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a b s t r a c t

This article describes and comparesmethods for simulating the component counts of random logarithmic
combinatorial structures such as permutations andmappings. We exploit the Feller coupling for simulat-
ing permutations to provide a very fast method for simulating logarithmic assemblies more generally. For
logarithmic multisets and selections, this approach is replaced by an acceptance/rejection method based
on a particular conditioning relationship that represents the distribution of the combinatorial structure
as that of independent random variables conditioned on a weighted sum. We show how to improve its
acceptance rate. We illustrate the method by estimating the probability that a random mapping has
no repeated component sizes, and establish the asymptotic distribution of the difference between the
number of components and the number of distinct component sizes for a very general class of logarithmic
structures.

© 2018 Published by Elsevier Inc.

1. Introduction

Paul Joyce had a long-standing interest in the structure of the
Ewens Sampling Formula (Joyce and Tavaré, 1987; Tavaré et al.,
1989; Joyce, 1995), denoted by ESF in what follows, its asymp-
totics (Joyce et al., 2002), and in likelihood and simulation-based
methods for inference in population genetics (Nordborg et al.,
2001; Joyce et al., 2012). Our contribution to thismemorial volume
also exploits simulation, asymptotics and the Ewens Sampling
Formula, to study the component counting structure of a broad
class of combinatorial objects. We hope you like it, Paul!

We begin with a recreational motivation. Peter Winkler, in
his book Mathematical Mind-Benders (Winkler, 2003), posed the
following question1 :

Spaghetti loops. The 100 ends of 50 strands of cooked spaghetti
are paired at random and tied together. How many pasta loops
should you expect to result from this process, on average?

In our view, this question involves the case n = 50, θ = 1/2 of
the Ends of Spaghetti Formula, more popularly known as the ESF;
we will ask more advanced questions, such as:

* Corresponding author.
E-mail address: st321@cam.ac.uk (S. Tavaré).

1 Winkler noted that this is equivalent to the ‘blades of grass’ game described on
page 198 of Gardner (Gardner, 1971).

What is the chance that all the loops have different lengths?
(Either with exactly 50 strands, or in the limit, as the number of
strands tends to infinity.)

To get to the connection between spaghetti loops and the ESF,
we begin with a brief description of the relationship between the
cycle structure of random permutations and the ESF. It is conve-
nient to do this by describing two methods for simulating random
permutations of length n by exploiting a sequence of independent
random variables B1, B2, . . .with distribution given by

Pθ (Bi = j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ

θ + i − 1
, j = i,

1
θ + i − 1

, j = 1, 2, . . . , i − 1,

(1)

where the parameter θ ∈ (0,∞). The first method, the Chi-
nese Restaurant Process, simulates a biased permutation of [n] =

{1, 2, . . . , n} using B1, B2, . . . , Bn, while the second, the Feller
Coupling, achieves the same end by using the reverse order Bn,

Bn−1, . . . , B1; see Arratia et al. (1992).

1.1. The Chinese Restaurant Process

This generates the cycles of a permutation as follows. The in-
teger 1 starts a cycle. The integer 2 is placed to the right of 1, in
the same cycle, with probability 1/(θ + 1), or begins a new cycle
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with probability θ/(θ + 1). Suppose that the first n − 1 integers
have been assigned to cycles. Then integer n starts a new cyclewith
probability θ/(θ + n − 1), or is placed to the right of integer jwith
probability Pθ (Bn = j) = 1/(θ + n − 1), j = 1, 2, . . . , n − 1. It
follows that for any permutation π of [n] having k cycles,

Pθ (π ) =
θ k

θ(n)
, (2)

where θ(n) = θ (θ + 1) · · · (θ + n − 1). The cycles generated in
this way are ordered, in that the first contains the integer 1, the
second cycle the smallest integer not in the first cycle, and so on.
Furthermore, if we define independent Bernoulli random variables
ξi = 1 if Bi = i and = 0 if Bi < i, then

Pθ (ξi = 1) =
θ

θ + i − 1
, i = 1, 2, . . .

and the number of cycles in π is given by Kn = ξ1 + · · · + ξn.

