

Albi • Alès • Douai • Nancy • Nantes • Paris • Saint-Etienne

Advancing Sustainable Waste Management

ENERGY AND MATERIALS FROM WASTE AND BIOMASS The role of WTERT France

<u>A. Nzihou¹</u>, , Y. Benhamou², N. Themelis² 1- Centre RAPSODEE, Ecole des Mines d'Albi-Carmaux, France 2- Earth Engineering Centre, Columbia University, USA

WTERT 2010 Bi-Annual Meeting, Columbia University NYC October 7-8, 2010

OVERVIEW

A: Waste to Energy in France

Trends Emission issues Long-term policy

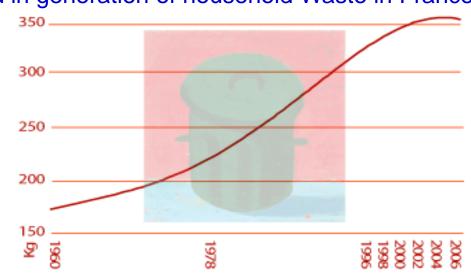
B: Role of WTERT France

Dissemination of science based information Linking academic researchers in France

Le GRENELLE Environnement in France

« Le Grenelle Environnement » convened in May 2007 and consisted of the series of political meetings, discussions and decisions on the French long-term policies on environmental issues and sustainable development.

Four goals:


Reducing the waste produced and developing recycling

➢ Reducing the health and environmental impacts of waste management

Raise awareness and provided information to the French citizens

Advocated increased recycling but its position on incineration/WTE was very ambiguous

Targets of the « Grenelle » on household waste

Trend in generation of household Waste in France

Situation now:

Total MSW generated in 2007: 32 million tons of MSW

Sources : Ademe (Les déchets en chiffre, ADEMA Edition 2009)

18% recycling, 15% composting, 32% incineration, 36% landfilling

Target for 2012 and 2015:

Actions to 2012:
increase recycling to 35%
reduce ratio of landfilling or incineration to 15%

Actions to 2015:
increase recycling to 45%
waste reduction of 7% in 5 years

WTE PLANTS/INCINERATORS

WTE:

300 incinerators in the nineties

since then 320 millions Euros were invested to upgrade the gas treatment system incinerators

128 plants today are treating about 17 million tons of MSW

110 with energy production18 without energy production

Operators:

-Veolia Propreté (most plants)

-Novergie

-Tiru

1.3 - EMISSION ISSUE Pollutant and greenhouse gases emissions

Focus of WTERT France : Do the French WTEs meet the EU emissions standards

Pollutants considered up to now:

NO_x SO_x Heavy metals Acid gas Carbon compounds (CO, CO₂) Dioxins Particle matters PM: PM₁₀, thoracic fraction<10 μ m

Pollutants to be considered in near future:

 $PM_{2.5}$, respirable fraction<2.5 µm PM_1 , $PM_{0.1}$, ultrafine<0.1 µm

Example: Emissions of two Novergie WTE plants *Source : Novergie website*

				E.U
Arcante	Arcante			Standard
1 st Plant	2nd Plant	_	_	
		1 14110	Tan	
3				
0.3	0.29	0.28	0.2	10
18.8	29.3	0.4	2.9	50
317.1	287.4	58.5	48.2	200
0.8				10
8.4	9	4	3.4	50
3.9	4.24	1.79	1.62	10
0.009	0.0008			0.05
0.058	0.019			0.5
0.038	0.038			0.1
0.018	0.018			0.1
	0.3 18.8 317.1 0.8 8.4 3.9 0.009 0.009 0.058 0.038	1st Plant 2nd Plant 0.3 0.29 18.8 29.3 317.1 287.4 0.8 9 3.9 4.24 0.009 0.0008 0.058 0.019 0.038 0.038	1^{st} Plant 2^{nd} Plant 1^{st} Plant 0.3 0.29 0.28 18.8 29.3 0.4 317.1 287.4 58.5 0.8 8.4 9 8.4 94 3.9 4.24 1.79 0.009 0.0008 0.058 0.038 0.038	1^{st} Plant 2^{nd} Plant 1^{st} 2^{nd} 1^{st} Plant 2^{nd} PlantPlantPlant 3^{0} 0.29 0.28 0.2 18.8 29.3 0.4 2.9 317.1 287.4 58.5 48.2 0.8 9 4 3.4 3.9 4.24 1.79 1.62 0.009 0.0008 $0.0580.0190.0380.038$

