on laboratory prototypes. Also of interest is the identification of problems where quantum computing cannot be expected to deliver significant speed-ups over classical computation.

In some ways, I think my interest in the relationship between cultural studies and contemporary art, Wolff says, “I think that it can be of great value if students of the arts are given the opportunity to think about their own practice in a broader context – for example, to read and discuss the work of the physical sciences, and the security of encrypted messages.”

The third driving force for the research is Moore’s Law, which has held for some forty years, but is now believed to be nearing its end. The law is based on the empirical observation that computer power doubles about every 18 months. This is why millions of people own computers more powerful than those that only very large corporations could afford a few decades ago. For Moore’s Law to continue to hold, computer components must get smaller and smaller, but that is not possible because this will become impossible in some fifteen years. If we are to continue to have powerful computers, an entirely new technology will have to be found. Quantum computing is a prime candidate.

Fundamental laws of physics, such as decoherence, make quantum computers difficult to construct. Today they exist only as laboratory prototypes. Quantum computing is designed to solve problems very fast. Examples include path integrals (which occur in string theory), quantum chemistry, and mathematical finance, partial differential equations and operations research. Algorithms for solving these problems will be developed and implemented on laboratory prototypes. Also of interest is the identification of problems where quantum computing cannot be expected to deliver significant speed-ups over classical computation.

In some ways, I think my interest in the relationship between cultural studies and contemporary art, Wolff says, “I think that it can be of great value if students of the arts are given the opportunity to think about their own practice in a broader context – for example, to read and discuss the work of the physical sciences, and the security of encrypted messages.”

The third driving force for the research is Moore’s Law, which has held for some forty years, but is now believed to be nearing its end. The law is based on the empirical observation that computer power doubles about every 18 months. This is why millions of people own computers more powerful than those that only very large corporations could afford a few decades ago. For Moore’s Law to continue to hold, computer components must get smaller and smaller, but that is not possible because this will become impossible in some fifteen years. If we are to continue to have powerful computers, an entirely new technology will have to be found. Quantum computing is a prime candidate.

Fundamental laws of physics, such as decoherence, make quantum computers difficult to construct. Today they exist only as laboratory prototypes. Quantum computing is designed to solve problems very fast. Examples include path integrals (which occur in string theory), quantum chemistry, and...