1.2. The Feller Coupling

We start with 1 in the first cycle. If Bn = n, so that ξn = 1, we
finish that cycle, and start the next cyclewith the smallest available
integer. If Bn < n, then Bn indicates which of the remaining n − 1
integers is used next, and this is placed to the right of 1 in the same
cycle. Continuing in this way also produces a permutation with
cycles ordered by their smallest integer. If Bi = i, and so ξi = 1,
the current cycle is finished, and the next starts with the smallest
available integer. When Bi < i, Bi indicates which of the remaining
i − 1 integers is placed at the end of the growing cycle.

For any permutation π of [n], it is immediate that (2) holds,
but the cycles have been constructed using the Bi in the order
Bn, Bn−1, . . . , B1. Note also that in the Feller Coupling the cycles are
completed sequentially, unlike in the Chinese Restaurant Process.

The lengths of the ordered cycles are precisely the spacings
between the 1s in the sequence 1, ξn, ξn−1, . . . , ξ1, so that the
number of cycles in a permutation is ξn + · · · + ξ1.

We can now see the connection with the spaghetti problem.
Starting with n = 50 cooked pieces, we had 100 ends; pretending
these are labelled 1 to 100, the random choices begin with end 1
making a 99-way choice to determine which end to join; finishing
a loop at this first step corresponds to the event ξ50 = 50,
having probability 1/99. At subsequent steps, if the last step did
not complete a loop, then continue to work with the developing
strand. In this way, the lengths of the loops formed, in order, are
the spacings between ones, reading the sequence ξ1ξ2 · · · ξ501 from
right to left. To determine the value of θ , we see that

Pθ (ξi = 1) =
1

2i − 1
=

1/2
1/2 + i − 1

,

so we have identified θ = 1/2.

1.3. The Ewens Sampling Formula

For most purposes, interest focuses on the distribution of the
cycle counts of a permutation π . We denote by Cj(n) the number of
cycles of size j in a permutation of size n, so that

C1(n) + 2C2(n) + · · · + nCn(n) = n.

It follows from (2) that the joint distribution of the cycle counts is
given by the Ewens Sampling Formula (ESF) (Ewens, 1972):

Pθ (Cj(n) = cj, j = 1, 2, . . . , n) =
n!
θ(n)

n∏
j=1

(
θ

j

)cj 1
cj!
, (3)

for non-negative integers c1, . . . , cn satisfying c1+2c2+· · ·+ncn =

n. Thus the joint distribution of the counts of spaghetti loops of
length 1, 2, . . . , n is given by the ESF with parameter θ = 1/2.

We remark that the ESF with parameter θ arises from the ESF
with parameter θ = 1 by biasing the uniform case by θKn , where
Kn = C1(n) + C2(n) + · · · + Cn(n) = ξ1 + · · · + ξn.

1.4. The conditioning relation

Watterson (Watterson, 1974) showed that the distribution
L(C1(n), . . . , Cn(n)) in (3) can be realized in the form

L(C1(n), . . . , Cn(n)) = L(Z1, . . . , Zn|T0n = n), (4)

where

Z1, Z2, . . . are independent Poisson random variables (5)

satisfying

E(Zj) =
θ

j
, (6)

and

T0n = Z1 + 2Z2 + · · · + nZn. (7)

The relationship in (4) suggests a third way to simulate samples
from the ESF with parameter θ , namely a rejection method that
simulates independent Z1, . . . , Zn and accepts (Z1, . . . , Zn) as a
realization of (C1(n), . . . , Cn(n)) if T0n = n; otherwise, reject the
simulation, and repeat. The acceptance rate is then P(T0n = n). If
the acceptance rate is small, this third approach can be inefficient;
we return to some of its properties in a more general setting later.

2. What is the chance that all the cycle lengths are distinct?

We return to the question raised in the introduction, namely
what is the probability that a θ-biased permutation has all its cycle
lengths distinct? For the spaghetti loop problem with θ = 1/2,
simulation of onemillion permutations via the Feller couplingwith
n = 50 yielded an estimate of 0.8377.

