INTRODUCTION

Tissue Engineering
- Need materials that are biocompatible and can integrate with native tissues

Structure-Function Relationships
- Native and regenerated tissue must have similar mechanical properties
- Adjusting the mechanical properties of a scaffold is a crucial aspect of tissue engineering and regeneration

Hydrogels
- Hydrogel scaffolds are used in cartilage tissue engineering
 - Significant water content mimics native tissue properties

Photolithography
- Proteins and cells can be patterned using soft lithography
- Important for:
 - Fundamental cell biology
 - Biosensors
 - Tissue engineering

Jell-O: Gelatin
- **Collagen** is produced by hydrolysis of collagen
 - **Collagen**: Water-insoluble protein found in bone, connective tissues, and skin
 - **Gelatin**: Water-soluble protein

Materials
- Jell-O mix
- Ice
- Aluminum foil
- Water
- Petri dish
- Plastic cups
- Seeds
- Stirring rod
- Graduated cylinder

METHODS

1. **Structure-function relationships**:
 - Make Jell-O at three concentrations: 4x, 2x, and 1x
 - Observe differences in mechanical stiffness among gels

2. **Cell-seeded scaffolds**:
 - Insert seeds or beans into gels from Step 1

3. **Defect repair**:
 - Using aluminum foil, make a model bone with a defect
 - Pour Jell-O mixture into defect and allow gel to set
 - Observe integration of gel with model defect

4. **Patterning**:
 - Using aluminum foil, make a stamp
 - Pour Jell-O mixture into petri dish, place stamp on Jell-O, and allow gel to set before removing stamp

STUDENT ASSESSMENT

- Students were tested on biomaterials properties and tissue engineering concepts before and after participating in education module
- Significant improvement in assessment scores after participation
