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3.1 Introduction

What follows is a personal view of the evolution of ABC – Approximate
Bayesian Computation – up to 2003 and it is certainly not intended to
be an exhaustive review. ABC arose as an inferential method in popu-
lation genetics to address estimation of parameters of interest such as
mutation rates and demographic parameters in cases where the under-
lying probability models had intractable likelihoods. To set the scene I
will give a very brief introduction to genealogical trees and the effects of
mutation, focusing on the simplest case in which a panmictic population
is assumed to be very large and of constant size N , and within which
there is no recombination. The treatment follows that in [?].

3.2 Coalescent trees and mutation

The ancestral relationships among n individuals sampled at random from
the population can be described by Kingman’s coalescent [?]. Looking
back into the past, the sample has n distinct ancestors for time Tn, at
which point two individuals are chosen at random to coalesce, the sample
then having n−1 distinct ancestors. We continue merging random pairs
of ancestors in such a way that for time Tj the sample has j distinct
ancestors, for j = n−1, . . . , 2. The times Tj are independent exponential
random variables with mean

E[Tj ] =
2

j(j − 1)
.

In this setting, time is measured in units of N generations. The height of
the tree is TMRCA = Tn + · · ·+ T2, the time to the most recent common
ancestor (MRCA) of the sample.

This description produces random coalescent trees, as illustrated in
Figure 3.1. It is worth noting that E[TMRCA] = 2(1 − 1/n), while the
average time for which the sample has just two ancestors is E[T2] = 1.
Thus the height of the tree is influenced most by T2, as Figure 3.1 clearly
shows.

Conditional on the coalescent tree of the sample, mutations in the ge-
nomic region of interest are modelled in two steps. In the first, potential
mutations are poured down the branches of the coalescent tree from the
MRCA according to independent Poisson processes of rate θ0/2, where
θ0 = 2Nu is the compound mutation parameter, u being the chance of
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FIGURE 3.1
Six realizations of coalescent trees for a sample of size n = 5, drawn on
the same scale.
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FIGURE 3.2
A coalescent tree for n = 5 with mutations U0, U1, . . . , U5 marked on
the branches. The labels at the bottom of the tree give the type of
each individual, assuming the infinitely many alleles model. Two types
(U2, U3) are represented twice, and one type (U5) once.
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a mutation occurring in the genomic region in a given generation. Once
the locations of mutations are determined, their effects are modeled by
a mutation process that changes the current type.

I will describe three mutation models, the first being the so-called
infinitely many alleles model, used originally to study the behaviour of
allozyme frequencies. Mutations arising on the branches of the coales-
cent tree are marked by a sequence Uj , j = 0, 1, . . . of distinct labels, a
mutation on a branch replacing the current label with the next available
U . An example is given in Figure 3.2, which shows the sample of size
n = 5 represented by labels U2, U2, U5, U3, U3 respectively. The particu-
lar values of the types observed in a sample are not of interest; rather,
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it is the number of types Cj(n) represented j times in the sample, for
j = 1, 2, . . . , n, that records the information in these data. In the exam-
ple above there are K5 = 3 types, with C1(5) = 1, C2(5) = 2. Note that
C1(n) + 2C2(n) + · · ·+ nCn(n) = n.

In the second example, known as the infinitely many sites model, we
think of the genomic region of interest as the unit interval (0,1), and
assume that each mutation in the coalescent tree arises at a novel posi-
tion in the genomic region. These positions may be realised as values in
a sequence Uj , j = 0, 1, . . . of distinct labels (generated, for example, as
independent random variables uniformly distributed in (0, 1)). Figure 3.2
can be used to illustrate this model too. Each individual in the sample is
represented as a sequence of mutations back to the root. Reading from
left to right in the figure, we see that the first two individuals in the sam-
ple have mutations at locations {U1, U2}, the third at {U1, U2, U4, U5},
and the fourth and fifth at {U0, U3}.

We can write these in rather more conventional “DNA style” by
representing the ancestral type as 0, mutants as 1, and recording the
mutation status of each individual i in an n × s matrix, where s is the
number of mutations, or segregating sites, that have occurred in the
coalescent tree. For our example, the sequences are



U0 U1 U2 U3 U4 U5

1 0 1 1 0 0 0
2 0 1 1 0 0 0
3 0 1 1 0 1 1
4 1 0 0 1 0 0
5 1 0 0 1 0 0

 (3.1)

In practice, of course, the ancestral labeling is often not known, and nei-
ther is the time-ordered labeling of the mutations; the sequences would
be recorded by ordering the columns according to positions along the
genome. Any sequence dataset consistent with the infinitely many sites
model, such as that in (3.1), can be represented by a rooted tree if the
ancestral labeling is known, and as an unrooted tree if it is not. See
Chapter 5 of [?] for further details.