For a uniform (θ = 1) random permutation of n objects,
the probability qn that it has distinct cycle lengths was shown
by analytical means in Greene and Knuth (1982) to satisfy the
asymptotic formula

qn ∼ e−γ

(
1 +

1
n

)
, as n → ∞, (8)

where γ ≈ 0.577216 is Euler’s constant. The analogous result is
also knownwhen the randompermutation is distributed according
to the ESF with parameter θ > 0. To ease the notation, in what
follows we suppress the parameter θ in Pθ (·) when there is no
cause for confusion.

In Arratia and Tavaré (1992) it is shown that the asymptotic
distribution of the difference Dn between the number of cycles and
the number of distinct cycle lengths for a permutation of size n
satisfies

Dn =

n∑
j=1

(Cj(n) − 1)+ ⇒ D =

∑
j≥1

(Zj − 1)+, (9)

where the Zj satisfy (5) and (6) and (x)+ = max(0, x).
As a consequence, the probability that all cycle lengths of an

n-permutation are distinct, P(Dn = 0), satisfies

P(Dn = 0) → P(D = 0)

= P
(⋂

j≥1

{Zj ≤ 1}
)

=

∏
j≥1

e−θ/j(1 + θ/j)

= e−γ θ lim
n→∞

n−θ (θ + 1) · · · (θ + n)
n!

= e−γ θ/Γ (θ + 1). (10)
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Fig. 1. Plot of P(D = 0) as a function of θ , from (10).

Fig. 1 plots P(D = 0) as a function of θ . For the spaghetti loop
problem, θ = 1/2 and we have

P(D = 0) = e−γ /2/Γ (3/2) = 2e−γ /2/
√
π ≈ 0.84550,

thus linking π, e and γ in a single formula. For θ = 1, P(D =

0) = e−γ
≈ 0.561460 as anticipated in (8); thus about 56% of large

random permutations have no repeated cycle lengths.
The asymptotic analysis above leaves open how good the ap-

proximations actually are for any given value of n. In what follows,
we investigate how simulation can be used to show when the
asymptotics are adequate, and extend the discussion beyond the
ESF, to some more general combinatorial structures.

3. Logarithmic assemblies

The conditioning relation (4), for independent randomvariables
Z1, Z2, . . . taking values in {0, 1, 2, . . .}, defines the distribution of
the component counts of a broad class of decomposable random
structures. For a more detailed overview of these structures, see
Chapter 2 of Arratia et al. (2003) for example. Among the examples
are the ESF with parameter θ , as observed by Watterson. The ESF
itself is a member of the larger family of assemblies, for which, for
some x ∈ (0,∞) andmj ∈ R+, j ≥ 1, the Zj are Poisson distributed
with

E(Zj) = mjxj/j!. (11)

Note that, if x is varied, and Zj(x) is used to denote the corresponding
random variables, then the probability

P((Z1(x), . . . , Zn(x)) = (c1, . . . , cn))

= xnP((Z1(1), . . . , Zn(1)) = (c1, . . . , cn))/ψn(x),

whenever
∑n

j=1jcj = n, where

ψn(x) := exp
{ n∑

j=1

mj(xj − 1)/j!
}

is the same for all choices of c1, . . . , cn. Hence it follows that

P(T0n(x) = n) = xnP(T0n(1) = n)/ψn(x) (12)

also, so that the distribution L(C1(n), . . . , Cn(n)) given by (4) is the
same for all x > 0. Thus the choice of x may even be allowed to
depend on n.

Here we focus primarily on the logarithmic structures, those
that satisfy

jP(Zj = 1) → θ and jE(Zj) → θ, as j → ∞, (13)

for some θ ∈ (0,∞). For assemblies satisfying

mj

j!
∼
θyj

j
, (14)

for some y > 0, θ > 0, we can take x = 1/y to express them
in logarithmic form. An example is given by the random mapping.
Letting Po(λ) denote a Poisson distributed random variable with
mean λ, we have

mj = (j − 1)!
j−1∑
i=0

ji

i!

= (j − 1)! ej P(Po(j) < j)
∼ (j − 1)! ej/2,

so that we can take x = 1/e, the same for all n, giving θ = 1/2.

4. Simulating logarithmic assemblies

To estimate the chance that a random mapping of size n has
no repeated component sizes, we resort to simulation once more.
The obvious method is via the conditioning relation (4). However,
given the speed of the Feller coupling for simulating from the ESF,
it makes sense to ask whether it is possible to use simulations of
the ESF for some value of θ to generate observations fromany other
logarithmic structure. This is, indeed, the case.

