Advances in Cancer Treatments
CU Researchers Clear Major Hurdle to Successful Gene Therapy for Cancer

By Elizabeth Streich

In the study, a virus was engineered to use two special molecules within a tumorous cell—molecules with a unique ability to essentially turn on production of a cancer-inhibiting protein by the virus. The genetically modified virus eradicated the cancer cells in mice and in human cells, while avoiding the healthy ones.

Gene therapy is a technique that corrects abnormal human genes—replacing these abnormal, or disease-causing genes, with healthy ones. The technique is usually performed through use of a delivery system, such as a virus. Viruses are used because over time they develop an ineradicable ability to deliver disease-causing or pathogenic genes to human cells.

By understanding the internal mechanisms of a virus, scientists are turning the medical tables and tricking viruses into delivering healthy genes as opposed to ones that will cause disease. The system, however, is not foolproof. There is a concern, for example, that once used, a virus may simply reproduce and cause a new disease.

In a study in the Jan. 25 issue of Proceedings of the National Academy of Sciences (PNAS), CUMC researchers demonstrated that the technique can work well by incorporating healthy genes inside a specially designed virus that corrects abnormal human genes.

In the study, a virus was engineered to use two special molecules within a tumorous cell—molecules with a unique ability to essentially turn on production of a cancer-inhibiting protein by the virus. The genetically modified virus eradicated the cancer cells in mice and in human cells, while avoiding the healthy ones.

Gene therapy is a technique that corrects abnormal human genes—replacing these abnormal, or disease-causing genes, with healthy ones. The technique is usually performed through use of a delivery system, such as a virus. Viruses are used because over time they develop an ineradicable ability to deliver disease-causing or pathogenic genes to human cells.

By understanding the internal mechanisms of a virus, scientists are turning the medical tables and tricking viruses into delivering healthy genes as opposed to ones that will cause disease. The system, however, is not foolproof. There is a concern, for example, that once used, a virus may simply reproduce and cause a new disease.

In a study in the Jan. 25 issue of Proceedings of the National Academy of Sciences (PNAS), CUMC researchers demonstrated that the technique can work well by incorporating healthy genes inside a specially designed virus that corrects abnormal human genes.

In the study, a virus was engineered to use two special molecules within a tumorous cell—molecules with a unique ability to essentially turn on production of a cancer-inhibiting protein by the virus. The genetically modified virus eradicated the cancer cells in mice and in human cells, while avoiding the healthy ones.

Gene therapy is a technique that corrects abnormal human genes—replacing these abnormal, or disease-causing genes, with healthy ones. The technique is usually performed through use of a delivery system, such as a virus. Viruses are used because over time they develop an ineradicable ability to deliver disease-causing or pathogenic genes to human cells.

By understanding the internal mechanisms of a virus, scientists are turning the medical tables and tricking viruses into delivering healthy genes as opposed to ones that will cause disease. The system, however, is not foolproof. There is a concern, for example, that once used, a virus may simply reproduce and cause a new disease.

In a study in the Jan. 25 issue of Proceedings of the National Academy of Sciences (PNAS), CUMC researchers demonstrated that the technique can work well by incorporating healthy genes inside a specially designed virus that corrects abnormal human genes.

Herbert Goldstein, Nuclear Scientist

Herbert Goldstein, Professor Emeritus of Nuclear Science and Engineering at Columbia, died on Jan. 12, at the age of 82.

Goldstein, long recognized for his scholarship in classical mechanics and reactor shield- ing, was the author of the textbook Classical Mechanics. The book has been a standard text in the field since it first appeared 50 years ago. It has been translated into nine languages. Goldstein’s contribu- tions to reactor design were honored by the U.S. Department of Energy, which awarded him the E.O. Lawrence Memorial Award in 1962. In 1977, he was the recipient of the Distinguished Service Award from the shielding division of the American Nuclear Society.

Goldstein was professor of nuclear science and engineering in the School of Engineering and Applied Science since 1961.

He received the Great Teacher Award, given by the Society of Columbia Graduates, in 1976. In 1984, Goldstein was the first to hold the Thomas Alva Edison pro- fessorship at the University. Appointed to a named chair is one of the highest honors bestowed on a University scholar.

In addition to his ongoing energy research, Goldstein devoted time to promoting sci- entific literacy through teaching undergraduate courses. In 1977, he taught a course he designed to increase scientific understanding of energy issues—Nuclear Energy: A Scientist-technician’s view for the Non-scientist. He was also one of the faculty members instru- mental in the development of an innovative science course for non-scientists, The Theory and Practice of Science, at the College.