Arcante, located in Blois, has a yield of 86,500 tons/year Valoréna has a yield of 140,000 tons/year. WIERT 2010 Bi-Annual Meeting, Columbia Univ NYC, Oct. 2010

	DIOXIN EMISSIONS FROM WTE PLANTS IN FRANCE				
	S.No	Name, Location (year)	Capacity tons/year	Dioxin En g/year	nissions ng/Nm3
	1	Agen, Pessac (1991)	39,420	N.A	N.A
Data collected for		Angers, Sainte Gemmes s/Loire (1974, 1974, 1974)	118,260	0.01620	0.02740
128 WTE plants	3	Angoulême, Angoulême (1986)	33,113	0.00020	0.00121
	4	Annecy, Cran Gevrier (1986, 1994, 2001)	127,721	N.A	N.A
Source: Ministry of Ecology	5	Antibes, Antibes (1970, 1970)	149,796	0.05460	0.07290
Courses ministry of Loology		Argenteuil, Argenteuil (1975, 1975, 1998, 2006)	307,476	0.05760	0.03747
		Arras, Arras (2004) Aureade, Veuve (2006)	26,017	N.A	N.A
	8	Aurillac, Aurillac (1988)	98,550 7,884	0.00370 0.00100	0.00751
		Avignon, Vedène (1995, 1995, 1996)	141,912	0.09600	0.13530
	11	Bayet, St. Pourcain s/Sioule (1982, 1988)	70,956	0.01450	0.04087
	12	Belfort, Bourogne (2002, 2002)	97,762	0.01700	0.03478
	13	Bellegarde s.V., Bellegarde sur valserine (1998, 1998)	126,144	0.28400	0.45028
	14	Benesse-Maremne, Benesse- Maremne (1972, 1985)	59,130	0.01140	0.03856
	15	Besançon, Besançon (1976, 2002)	55,188	0.00330	0.01196
	16		179,755	0.03100	0.03449
	17	Blois, Blois (2000, 2000)	86,724	0.02000	0.04612
		Bordeaux, Bègles (1998, 1998, 1998)	260,172	0.02250	0.01730
	19	, , , , , , , , , , , , , , , , , , , ,	41,785	0.00070	0.00335
	20	Bourg d'oisans, Livet (1998) Bourg Saint Maurice, Bellentre	19,710	0.00160	0.01624
	21	(1991)	26,017	0.00160	0.01230
	22	Bourgoin Jallieu, Bourgoin Jallieu (1986, 1995)	86,724	0.02800	0.06457

23	Brest, Brest (1988, 1988)	141,912	0.00230	0.00324
	Briec, Briec de l'Odet (1996,			
24	1996)	31,536	0.01520	0.09640
25	Brive, Brive la Gaillarde (1973, 1973, 1973)	82,782		
26	Caen, Colombelles (1971, 1972)	126,144	0.01200	0.01903
27	Carhaix, Carhaix (1994)	31,536	0.00010	0.00063
	Carrières s/Seine, Carrières			
28	s/Seine (1977, 1988)	157,680	0.01600	0.02029
	Carrières s. P., Carrières-sous-			
29	Poissy (1998, 1998)	118,260	0.01240	0.02097
	Cergy, Cergy Pontoise (1995,			
30	1995)	165,564	0.01600	0.01933
21	Chambéry, Chambéry (1977,	112 520	0.00400	0.00962
31	1977, 1996) Chartrag Mainvilliars (1990	113,530	0.00490	0.00863
32	Chartres, Mainvilliers (1999, 1999)	118,260	0.02700	0.04566
33	Chateaudun, Chaumont (1976)	26,806	0.00550	0.04104
	Chaumont, Chaumont (1998,			
34	1998)	78,840	0.00380	0.00964
35	Chedde-Passy, Passy (1995)	59,130	0.00070	0.00237
36	Cluses, Marignier (1991)	39,420	0.00020	0.00101
37	Colmar, Colmar (1988, 1988)	94,608	0.00980	0.02072
	Concarneau, Concarneau (1989,			
38	1989)	61,495	0.00930	0.03025
39	Créteil, Créteil (1994, 2000, 2000)	252,288	0.00030	0.00024
55	Dieppe, Rouxmesnil-Bouteilles	202,200	0.00030	0.00024
40	(1971, 1971)	39,420	0.00770	0.03907
41	Dijon, Dijon (1974, 1974)	181,332	0.00400	0.00441
42	Dinan, Taden (1998, 1998)	126,144	0.02450	0.03884
	Douchy, Douchy les Mines			
43	(1977, 1977)	86,724	0.00440	0.01015
	Epinal, Rambervillers (1983,			
44	1983, 2002)	102,492	0.09920	0.19358
45	Esiane, Villers-Saint-Paul (2004,	172 449	0.00610	0.00702
45	2004) Evroux Sud, Guisbainville (2002	173,448	0.00610	0.00703
46	Evreux Sud, Guichainville (2003, 2003)	88,301	0.00880	0.01993
47	Gien, Gien (1999, 1999)	78,840	0.01160	0.02943
	Grenoble, Tronche (1974, 1974,			