To see how this can be done, write

λj
(x)

=
mjxj

(j − 1)!
,

and note that, from (12), for any θ > 0,

P((C1(n), . . . , Cn(n)) = (c1, . . . , cn))

=
P(T0n(x) = 0)
P(T0n(x) = n)

n∏
j=1

(
λj

(x)

j

)cj 1
cj!

=
θ(n) P(T0n(x) = 0)
n!P(T0n(x) = n)

⎡⎣ n∏
j=1

(
λj

(x)

θ

)cj
⎤⎦ n!
θ(n)

n∏
j=1

(
θ

j

)cj 1
cj!

(15)

for c1 + 2c2 + · · · + ncn = n.
Eq. (15) can be used in an acceptance/rejection algorithm, as

follows. Suppose we can find x and θ such that

0 ≤ λj
(x)

≤ θ, for j = 1, 2, . . . , n.

The algorithm then simulates a sample (c1, . . . , cn) of cycle counts
from ESF(θ ) (using the Feller coupling for example), and accepts
(c1, . . . , cn) as a realization fromL(C1(n), . . . , Cn(n)) for the assem-
bly with probability

h(c1, . . . , cn) =

n∏
j=1

(
λj

(x)

θ

)cj

≤ 1, (16)

and otherwise rejects (c1, . . . , cn) and starts again. Notice that x
may be chosen to be a function of n.

4.1. What is the chance that a random mapping has no repeated
component lengths?

We can study the properties of Dn :=
∑n

j=1(Cj(n) − 1)+ by
exploiting this simulationmethod. For randommappings, we have
seen that we may take x = 1/e, and then

λj = P(Po(j) < j),

so that θ = 1/2 works.
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We can now generate the component counts of random map-
pings by simulating the ESF(θ = 1/2), and using the acceptance
probability

h(c1, . . . , cn) =

n∏
j=1

(2P(Po(j) < j))cj .

To estimate the chance that a random mapping of size n = 50 has
no repeated component sizes, we simulated one million accepted
values of the component counts, and estimated P(Dn = 0) =

0.888, the proportion of runs that had no repeated sizes. Of course,
the simulation provides estimates of the distribution of Dn, and we
obtained estimates of P(Dn = 1) = 0.099 and P(Dn = 2) = 0.012,
and EDn ≈ 0.1266.

In the acceptance/rejection method for an assembly with rates
λj

(x)/j, the acceptance rate is

E

⎛⎝ n∏
j=1

(
λj

(x)

θ

)Cj(n)
⎞⎠ (17)

under the ESF(θ ) distribution. For our random mapping example
with n = 50, the simulation gave an estimated acceptance rate of
0.708.

For very large values of n, we can approximate (17) by

E

⎛⎝ ∞∏
j=1

(
λj

(x)

θ

)Zj
⎞⎠ = exp

⎛⎝−θ
∑
j≥1

1
j

(
1 −

λj
(x)

θ

)⎞⎠ , (18)

since the Zj are Poisson with mean θ/j for ESF(θ ).
For random mappings, we took x = 1/e, θ = 1/2 and (18)

reduces to

exp

⎛⎝−
1
2

∑
j≥1

1
j
(1 − 2P(Po(j < j)))

⎞⎠ =
1

√
2

≈ 0.7071, (19)

in good agreement with the simulated value.
We will prove later that, as n → ∞,

Dn ⇒ D :=

∑
j≥1

(Zj − 1)+,

where Zj are independent Poisson random variables with mean
EZj = P(Po(j) < j)/j. In particular, the limiting probability that
a randommapping has distinct component lengths is given by

P(D = 0) =

∞∏
j=1

e−ρj/j
(
1 +

ρj

j

)
≈ 0.8959. (20)

This may be compared to the simulated result for n = 50, namely
0.888. The probability in (20) may also be written as

√
2 e−γ /2 lim

n→∞
n−1/2

n∏
j=1

(
1 +

λj

j

)
. (21)

It is also the case that

E(Dn) → E(D) =

∑
j≥1

(
e−λj/j − 1 +

λj

j

)
≈ 0.1174. (22)

