# Biomaterials Design for Tissue Engineering Through Hydrogels Jon Bernhard<sup>1,2</sup>, Margaret Boushell<sup>1,2</sup>, Philip Chuang<sup>1,3</sup>, Dovina Qu<sup>1,2</sup>, Nina Sinatra<sup>1,3</sup> Advisors: Lauren Prentiss<sup>4</sup>, Helen H. Lu, Ph.D.<sup>1,2</sup>

<sup>1</sup>Society for Biomaterials Student Chapter, Columbia University, New York, NY, <sup>2</sup>Department of Biomedical Engineering, Columbia University, New York, NY <sup>3</sup>Materials Science and Engineering, Columbia University, New York, NY, <sup>4</sup>M.S. 247 Dual Language Middle School, New York, NY



## METHODS

### **1. Structure-function relationships:**

- Make Jell-O at three concentrations: 4x, 2x, and 1x
- Observe differences in mechanical stiffness among gels

#### 2. Cell-seeded scaffolds:

- Insert seeds or beans into gels from Step 1

#### 3. Defect repair:

- Using aluminum foil, make a model bone with a defect
- Native and regenerated tissue must have similar mechanical properties Adjusting the mechanical properties of a scaffold is a crucial aspect of tissue engineering and regeneration









Increasing Stiffness (Increasing Young's Modulus)

### **Hydrogels**

- Hydrogel scaffolds are used in cartilage tissue engineering
  - Significant water content mimics native tissue properties



Self-healing polymer hydrogels

- Pour Jell-O mixture into defect and allow gel to set
- Observe integration of gel with model defect

### 4. Patterning:

- Using aluminum foil, make a stamp
- Pour Jell-O mixture into petri dish, place stamp on Jell-O, and allow gel to set before removing stamp



#### **Photolithography**

- Proteins and cells can be patterned using soft lithography
- Important for:
  - Fundamental cell biology
  - Biosensors
  - Tissue engineering



Sample photolithography process



Students at M.S. 247 explore material structure-function relationships and applications of hydrogels for tissue engineering

## MATERIALS

### Jell-O: Gelatin

Collagen <sup>*hydrolysis*</sup>/<sub>→</sub> Gelatin

- Collagen: Water-insoluble protein found in bone, connective tissues, and skin
- Gelatin: Water-soluble protein

#### Materials



## **STUDENT ASSESSMENT**

 Students were tested on biomaterials properties and tissue engineering concepts before and participating after in education module Significant improvement



20(1999); http://fand.kaist.ac.kr/Research3.htm; http://arstechnica.com/science/2012/06/organic-hydrogel-outperforms-typical-carbon-supercapacitors/; http://www.madehow.com/Volume-5/Gelatin.html; RS, et Kane **Biomaterials** al. **REFERENCES** http://www.americastestkitchenfeed.com/cooking-science/2012/11/we-prove-it-cook-tough-cuts-beyond-well-done/