The Japanese trading firm Marubeni has given Columbia $2.75 million to support research in age-related neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease, using a technique that quantifies gene expression in brain tissue.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.

“By comparing transcripts from tissue in gene expression in diseased vs. healthy brain tissue. The researchers will use RIKEN’s Gene Expression, or SAGE, a method that tracks gene expression in cells by creating unique identifying tags from each gene transcript and then subtracting the tags from each sample to high-throughput sequencing.