Grenoble, Tronche (1974, 1974, W4BEA I99010 Bi-Annual Meeting, Columbi25 129v NYC 005102010 0.05227

49	s/Moder (1990, 1990)	78,840	0.01000	0.02537
	Halluin, Halluin (2000, 2000,			
50	2000)	342,954	0.06130	0.03575
51	Henin-Beaumont, Henin- Beaumont (1972, 1974)	94,608	0.01320	0.02790
52	lvry, Paris (1969, 1969)	788,400	0.34680	0.08798
53	La Rochelle, Rochelle (1988, 1988)	63,072	0.00450	0.01427
54	Labeuvrière, Labeuvrière (1979, 1979, 1979)	157,680	0.00690	0.00875
55	Lagny, St Thibault des Vignes (1985, 1995)	157,680	0.02080	0.02638
56	Lamballe, Planguenoual (1993)	46,516	0.00450	0.01935
57	Lasse Sivert, Lasse (2004)	98,550	0.00130	0.00264
	Le Mans, Mans (1973, 1991,	,		
58	2003)	228,636	0.01350	0.01181
59	Limoges, Limoges (1989, 1989, 1992)	118,260	0.06030	0.10198
	Lons-le-Saunier, Lons-le-Saunier	· · ·		
60	(1994)	39,420	0.01090	0.05530
61	Lunel, Lunel-Viel (1999, 1999)	126,144	0.00540	0.00856
62	Lyon Nord, Rillieux (1989, 1989)	189,216	0.02040	0.02156
63	Lyon Sud, Lyon 7ème (1989, 1989, 1989)	283,824	0.01500	0.01057
	Mantes, Guerville (1997, 1997,			
64	1997)	94,608	0.01290	0.02727
	Martiniquaise, Fort de France	55 400		
65	(2002)	55,188	0.00920	0.03334
66	Massy, Massy (1985, 1986)	86,724	0.02140	0.04935
67	Maubeuge, Maubeuge (2001, 2001)	86,724	0.00260	0.00600
68	Melun, Vaux-le-Penil (2003, 2003)	126,144	0.01970	0.03123
69	Messanges, Messanges (1976)	23,652	0.00110	0.00930
70	Metz, Metz (2001, 2001)	126,144	0.00800	0.01268
71	Montargis, Amilly (1969)	22,075	0.00310	0.02809
72	Montauban, Montauban (1986)	39,420	0.00200	0.01015
	Montbéliard, Montbéliard			
73	(1988, 1988)	63,072	0.00900	0.02854
	Monterau Fault Yonne,			