In the previous examples mutations have a simple structure, in that
they do not allow for back mutations for example. More detailed models
of sequence evolution have also been developed. For example, rather than
representing the DNA region as a unit interval, it might be described as a
series of m completely linked sites, each site containing one of the letters
A,C,G or T . There are now M = 4m possible values (or haplotypes)
for each sequence. Mutations are laid down on the coalescent tree as
before, the results of each mutation being given by an M ×M mutation
probability matrix P. The (i, j)th element of P gives the probability
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that sequence i mutates to sequence j when a mutation occurs. These
models are referred to collectively as finite sites models. For historical
amusement, when these models were used in the early days of sequence
data the sample sizes were n ≈ 60 and the length of the sequences
m ≈ 360 [?]. How things have changed!

3.3 Statistical Inference

Statistical inference for the parameter θ0 for the infinitely many alleles
model was the subject of Ewens’ celebrated paper [?]. Ewens established
that Kn := C1(n)+· · ·+Cn(n), the number of types observed in the sam-
ple, is sufficient for θ0, and that the (moment and) maximum likelihood

estimator θ̂E of θ0 is the solution of the equation

Kn =

n−1∑
j=0

θ

θ + j
.

In large samples, θ̂E is asymptotically Normally distributed with mean
θ0, and variance θ0/ log n. This last result goes some way to explaining
why accurate estimation of θ0 is hard; even modern-day sample sizes do
not make much progress.

For the infinitely many sites mutation model, θ0 has traditionally
been estimated by making use of the summary statistic Sn, the number
of segregating sites observed in the sample. Watterson’s classic paper [?]
derived the basic results. We note first that

Conditional on the total length Ln = 2T2 + · · · + nTn of the
branches of the coalescent tree, Sn has a Poisson distribution
with mean Lnθ0/2.

Hence, unconditionally,

E[Sn] =
θ0
2
E[Ln] =

θ0
2

2

(
1 +

1

2
+ · · ·+ 1

n− 1

)
= θ0

n−1∑
j=1

1

j
. (3.2)

This gives Watterson’s unbiased estimator,

θ̂W = Sn

/
n−1∑
j=1

1

j
.
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In large samples, θ̂W is approximately Normally distributed with mean
θ0 and variance θ0/ log n. The rate of decay of the variance of θ̂W and

θ̂E, the reciprocal of the logarithm of the sample size n (rather than
of the sample size itself, as might have been anticipated), reflects the
dependence among the observations arising from the tree structure of
the coalescent.

3.4 Computationally intensive methods

Computationally intensive methods have been used to fit stochastic mod-
els to data for many years. Among the early examples are [?, ?, ?, ?].
Edwards noted that

Particular emphasis will be placed on the need to formulate sound
methods of ‘estimation by simulation’ on complex models.

[?] explored approximate likelihood methods to fit models to data, and
a systematic treatment was provided in the paper by [?].

By the early 1990s the emergence of DNA sequence data led to a num-
ber of computational inference methods in population genetics. Among
these is [?], who analysed mitochondrial data by using a finite sites
model to describe the behaviour of purine-pyrimidine sites across the
region. Their first approach compared the expected number of sites of
different types with the observed numbers, and estimated parameters by
matching expected to observed numbers as closely as possible. Their sec-
ond approach was a composite likelihood method that treated the sites
as independent. [?] developed an ingenious Metropolis-Hastings Monte
Carlo method to estimate the parameter θ in another finite sites model,
exploiting the coalescent structure to generate a likelihood curve from
which inference could be made.

[?, ?] introduced another approach to full likelihood based inference
by exploiting a classical result about Markov chains. For a discrete-time
Markov chain {Xk, k ≥ 0} with state space S and transition matrix
P = (pxy, x, y ∈ S), let A be a set of states for which the hitting time

η = inf{k ≥ 0 : Xk ∈ A}

is finite with probability one starting from any x ∈ T := S \ A. Let f
be a function on S, and define

ux(f) = E

[
η∏
k=0

f(Xk) |X0 = x

]
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for all X0 = x ∈ S (so that ux(f) = f(x), x ∈ A). Then for all x ∈ T ,

ux(f) = f(x)
∑
y∈S

pxyuy(f). (3.3)

A simulation approach to solve equations such as the one in (3.3) follows:
simulate a trajectory of the chain X starting at x until it hitsA at time η,
compute the value of product

∏η
k=0 f(Xk), and repeat this many times

to obtain an estimate of ux(f). In the applications in [?, ?], coalescent-
based recursions for likelihoods were reduced to this form. The method is
essentially a version of von Neumann and Ulam’s suggestion for matrix
inversion, as described in [?], and improved by sequential Monte Carlo by
[?, ?]. Further examples may be found in Chapter 6 of [?]. [?] showed how
to exploit importance sampling to design more efficient ways to (in our
language) choose the process X, and this resulted in a number of more
effective inference methods; see, for example, [?] and [?]. A Markov chain
Monte Carlo approach to inference for the infinitely many sites model
appears in [?].