5. Simulation via the conditioning relation

For logarithmic assemblies satisfying (14) we have described a
very efficientmethod for simulating observations from the compo-
nent counting process. For motivation for simulating more general
logarithmic combinatorial structures, we note that we can also
use the rejection method together with the conditioning relation

(4): simulate values c1, c2, . . . , cn from independent Poisson ran-
dom variables Z1, Z2, . . . , Zn with means given in (11), and accept
(c1, c2, . . . , cn) as an observation from L(C1(n), . . . , C(n)) if c1 +

2c2 + · · · + ncn = n.
The acceptance rate of such an algorithm is P(T0n = n). Theo-

rem 4.13 in Arratia et al. (2003) establishes that

nP(T0n = n) →
e−γ θ

Γ (θ )
. (23)

Hence the expected number sn of simulated vectors per accepted
vector satisfies

sn/n → Γ (θ ) eγ θ . (24)

In view of the previous discussion, the acceptance rate could be
improved by choosing x = x(n) in (11) to maximize P(T0n = n).
For instance, for logarithmic assemblies with x = 1/y, we have
ET0n ∼ nθ , and, if θ ̸= 1, this is far from the value nwherewewish
the probability of T0n to be large. Appealing to (12) shows that, for
an assembly, we shouldmaximize xn/ψn(x). Now, for a logarithmic
assembly, we have

ψn(x) = exp
{ n∑

j=1

mj(xj − 1)/j!
}

∼ exp
{
θ

n∑
j=1

yj(xj − 1)/j
}
,

from (14). Taking x := y−1e−c/n, as in Arratia and Tavaré (1994),
this gives

xn/ψn(x) ∼ Ψn(y)e−c exp
{
θ

n∑
j=1

j−1(1 − e−cj/n)
}

∼ Ψn(y) exp
{
−c + θ

∫ 1

0
x−1(1 − e−cx) dx

}
, (25)

whereΨn(y) := y−n exp
{
θ
∑n

j=1(y
j
−1)/j

}
is asymptotically equiv-

alent to xn/ψn(x) when c = 0, that is, when x = 1/y fixed. Thus we
should choose c := c1(θ ) to maximize u(c) := −c + θ

∫ 1
0 x−1(1 −

e−cx) dx, which, at least asymptotically, improves the acceptance
rate over the choice x = 1/y by a factor of eu(c1(θ )). Differentiating u
with respect to c shows that c1(θ ) should be chosen to satisfy

0 = −1 + θ

∫ 1

0
e−cx dx, or θ (1 − e−c) = c. (26)

It is straightforward to compute c1(θ ) numerically; see Fig. 2. If
θ = 1, we have c1 = 0; if θ < 1, the uncorrected mean nθ is
too small, and we need to take c1 < 0 to make the mean larger;
conversely, if θ > 1, we need to take c1 > 0. In particular, if
θ = 1/2, as for randommappings, we have c1 = −1.25643.

As shown above, the choice of c = c1 improves the acceptance
probability over the choice x = 1/y by a factor asymptotic to eu(c1).
Applying (23) to obtain the asymptotics of the acceptance proba-
bility for x = 1/y thus gives

nP(T0n = n) →
e−γ θ

Γ (θ )
eu(c1). (27)

It follows that, with this choice of c1, the expected number sn(c1),
of simulated vectors per accepted vector satisfies

sn(c1)/n → Γ (θ ) eγ θ e−u(c1). (28)

The quantity eu(c1) is the asymptotic factor bywhich the number
of simulations per accepted simulation is reduced when using the
large deviation value of c , rather than the naive value c = 0. For
example, when θ = 4 this factor is 47.94. Values for θ ∈ (0, 5] are
given in Fig. 3.
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Fig. 2. Plot of the optimal value c1 , obtained from (26).

Fig. 3. Value of eu(c1) for θ ∈ (0, 5].

