The last five years have added new dimensions to the artistic life in the United States. The cultural world now includes an enormous growth in newsworthy cultural activities, yet arts journalism is in a state of decline. To reflect this new reality, according to a groundbreaking report published last month, the CUNY School of Journalism and the Sesquicentennial of the American Legion convention in Philadelphia in the 1970s. The bacteria were first recognized as a human pathogen after an outbreak of Legionnaires' disease at the American Legion convention in Philadelphia in the 1970s. The bacteria, which grow in dormitories and buildings as well as fresh and industrial water systems, are able to survive in difficult environments—even plumbing systems treated with potent biocides. In addition, the organism has the ability to redirect the organelle trafficking system of its host immune system. It is regarded as a major environmental hazard. Much has been learned in recent years about the properties of Legionella, which has been associated with several outbreaks and breaks since 1976 and is a frequent cause of hospital-acquired pneumonia. But a true understanding of its life cycle and pathogenesis remains elusive. The elucidation of its complete genome reper- toire is key. The bacteria form a loop and lead to the discovery of genes for unexpected metabolic pathways. The vast body of information provided by the Legionella genome sequence, including the identification of new candidate virulence genes, has been a significant advance in our understanding of the organism. The genome sequence highlights the unique value of the whole genome approach for research on infectious diseases. The bacteria were first recognized as a human pathogen after an outbreak of Legionnaires' disease at the American Legion convention in Philadelphia in the 1970s. The bacteria, which grow in dormitories and buildings as well as fresh and industrial water systems, are able to survive in difficult environments—even plumbing systems treated with potent biocides. In addition, the organism has the ability to redirect the organelle trafficking system of its host immune system. It is regarded as a major environmental hazard. Much has been learned in recent years about the properties of Legionella, which has been associated with several outbreaks and breaks since 1976 and is a frequent cause of hospital-acquired pneumonia. But a true understanding of its life cycle and pathogenesis remains elusive. The elucidation of its complete genome reper- toire is key. The bacteria form a loop and lead to the discovery of genes for unexpected metabolic pathways. The vast body of information provided by the Legionella genome sequence, including the identification of new candidate virulence genes, has been a significant advance in our understanding of the organism. The genome sequence highlights the unique value of the whole genome approach for research on infectious diseases.

The bacteria were first recognized as a human pathogen after an outbreak of Legionnaires' disease at the American Legion convention in Philadelphia in the 1970s. The bacteria, which grow in dormitories and buildings as well as fresh and industrial water systems, are able to survive in difficult environments—even plumbing systems treated with potent biocides. In addition, the organism has the ability to redirect the organelle trafficking system of its host immune system. It is regarded as a major environmental hazard. Much has been learned in recent years about the properties of Legionella, which has been associated with several outbreaks and breaks since 1976 and is a frequent cause of hospital-acquired pneumonia. But a true understanding of its life cycle and pathogenesis remains elusive. The elucidation of its complete genome reper- toire is key. The bacteria form a loop and lead to the discovery of genes for unexpected metabolic pathways. The vast body of information provided by the Legionella genome sequence, including the identification of new candidate virulence genes, has been a significant advance in our understanding of the organism. The genome sequence highlights the unique value of the whole genome approach for research on infectious diseases.

The bacteria were first recognized as a human pathogen after an outbreak of Legionnaires' disease at the American Legion convention in Philadelphia in the 1970s. The bacteria, which grow in dormitories and buildings as well as fresh and industrial water systems, are able to survive in difficult environments—even plumbing systems treated with potent biocides. In addition, the organism has the ability to redirect the organelle trafficking system of its host immune system. It is regarded as a major environmental hazard. Much has been learned in recent years about the properties of Legionella, which has been associated with several outbreaks and breaks since 1976 and is a frequent cause of hospital-acquired pneumonia. But a true understanding of its life cycle and pathogenesis remains elusive. The elucidation of its complete genome reper- toire is key. The bacteria form a loop and lead to the discovery of genes for unexpected metabolic pathways. The vast body of information provided by the Legionella genome sequence, including the identification of new candidate virulence genes, has been a significant advance in our understanding of the organism. The genome sequence highlights the unique value of the whole genome approach for research on infectious diseases.