Rosenberg Writes on the Women Who Changed the World by Changing Columbia

By Sheri M. Whiteley

Lillie Devereux Blake, Lillian Feinstein Haasman and Rosalind Dahir. Their names do not appear frequently in history books, but these women are part of the story of Columbia. In her most recent book, Changing the Subject: How the Women of Columbia Shaped the Way We Think About Sex and Politics, Barnard Professor of History Rosalind Rosenberg weaves an enticing tale of how a determined group of women fought to change the educational mission of Columbia at a time when the feminist movement in the United States was taking root.

The post-Civil War United States was charting new territory socially and educationally, making their mark. "Columbia's endeavors were not unique," Rosenberg writes, "but in the United States were charting new territory socially and politically. In an atmosphere of new-found egalitarianism, women were beginning to think in terms of gaining admission to college."

Lillie Devereux Blake was one of them. In 1873, she petitioned Columbia College to admit five young women, including her oldest daughter. Elizabeth Heavily influenced by Morgan Dix, the rector of Trinity Church, the Board of Trustees rejected her petition. "Ceducation," Dix explained, "must be led by faith; like Blake, Rosenberg contends, were less than ideal in Dix's estimation.

An Ideal Woman

Blake was undeterred. She was intent on finding a place where her two daughters could learn along with other young women could receive a college education. She found an unexpected ally in Morgan Dix, the rector of Trinity Church, the Board of Trustees, the Governor, and the President of Columbia College. The Board of Trustees approved the founding of Barnard College. As a compromise, the Trustees agreed to allow women to attend lectures, to be admitted to the library, and to make recommendations for the September 1883 admissions cycle. However, women would not be admitted to the college as a whole until after the 1887 school year. This "academic beachhead," says Rosenberg, a place "from which women would make incursions into the large university system."

A number of milestones quickly followed. In 1889, Barnard graduated its first class of eight undergraduates. In 1898, Teachers College, under the leadership of James Earl Russell, became affiliated with Columbia University and embarked on an aggressive campaign to admit women and African Americans. Women also fought for the right to attend graduate school. A number of prominent women scientists trained at Columbia began to make their mark in the world.

Lillian Feinstein Haasman became manager of Columbia's prestigious computing laboratory in 1935. And in 1948, Marie Mannay Dalle earned a doctorate in chemistry from Columbia, becoming the first African American woman to be awarded a Ph.D. in chemistry in the United States. Scientists Chensheng Wu and AIDS researchers such as Columbia President Frederick A. Barnard, who would champion her cause on the Board of Trustees. He, too, was rejected; but as Changing the Subject notes, "Women, Barnard firmly believed, would thrive at Columbia."

The University president set out to help fulfill what he considered an inevitable outcome. "More than 70 colleges and universities had decided to admit women by 1873," writes Rosenberg. It was a tide Barnard hoped he could help Blake ride. And so, in 1903, the Barnard and Columbia University and embarked on an aggressive campaign to admit women and African Americans. Women also fought for the right to attend graduate school. A number of prominent women scientists trained at Columbia began to make their mark in the world.

When the struggle took decades. But perhaps their greatest legacy isn't in any one area of study offers Rosenberg. In persuading others of the connection among gender, sexe, race and rights, the women of Columbia achieved something of lasting value; they ensured that what was once a local story would become a national, and even an international, undertaking—some in which anyone could join.

Current Research

Cerebral Defect That May Contribute To Autism Identified

By Craig LeMoult

The causes of autism have long remained a mystery, but new research from the Medical Center (CUMC) has identified the first time how a cerebral defect may be involved in the neurological disorder.

The research, published on Jan. 27 in the online Express Reports of Science, examines how a defect in neuronal genes may contribute to autism. Neurons are components of synapses, which connect individual neurones in the brain. The researchers found that the loss of neuronal genes perturbs the formation of neuronal connections and results in an imbalance of neuronal function. This imbalance provides an explanation for the neuroldevelopmental defects in autistic children.

Understanding the cerebral defects that may underlie autism-spectrum disorders is an important step toward the goal of providing therapies,” said Peter Scheiffele, assistant professor of physiology and cellular bio-physics at CUMC, and principal investigator on the study. A defect in the neurological genes has previously been observed in autistic patients, but its functional significance within the brain is not yet understood. Scheiffele’s study showed that in rat neurons within the brain, connections between neuronal genes are altered in a way that is strikingly similar to those found in autistic children.

Each neuron in the brain receives many different inputs—some are excitatory and signal the neuron to fire, and some are inhibitory and signal the neuron to stop firing. Scheiffele’s research team found that neuronal genes are responsible for regulating the balance between excitatory and inhibitory synaptic function. A defect in neuronal genes leads to a selective loss in inhibitory function and thereby impairs the fine-tuning of neuronal connections. A neurological problem that is understood to play a role in autism.

“There is much we still don’t know about how neurons connect to each other, but our findings have provided unique insights into what may be going wrong at a molecular level in autistic patients,” said Scheiffele.