Monterau Fault Yonne,

WHENTENETOU BAYANAAN MENIOPANG, Columbia 25,229 NYC, DOD37010 0.02933

75	Monthyon, Monthyon (1998,	141.012	0.21720	0.44704
75	1998, 1998) Maurany, Maurany (1000)	141,912	0.31720	0.44704
76	Mourenx, Mourenx (1990)	15,768	0.00630	0.07991
77	Mulhouse, Sausheim (1999, 1999)	165,564	0.19840	0.23967
//		105,504	0.19840	0.25907
78	Nancy energie, Ludres (1995, 1995)	126,144	0.02410	0.03821
79	Nantes, Nantes (1987, 1987)	130,086	0.01400	0.02152
80	Nantes, Couëron (1994, 1994)	130,080	0.03720	0.02152
81	Nevers, Fourchambault (2002)	47,304	0.00460	0.01945
01	Nice, Nice (1977, 1977, 1982,	17,501	0.00100	0.01010
82	1998)	425,736	0.05640	0.02650
83	Nîmes Evolia, Nîmes (2004)	110,376	0.00390	0.00707
	Noyelles s. L., Noyelles s. L.	110,070		0.007.07
84	(1973)	105,646	0.03020	0.05717
85	Paille, Surgères (1981)	27,594	0.00400	0.02899
86	Pau, Lescar (1987, 1990)	86,724	0.01650	0.03805
87	Pithiviers, Pithiviers (1985)	25,623	0.00800	0.00624
88	Plouharnel, Plouharnel (1971)	33,113	0.00430	0.02597
89	Pluzunet, Pluzunet (1997)	55,188	0.00170	0.00616
90	Poitiers, Poitiers (1984, 1984)	63,072	0.01180	0.03742
91	Pontarlier, Pontarlier (1989)	39,420	0.00130	0.00660
92	Pontcharra, Pontcharra (1977)	21,287	0.00230	0.02161
93	Pontivy, Pontivy (1990)	31,536	0.00040	0.00254
	Pontmain, Pontmain (1983,			
94	2003)	55,188	0.00180	0.00652
	Rambouillet, Ouarville (2000,			
95	2000)	126,144	0.00860	0.01364
	Reims Remival, Reims (1989,			
96	1989)	102,492	0.01530	0.02986
	Rennes, Rennes (1968, 1968,			
97	1996)	141,912	0.01730	0.02438
98	Rochefort, Echillais (1990)	39,420	0.00100	0.00507
	Rosier d'Egletons, Rosier			
99	d'Egletons (1997)	41,785	0.00210	0.01005
	Rouen, Grand Quevilly (2000,			
100	2000, 2000)	342,954	0.07150	0.04170
101	Rungis, Rungis (1985, 1985)	134,028	0.03680	0.05491
	Saint Ouen, Saint Ouen (1990,			
102	1990, 1990)	662,256	0.09540	0.02881
	Saint-Jean-d. F., Saint-Jean-d. F.			
103 UT	(1970, 1975) FRT 2010 Bi-Annual Meetina	126,144 Columbia Daia	0.07000 NYC-Oct 2(0.11098
104	ERT 2010 Bi Annu 55 Meeting,	110,376	~ <u>~</u> 0.00920 ²⁰	′´°`0.01667

1	.05	Sarcelles, Sarcelles (1978, 1978)	157,680	0.02000	0.02537
1	.06	Sens, Sens (1988)	23,652	0.01183	0.10000
1	.07	Sète, Sète (1992)	44,150	0.00540	0.02446
1	.08	St Pierre d'oléron, St Pierre d'oléron (1974, 1974)	78,840	0.00180	0.00457
	109	Strasbourg, Strasbourg (1975, 1975, 1975)	356,357	0.07200	0.04041
1	10	Isséane, Issy-les-Moulineaux (2008, 2008)	480,924	0.10700	0.04450
1	11	SYTEVOM, Noidans-le-Ferroux (2007)	78,840	0.00050	0.00127
1	12	Thivernal Grigon, Thivernal- Grignon (1974, 1974, 1993)	275,152	0.15000	0.10903
1	13	Thonon les Bains, Thonon les Bains (1988)	39,420	0.00010	0.00051
1	.14	Tignes, Tignes (1985)	11,826	0.00070	0.01184
1	15	Toulon, Toulon (1983, 1984, 1984)	299,592	0.03100	0.02069
1	16	Toulouse, Toulouse Mirail (1969, 1969, 1975, 1997)	315,360	0.00070	0.00044
1	17	Tronville en Barrois, Tronville en Barrois (1983)	31,536	0.00420	0.02664
1	18	UIOM de Brive, Saint-Pantaléon- de-Larche (1973, 1973, 1973)	82,782	0.00230	0.00556
1	19	UIOM de Calce, Calce (2003, 2003)	173,448	0.01200	0.01384
1	20	UIOM de Cenon, Cenon (1984, 1984)	126,144	0.00450	0.00713
1	21	UIOM Inova, Saint-Benoît-La- Forêt (1983)	22,075	0.00060	0.00544
1	22	Valenciennes, Saint Saulve (1977, 1977, 1977)	130,086	0.00810	0.01245
1	23	Vaulx, Vaux-le-Penil (2003, 2003)	126,144	0.01970	0.03123
1	.24	Vernou-en-Sologne, Vernou-en- Sologne (1986)	18,133	0.00060	0.00662
1	25	Vert le Grand, Vert le Grand (1999, 1999)	220,752	0.03100	0.02809
		Villefranche, Villefranche sur			
1	26	Saône (1984, 2002)	86,724	0.02620	0.06042
1	.27	Villejust, Villejust (1972, 1984)	110,376	0.00770	0.01395
1	28	Vitré, Vitré (1988)	31,536	0.00180	0.01142