Goldstein was a consultant for Oak Ridge National Laboratory and for Brookhaven National Laboratory. He was a fellow of the American Physical Society, the American Nuclear Society, the New York Academy of Sciences and the American Association for the Advance- ment of Science. Goldstein also was a member of the American Association of Physics Teachers and was a founding member and president of the Association of Orthodox Jewish Scientists.

He received a B.S. from City College of New York in 1940 and a Ph.D. from the Massachusetts Institute of Technology in 1943.

He is survived by his wife, Channa, his children, Pesina, Aaron, Mor and Shoshanna, and 10 grandchildren.

Pediatric Neurologist Sidney Carter

Sidney Carter, Professor Emeritus of Neurology and Pediatrics and a pioneer in the field of child neurology, died on Jan. 16 on Cape Cod at the age of 92.

Carter spent more than 30 years at Columbia, from 1947 to 1978, where among other responsi- bilities, he was chief of the pedi- atric neurolgy service. During his early years as an instructor at Columbia, he realized that most hospitals lacked children’s spe- cialists. This led him to pioneer the establishment of child neur- ology as a subspecialty within neu- rology, a field he greatly influ- enced through his research and teaching.

As president of the American Board of Psychiatry and Neurology, Carter influenced the development of certification in pediatric neurology, which began in 1967. He also served as presi- dent of the American Academy of Neurology and the American Neurological Association. The lat- ter offers a Sidney Carter Award in his honor.

In Boston, Carter gradu- ated from Dartmouth College and Boston University School of Medicine. During World War II, he joined physicians from Boston City Hospital at the Seventh Central Army General Hospital in England, where he was assistant chief of the neuropsychiatric sec- tion and the principal neuropath- ologist consultant for army casualties.

After returning from Columbia, Carter remained in practice for more than a decade as chief of neurology at Beth-Hillside Children’s Hospital in Valhalla, New York.

He is survived by his wife of 60 years, Elizabeth Crosby; three sons, Jeffrey, Jonathan and Jeremy; six grandchildren, and one great-grandchild.

Lucien Carr

Lucien Carr, founder member of the Beat Generation writers, died on Feb. 4, 1998, at a Washington University Hospital after collapsing at his Washington, D.C., home.

Carr was not known publicly for his writing but is credited with being a catalyst for the Beat movement born out of a desire to be free from Post World War II social constraints. The best-known authors from that period, Allen Ginsberg, William Burroughs and Jack Kerouac, were introduced to each other through Carr while they were students at Columbia in the early 1940s.

In addition to serving as an editor and inspiration to the Beats, legend has it that Carr pro- vided Kerouac with a roll of Teletype paper that he used to write his ground-breaking novel On the Road.

Carr was said to have been an old man who was said to have had a romantic interest in film. Kerouac and Ginsberg helped persuade Carr to turn himself in, and he later served two years on a manslaughter con- viction for the murder of a man.

Carr then carried on a presti- gious career as a journalist for United Press and United Press International, where he was ini- tially hired as a copy boy in 1946. Carr became the night news edi- tor in 1956 and went on to head the general news desk until his retirement in 1993.

Carr leaves behind longtime companion Kathleen Silvassy; three sons from a previous marriage to Frances and Beatrice—Caleb, a novelist whose books include The Alienist, Simon and Ethan, and five grandchildren.

Linguistics Scholar Rado Lencek Dies

Lencek, Professor Emeritus of Slavic Languages and Civilizations, died on Jan. 27 in Washington, D.C., after a long battle with cancer.

A prolific scholar of linguis- tics, philology and ethnography, Lencek taught at Columbia from 1965 to 1992. Over his years at the University, he also was a member of the School of International and Public Affairs Institute on East Central Europe, now part of the Harriman Institute.

Lencek was a member of seven Central and Eastern European Academies and the Learned Academy of Scientists. He was a founding member and past president of the Society for Slavic Studies. He authored and edited several books, including, A Bibliography of Studies on Slavic Literature on Slavic Civilizations, The Structure and History of the Slavic Languages and The Eastern Alpine Slavs and Their Cultural Heritage.

Lencek was born in Ljubljana, in 1921. Lencek received an M.A. from the University of Ljubljana and a Ph.D. from Harvard University.

He was survived by his wife of 59 years, Nina; daughters Biba and Leticia; and three grandchildren. A memorial service will be held in March in Slovenia.