6. Logarithmic multisets and selections

The discussion so far has concentrated on assemblies, for which
the Zj have Poisson distributions. There are two other big fam-
ilies of structures that are ubiquitous in classical combinatorics,
and whose distributions can be obtained using the conditioning
relation (4): multisets, and selections. Multisets have negative
binomial distributions, with Zj ∼ NB(mj, xj), for 0 < x < 1, and,
as for assemblies, the distribution of component lengths obtained
using the conditioning relation is the same for all choices of x. If
mj ∼ j−1θyj as j → ∞ for some θ > 0 and y > 1, we can take
x = 1/y to give a family (Zj, j ≥ 1) satisfying the logarithmic
condition (13). Selections have Zj ∼ Bi(mj, xj/(1 + xj)), for x >
0, and a logarithmic representation is obtained using the choice
x = 1/y if mj ∼ j−1θyj for some y > 1. Monic polynomials
over the finite field GF(q) provide an example of a logarithmic
multiset, and square freemonic polynomials over GF(q) give rise to
a logarithmic selection.More examples are to be found in Chapter 2
of Arratia et al. (2003). We shall work in the broader context of
logarithmic combinatorial structures, whose distributions can be
derived from the conditioning relation (4), for a fixed sequence
of independent random variables (Zj, j ≥ 1), that satisfy the
logarithmic condition (13).

We note first that there seem to be no natural analogues for
multisets and selections of the Feller coupling that proved so ef-
fective in simulating the ESF. But we can resort to the conditioning
relation approach described in Section 5. For n very large, the
rejection rate may become too large to make simulation a practi-
cable option; in contrast, in such circumstances, asymptotic theory
can be expected to give good results. Here, we give asymptotics
sufficient to cover the behaviour of Dn, based on the material
of Arratia et al. (2000) and Arratia et al. (2003), in a rather general
context. We will also show that the improved acceptance rates for
simulation obtained in Section 5 can be obtained in much greater
generality.

In order to simplify the discussion, we make some further
assumptions. We require that, for some θ > 0,

P(Zj = 1) =
θ

j
(1 + εj1); P(Zj = r) =

θ

j
εjr , r ≥ 2, (29)

where, as j → ∞,

|εj1| ≤ ε(j)c1; εjr ≤ ε(j)cr , (30)

and

lim
j→∞

ε(j) = 0;
∑
r≥2

rcr < ∞. (31)

This is the Uniform Logarithmic Condition of Arratia et al. (2000),
and is satisfied for all logarithmic assemblies, multisets and selec-
tions. It implies, in particular, that the convergence in (23) holds,
by Corollary 2.8 of Arratia et al. (2000).

6.1. Convergence in distribution of Dn

Theorem. Let Dn be the difference between the number of compo-
nents and the number of distinct component lengths in a logarithmic
combinatorial structure of size n satisfying the conditions (29), (30)
and (31) for some θ > 0. Suppose also that∑
j≥1

j−1ε(j) < ∞. (32)

Then, as n → ∞,

Dn ⇒ D :=

∑
j≥1

(Zj − 1)+; (33)

P(Dn = 0) → P(D = 0) =

∞∏
j=1

P(Zj ≤ 1). (34)

If, in addition, for some C, γ > 0 and for all j,

|εj1| ≤ Cj−γ and |εj+1,1 − εj1| ≤ Cj−1−γ , (35)

and also

εj2 ≤ Cj−1 and εjr ≤ Cj−1−γ r−2−γ , r ≥ 3, (36)

then, as n → ∞,

E(Dn) → E(D).

Proof. By Theorem 3.1 of Arratia et al. (2000), the total variation
distance between the distribution of

∑
j≤b(Cj(n) − 1)+ and that

of
∑

j≤b(Zj − 1)+ tends to zero as n → ∞ if b = bn satisfies
bn/n → 0. Next, Theorem 3.2 of Arratia et al. (2000) shows that, for
b = bn → ∞ and bn/n → 0, the total variation distance between
the distributions of

∑n
j=b+1(Cj(n) − 1)+ and

∑n
j=b+1(C

∗

j (n) − 1)+
tends to zero as n → ∞, where C∗

j (n), j = 1, . . . , n are the cycle
counts of the ESF with parameter θ . Finally, Lemma 14.2 of Arratia
et al. (2003) shows that P(

∑n
b+1(C

∗

j (n) − 1)+ > 0) = O(1/b) as
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b → ∞. Taking b = bn so that bn → ∞ and bn/n → 0, the first
two limits are established.