2nd and 3rd GENERATION BIOMASS AND WASTE STREAMS

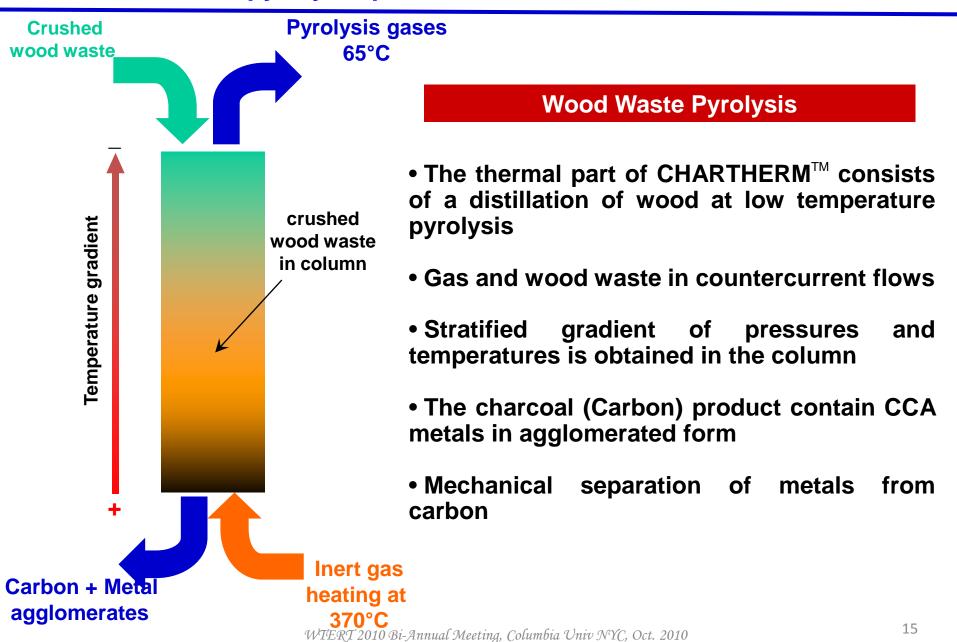
for WTEM/BTEM

Identification of symbiosis between sectors that generate carbon wastes containing heavy metals such as:

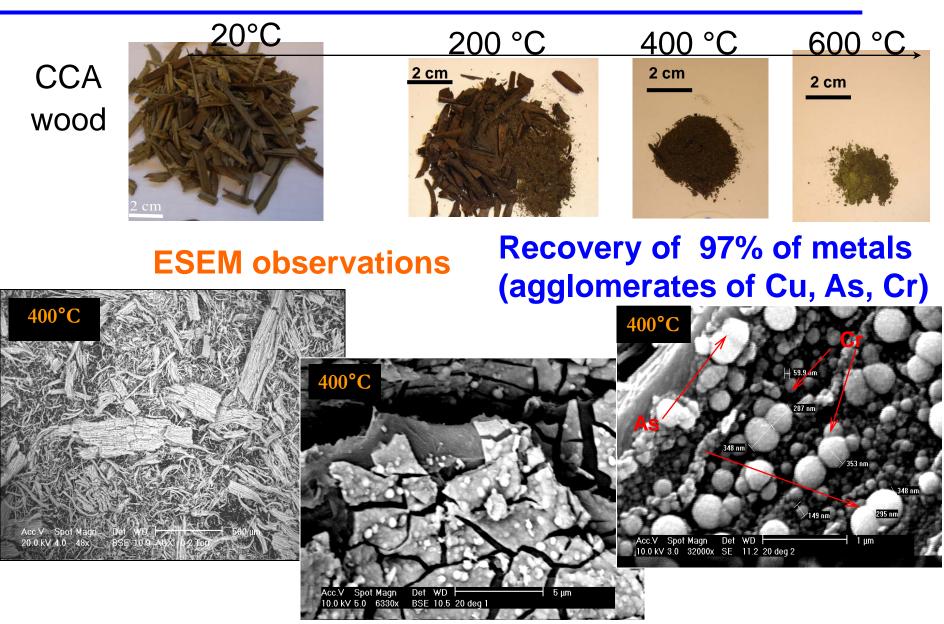
- Chromated Copper Arsenate contaminated wood (CCA waste wood)
- De-inking sludge (40wt% carbon present as wood fibres, and 35 wt% ash containing Pb, Cr, Cd)
- Coal tillings
- Waste electrical and electronic equipment (WEEE),
- Plastics
- Automotive shredder residue (ASR)
- Oily mill-scale
- Spent calalysts
- Coal and lignin fly ash
- Stone sludge
- Spent pot-lining
- Packaging wastes (3rd generation)
- Black liquor from pulping processes (2nd generation)