Summary statistics continued to be used for inference, as illustrated
by [?] who described what is essentially the frequentist version of ABC in
the context of inference about population history, based on the number of
segregating sites and the mean pairwise distance among the sequences.
They produced a likelihood surface over a grid of parameter values,
approximating the likelihood by repeated simulation of the model and
recording the proportion of simulated values of the statistics that were
sufficiently close to the observed values.

The distributions of unobservable features of coalescent models, such
as TMRCA, conditional on observed values of the data, have also been
studied by Monte Carlo methods. [?] considered inference for TMRCA

under the infinitely many sites model, using data of the form (3.1) and
exploiting a version of the approach outlined in (3.3). [?] studied a sim-
ilar problem, but using the maximal value of the number of nucleotide
differences between any pair of sequences in the dataset as the observed
statistic. Their method uses a simple form of density estimation to ap-
proximate TMRCA.

3.5 A Bayesian approach

Bayesian methods provide a natural setting for inference not just about
model parameters, but also about unobservables in the underlying
model. [?] illustrated this for the infinitely many sites model by de-
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veloping a rejection algorithm for simulating observations from TMRCA

and θ, conditional on the number of segregating sites Sn = s seen in
the data. The method is based on the observation made above (3.2)
that, conditional on the times T2, . . . , Tn and θ, the number of segregat-
ing sites in the sample of size n has a Poisson distribution with mean
E[Sn|Tn, . . . , T2, θ] = θ Ln/2; we write S ∼ Po(θLn/2)

Suppose then that θ has prior distribution π(), and let p(s|λ) denote
the probability that a Poisson random variable with mean λ has value
s:

p(s|λ) =
e−λλs

s!
, s = 0, 1, . . . .

The rejection algorithm is

A1 Generate θ ∼ π(·)

A2 Generate Tn, . . . , T2 from the coalescent model. Calculate Ln =∑n
j=2 jTj and TMRCA =

∑n
j=2 Tj .

A3 Accept (θ, TMRCA) with probability proportional to

α = p(s|θLn/2)

Accepted values of this algorithm have the required distribution, that of
(θ, TMRCA) given Sn = s.

The previous method may be viewed as an application of the rejection
algorithm, which proceeds as follows. For discrete data D, probability
model M with parameters θ having prior π(), we can simulate observa-
tions from

f(θ|D) ∝ P(D|θ)π(θ) (3.4)

via

B1 Generate θ ∼ π(·)

B2 Accept θ with probability proportional to the likelihood P(D|θ).

This method can be extended dramatically in its usefulness using the
following, stochastically equivalent, version:

C1 Generate θ ∼ π(·)

C2 Simulate an observation D′ from model M with parameter θ

C3 Accept θ if D′ = D

For the example in algorithm A above, C3 takes the form
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C3 Simulate an observation S ∼ Po(θLn/2), and accept (TMRCA, θ) if
S = s.

While algorithms B and C are probabilistically identical, C is much more
general in that one does not need to compute probabilities explicitly
to make it work; only simulation is needed. Version C is due to [?].
Surprisingly, the result does not seem to be described in text books that
focus on simulation.

The drawback in C is clear. It will typically be the case that for a
given value of θ the chance of the outcome D′ = D, namely P(D|θ), is
either vanishingly small, or very time consuming to compute, resulting
in an algorithm that does not work effectively. This is where ABC finally
comes into play, in the form of the following scheme. We start with a
metric ρ to compare data sets and a tolerance h ≥ 0, and then

D1 Generate θ ∼ π(·)

D2 Simulate an observation D′ from model M with parameter θ

D3 Compute ρ := ρ(D′,D), and accept θ as an approximate draw from
f(θ|D) if ρ ≤ h.

The parameter h measures the tension between computability and accu-
racy. If ρ is a metric, then ρ = 0 =⇒ D′ = D, so that such an accepted
θ is indeed an observation from the true posterior.

