Lecture 4

Biological Basis of Learning and Memory

...and a Review of Basic Synaptic Mechanisms

Review!

Key points about action potentials and synapses

Synaptic Transmission

Excitatory Transmission

Inhibitory Transmission

Molecular Mechanisms (Proteins!)

Synaptic Modification and the Basis of Learning

Principle #1: neurons have a separation of charge and concentration across their membranes

electrochemical gradient

Principle #2: ion channels open/close in response to voltage, allow ions to flow down their electrochemical gradients

Ion Channels

- 1 Conduction: moving hydrophilic ions through a hydrophobic membrane
- 2 Selection: restrict movement to a single ionic species!

3 Gating: direct sensors of the environment i.e. voltage

Principle #3: action potentials are generated by the alternate opening of sodium and potassium channels

Action potentials:

- "all-or-none" (always the same size)
- rapid (spike and return to baseline in < 2ms)
- start in initial segment
- propagate to axon terminals
- myelin speeds propagation (reduces leak of ions)

Weak stimulus

Principle #4: action potentials lead to opening of calcium channels in axon terminal; calcium triggers exocytosis (release of transmitter)

1 Vesicle docks

2 SNARE complexes form to pull membranes together

(3) Entering Ca^{2+} binds to synaptotagmin

4 Ca²⁺-bound synaptotagmin catalyzes membrane fusion

Unstimulated Stimulated Vesicle fusing with plasma membrane Ca²⁺ channels

excitatory = depolarizing = closer to firing action potential inhibitory = hyperpolarizing = further from firing action potential

Which ions are flowing (and in which direction) in the postsynaptic cell?

- ligand-gated ion channels
- o permeable to Na⁺, K⁺ (and sometimes Ca²⁺)

GABA Receptors

- o also ligand-gated ion channels
- o permeable to Cl⁻ only

Many inputs may be needed to cause the cell to spike

simple computation by a neuron:

if
$$\sum_{\text{(sum)}}$$
 +/- inputs > $V_{\text{threshold}}$

then, fire action potential

Inhibitory interneuron Pyramidal neuron Record Stimulate

GABA receptors are chloride channels

Networks of Neurons in the Brain are Mainly Excitatory and Inhibitory Neurons (glutamatergic) (GABAergic)

Human (Mammalian) Brain

- ~ 80% excitatory neurons (e.g. pyramidal cells in cortex)
- ~ 20% inhibitory neurons (interneurons)

What happens when excitation and inhibition are out of balance?

Figure 12. Basic cell types in the monkey cerebral cortex. Left: spiny neurons that include pyramidal cells and stellate cells (A). Spiny neurons utilize the neurotransmitter glutamate (Glu). Right: smooth cells that use the neurotransmitter GABA. B, cell with local axon arcades; C, double bouquet cell; D, H, basket cells; E, chandelier cells; F, bitufted, usually peptide-containing cell; G, neurogliaform cell.

pyramidal neurons (**excitatory**)

(B) G-PROTEIN-COUPLED RECEPTORS

Examples:
Dopamine
Serotonin
Epinephrine
Acetylcholine

Neurotransmitters

Excitatory

Glutamate

Inhibitory

GABA

Modulatory

Dopamine Norepinephrine Serotonin Acetylcholine

Neuropeptides

PEPTIDE NEUROTRANSMITTERS (more than 100 peptides, usually 3-30 amino acids long)

Toxins that Affect Neurotransmission

α-bungarotoxin
blocks ACh receptors
neuromuscular junction
(also cobra α-neurotoxin)

causes transmitter release

conotoxin cocktail
block Ca²⁺ and Na⁺ channels,
glutamate receptors,
and ACh receptors

tetrodotoxin
blocks Na⁺ channels

curare
blocks ACh receptors
(neuromuscular junction)

strychnine

blocks inhibitory glycine receptors

Biological Basis of Learning and Memory

Biological Basis of Memory

- NMDA Receptors
- Intracellular Signaling
- Pre-synaptic & Post-synaptic Changes
- Protein Synthesis
- Long-term Potentiation (LTP)

Stabilization of Synaptic Connections for Years

Classical conditioning – Pavlov's Dogs

Conditioning video

How could this work in the brain?

Form a connection between the neuron that represents 'food' and the neuron that represents the 'bell' sound

How does the brain form associations?

Synaptic plasticity or

How do the connections between neurons get stronger and weaker?

"When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased."

- Donald Hebb, 1949

Simultaneous synaptic inputs and depolarization (action potentials)

Neurons that fire together, wire together

There are two main types of glutamate receptors

Remember that glutamate is the main excitatory neurotransmitter

AMPA receptors

Ligand-gated (glutamate) cation channels

Non-NMDA

Glutamate (the ligand) binds and opens the channel, cations move according to their electrochemical gradients

NMDA receptor

Glutamate (the ligand) binds and opens the channel, cations move according to their electrochemical gradients, but only if the Mg+ is not blocking the channel

Both **AMPA** and **NMDA** receptors are ligand-gated channels

(A) LIGAND-GATED ION CHANNELS

What's different about NMDA receptors?

What's so special about **NMDA Receptors**?

 \bigcirc Blocked by magnesium ions (Mg²⁺)

 \bigcirc Relatively permeable to calcium ions (Ca²⁺)

strengthen synapses

How do you get Mg⁺⁺ out of the channel?

Why is it in there in the first place?

Intracellular concentration = 0.5 mM

Extracellular concentration = 2 mM

Why else?

With the Mg+ block gone, the synapse is ready to be activated

Neurotransmitter + Depolarization = Ca²⁺ enters cell

Calcium signaling leads to strengthening of synapses

Same process can strengthen neighboring synapses

Associations can form...

LTP Properties

1. Cooperativity

LTP Properties

At resting potential **During postsynaptic depolarization**

Modifying synaptic strength

- Pre-synaptic
 - Change in Ca⁺⁺ channel #
 - Change in size of synapse
 - Change in # of vesicles (docked, primed, total)
 - Change in neurotransmitter production
 - Change in NT reuptake
 - Change in NT degradation

- Post-synaptic
 - Change in # of receptors
 - AMPAfication of synapses
 - Change in size of synapse

What are the consequences of the intracellular signaling?

Presynaptic cell

Postsynaptic cell

↑ AMPA Receptors

How could this work in the brain?

Form a connection between the neuron that represents 'food' and the neuron that represents the 'bell' sound

Increase the number of receptors

Structural plasticity – Dendritic Spines

 $0.5\,\mu m$

Structural plasticity – Dendritic Spines

LETTERS

Stably maintained dendritic spines are associated with lifelong memories

Guang Yang¹, Feng Pan¹ & Wen-Biao Gan¹

Figure 1

Motor Learning

Sensory Learning

SE: standard housing EE: enriched housing

Figure 2 | A fraction of newly formed spines persists over weeks and correlates with performance after learning.

Figure 3 | Novel experience promotes spine elimination.

Figure 4 | Maintenance of daily formed new spines and spines formed during early development throughout life.