CCA metals act as fungicides and insecticides 4 million tons/year of CCA treated wood is generated in the EU which is set to continue for many decades as the in-service wood comes to the end of its life.

Some chemical data


Sample	As (g/kg)	Cr (g/kg)	Cu (g/kg)
CCA treated wood	25.77	32.15	11.52

Some physical and thermal data

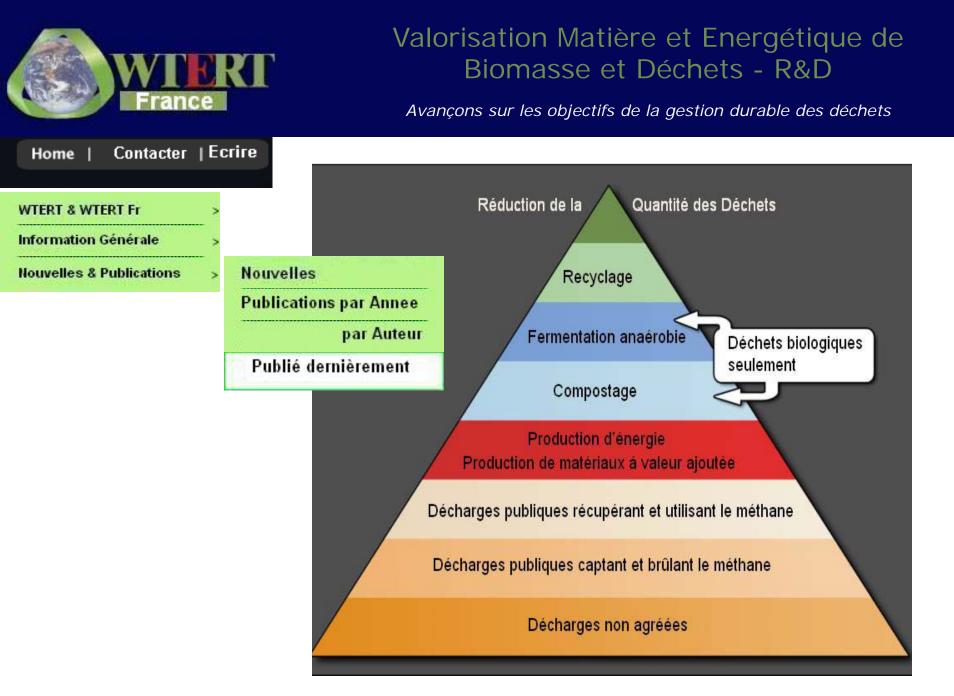

Sample	CCA treated wood	Wood
Gross Calorific Value (kJ/Kg)	17814	19982
Moisture content (%)	10.5	8.8