[?] were the first to describe a version of this scheme, in which the
data sets in D3 were compared through a choice of summary statistics.
Thus ρ compares how well a set of simulated summary statistics matches
the observed summary statistics. If the statistics are sufficient for θ, then
when h = 0 the accepted values of θ are still from the true posterior
based on the full data. This begs the question of how one might identify
‘approximately sufficient’ statistics, a topic covered elsewhere in this
book. The method is also applicable to continuous data.

3.6 ABC takes off

[?] showed that it might be better to soften the hard cut-off suggested
in algorithm D, by making use of the all the simulated values. They
proposed to weight values of θ by the size of the corresponding distance
ρ; smaller values of ρ suggest an observation whose distribution is closer
to the required posterior. They made a number of suggestions for how
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the weights might be chosen, and then used to produce a sample with
better sampling properties than the original hard cut-off method.

The development of ABC was predicated on the availability of com-
putational power and the lack of tractable likelihoods. The latter is also
an issue for Markov Chain Monte Carlo methods, and this motived [?]
to suggest an MCMC method that does not need likelihoods in its im-
plementation.

In the present setting the idea behind classical MCMC [?] is to con-
struct an ergodic Markov chain that has f(θ|D) as its stationary distri-
bution. In skeleton form, it works as follows:

E1 The chain is now at θ

E2 Propose a move to θ′ according to a proposal distribution q(θ, θ′)

E3 Calculate the Hastings ratio

α = min

(
1,

P(D|θ′)π(θ′)q(θ′, θ)

P(D|θ)π(θ)q(θ, θ′)

)
(3.5)

E4 Move to θ′ with probability α, else remain at θ.

It is the ratio of likelihoods in E3 that might cause problems. [?] proposed
the following:

F1 The chain is now at θ

F2 Propose a move to θ′ according to q(θ, θ′)

F3 Generate D′ using parameter θ′

F4 If D′ = D, go to F5, else remain at θ

F5 Calculate

α = min

(
1,
π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)

)
F6 Move to θ′ with probability α, else remain at θ.

This likelihood-free method does indeed have the correct stationary dis-
tribution. In practice the rejection step is often replaced by a version of
D3:

F4 If ρ(D′,D) ≤ h, go to next step, else return θ,
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and this too might involve a comparison of summary statistics. [?] were
able to assess the effect of summary statistics in a population genetics
problem, and [?] used the method in a problem concerning divergence
times of primate species.

[?] also suggested that the likelihood terms in (3.5) be approximated
by estimates of the form

P̂(D|θ) =
1

B

B∑
j=1

I(D′j = D)

for B independent simulations of the model with parameter θ; algorithm
F is the special case B = 1. [?] made a similar suggestion, and this mo-
tivated the development of the ‘pseudo-marginal method’ [?], discussed
elsewhere in this book.

3.7 Conclusions

The term “Approximate Bayesian computation” has arisen more than
once. For example, [?] used it to describe computation based on the
asymptotic behaviour of signed roots of log-density ratios. He argued
that

. . . analytic approximation still has an important role to play in
Bayesian statistics.

In the setting of the present handbook, and in some sense at the other
end of the analytical spectrum, it was [?] who coined the term ‘Approxi-
mate Bayesian Computation,’ in the article that made ABC the popular
technique it has become.

Where did the acronym ‘ABC’ arise? By the time we submitted [?] for
publication at the end of 2002, the USC group had held many meetings
on what we then called ABC. In the submitted version, the term ABC
appeared twice:

. . . we have the following approximate Bayesian computation
(ABC) scheme for data D summarized by S

and

. . . and it is often useful to replace the full data by a number of
judiciously chosen summary statistics. The resulting approximate
Bayesian computation, which we dub ABC, allows us to explore
scenarios which are intractable if the full data are used.
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In the published version ABC does not appear, because of house style at
the time in the Proceedings of the National Academy of Sciences. This
from the proofs:

D – AU: Per PNAS style, nonstandard abbreviations are allowed
only when used at least 5 times in the main text.

A missed opportunity for the National Academy of Sciences! In 2003 I
gave an invited lecture at the Royal Statistical Society entitled (with
a certain amount of bravado) ‘Who needs likelihoods’, in which ABC
appeared several times, as the write-up in the RSS News in October
2003 showed. It concluded:

The lively discussion that followed reinforced our feeling that we
were not hearing the last of ABC.

This observation turned out to be true, and ABC has become a stan-
dard approach in the statistician’s toolbox. New areas of application
arise frequently, as the rapidly expanding literature shows. One area
that would repay deeper analysis is that of cancer evolution, a field that
is producing enormous amounts of DNA sequence and phenotype data
and for which there is a dearth of inference methods. For an early ap-
plication see [?]. Inference for agent-based models in stem cell biology
appears in [?], which motivated the approach in [?] for colorectal cancer.
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