A case study

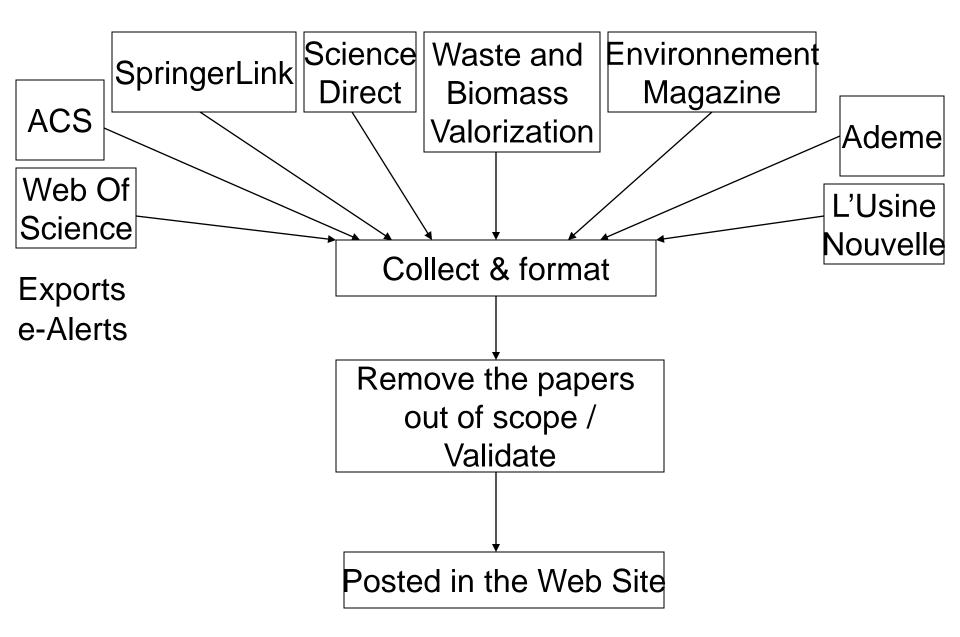
Gradient pyrolysis process

A case study Results : Agglomeration of high grade metals

CONCLUSIONS

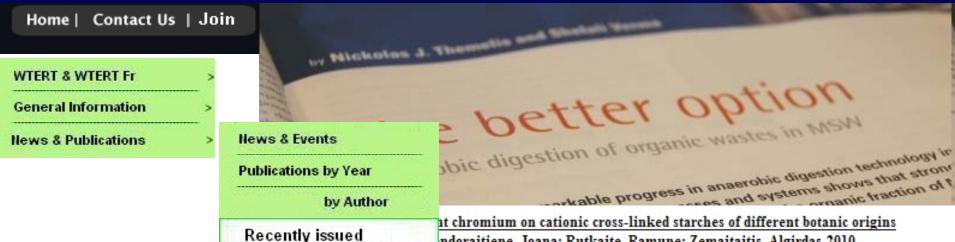

▲ WTE useful for the destruction of waste and production of Energy

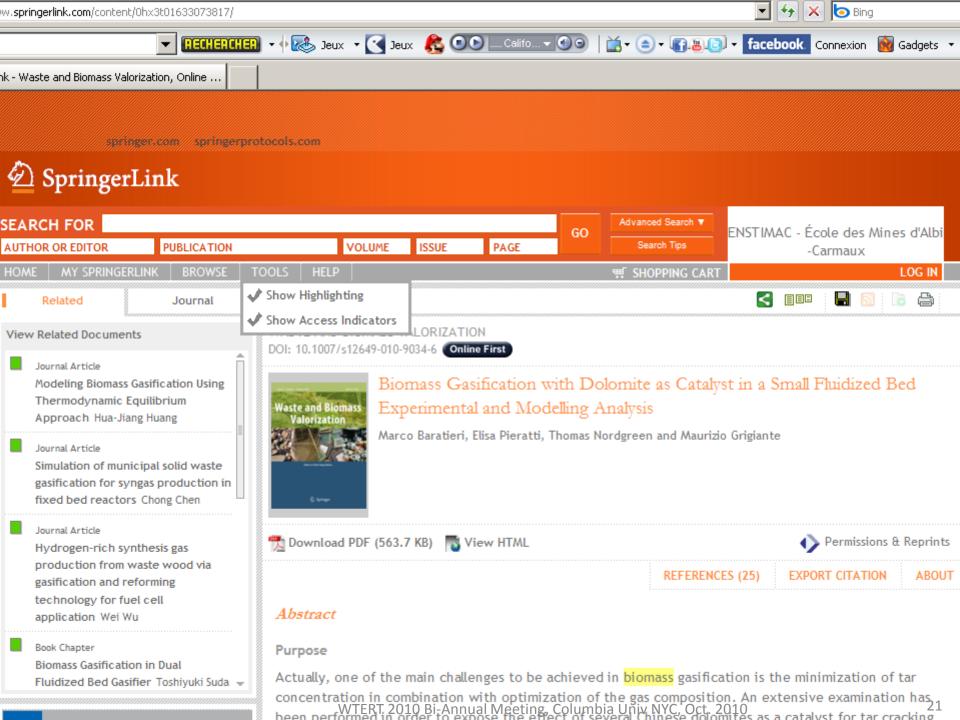
- ▲ Tremendous improvement made on emissions control
- ▲ WTE Plants in France complies with EU emissions standards
- ▲ Data on emissions are available in industry and governmental agencies


Transparency is needed

▲ Lack of information to public Citizens against WTE/incineration

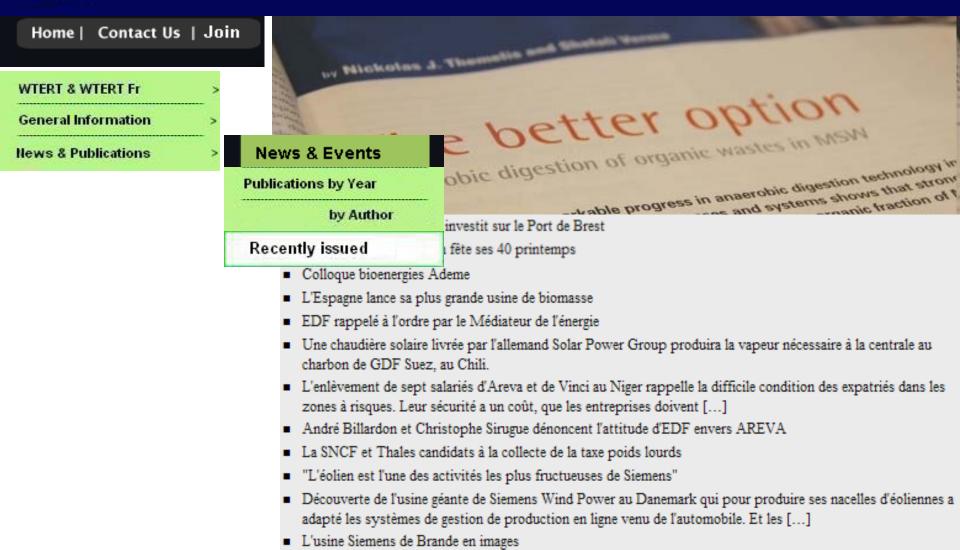
▲ Dissemination of Science and Technical based information WasteEng Conference Series (www.wasteeng.org) WTERT France linking academic researchers in French speaking Countries (www.wtertfrance.fr)


WTERT France: Scheme for the collection of data



Waste & Biomass-to-Energy and Materials Research and Technology Council

Advancing the Goals of Sustainable Waste Management


- ndoraitiene, Joana; Rutkaite, Ramune; Zemaitaitis, Algirdas-2010
- Analysis of the sustainability of reusing industrial wastes as energy source in he industrial sector of Taiwan Tsai, Wen-Tien-2010
- Biomass Gasification with Dolomite as Catalyst in a Small Fluidized Bed Experimental and Modelling Analysis Marco Baratieri, Elisa Pieratti, Thomas Nordgreen and Maurizio Grigiante-2010
- Correlation of wood-based components and dewatering properties of waste activated sludge from pulp and paper industry Kyllonen, H.; Lehto, J.; Pirkonen, P.; Gronroos, A.; Pakkanen, H.; Alen, R.-2010
- Curbing dioxin emissions from municipal solid waste *incineration* in China: Re-thinking about management policies and practices

Waste & Biomass-to-Energy and Materials Research and Technology Council

Advancing the Goals of Sustainable Waste Management

Energie

L'Espagne lance sa plus grande usine de biomasse

Le 20 septembre 2010 par Ana Lutzky

énergies renouvelables

L'espagnol Ence, leader européen de la production de cellulose d'eucalyptus, lance une centrale électrique à partir de biomasse de 50 MW. L'usine verra le jour à Huelva en Espagne.

Le ministère espagnol de l'Industrie a approuvé l'installation d'une usine de production d'électricité à partir de biomasse à Huelva (sud), qui sera la plus grande du pays, a annoncé lundi l'entreprise de production de cellulose Ence, qui porte le projet. Cette approbation était nécessaire pour que l'usine puisse bénéficier des aides publiques consacrées aux énergies renouvelables.

L'usine aura une puissance installée/de 50 mégawatts retup 60/trat four Oid i de ôlé rièrgie/vérte à prèsode

DÉPÊCHES

24/09/2010 - 11H06,

 Les banques britanniques pourraient scission activités 24/09/2010 - 10H49,

BHP passe un premier obstacle pour son OP.
Potash

24/09/2010 - 09H25,

 Nike livre un résultat supérieur aux attentes a trimestre

24/09/2010 - 09H17,

 La reprise des fusions-acquisitions se confirm 24/09/2010 - 09H13,

Toutes les dépêches

Les Livres blancs

Gestion des informations d'entrep & Business Intelligence