The convergence of E(Dn) to E(D) under the extra assumptions
requires considerablymorework, andweomit the technical details
here. □

6.2. Choosing the optimal acceptance rate

For simulation, the improved acceptance rate obtained by using
random variables (Z (x(n))

j , j ≥ 1) that are tailored to the choice of n
also holds in greater generality. The appropriate choices of Zj(x) are
given by tilted versions of Zj:

P(Zj(x) = r) =
xjrP(Zj = r)

E(xjZj )
, x > 0.

The acceptance probability obtained by using the Zj(x) with x =

e−c/n is thus equal to that using the original Zj, multiplied by the
factor

e−c
/ n∏

j=1

E(e−cjZj/n),

to be maximized with respect to c. Note that, for some c < 0, it
may be the case that E(e−cjZj/n) = ∞ for some j. If this is so, then
the factor is zero, and hence smaller than the value 1 obtained at
c = 0, so that such c cannot be optimal. With this in mind, we
define φ∗ to be the supremum of those φ ≥ 0 such that

lim
j→∞

jE{ZjeφZjI(Zj ≥ 3)} = 0. (37)

Theorem. Under the conditions (29), (30) and (36), if c > −φ∗, we
have

n∏
j=1

E(e−cjZj/n) ∼ exp
{
−θ

∫ 1

0

(1 − e−cx)
x

dx
}
.

Hence, asymptotically, the optimal choice of c is still c1(θ ) satisfy-
ing (26), provided that θ ≥ 1, and the improvement is by a factor of
eu(c1(θ )), as for assemblies. If θ < 1, then the asymptotically best choice
is c1(θ ) if c1(θ ) > −φ∗, and again the improvement is as before.

Proof. We first note that

E(e−cjZj/n) = 1 −

∑
r≥1

P(Zj = r)(1 − e−cjr/n)

= 1 − xj − yj − wj − zj,

where

xj :=
θ

j
(1 − e−cj/n); yj :=

θ

j
εj1(1 − e−cj/n);

wj := P(Zj = 2)(1 − e−2cj/n); zj :=

∑
r≥3

P(Zj = r)(1 − e−cjr/n).

Take first the case c > 0. Since 0 < 1 − e−cjr/n
≤ cjr/n, it follows

from (36) that

0 ≤ wj ≤ 2cjn−1P(Zj = 2) = O(1/nj);

0 ≤ zj ≤ cjn−1
∑
r≥3

rP(Zj = r) = O(1/nj1+γ ).

Then, similarly,

|yj| ≤ n−1θc|εj1| and 0 ≤ xj ≤ n−1θc.

Hence, as n → ∞,
n∑

j=1

(|yj| + wj + zj) = O(log n/n);

n∑
j=1

(xj + |yj| + wj + zj)2 = O(n−1),

so that
n∑

j=1

log(E{e−cjZj/n}) = −

n∑
j=1

xj + O(log n/n)

∼ −θ

∫ 1

0
x−1(1 − e−cx) dx,

completing the proof for c > 0.
For −φ∗ < c < 0, we have

0 ≤ −zj ≤ |c|jn−1
∑
r≥3

rP(Zj = r)er|c|

≤ |c|jn−1E{Zje|c|ZjI(Zj ≥ 3)},

which, in view of (37), yields
∑n

j=1|zj| = o(1) and
∑n

j=1z
2
j = o(n−1)

as n → ∞. The remaining argument is as above. □

If φ∗ > 0, an analogous argument can be used to improve
simulation for all values of θ < 1, by first modifying the random
variables Zj. Let Zj(b) = Zj for 1 ≤ j ≤ b, and Zj(b) = ZjI(Zj ≤

2) for j > b; the probability that the sequences differ is at
most∑
j>b

P(Zj ≥ 3) = O(b−1−γ )

under (36). Thus, to simulate (C1(n), . . . , Cn(n)), we can use sam-
ples from (Zj(δn), j ≥ 1), for any fixed δ > 0, with an error
probability of order O(n−1−γ ), which is of smaller order than the
acceptance probability P(T0n = n). Repeating the argument above
by tilting the sequence (Zj(δn), j ≥ 1), we only have zj > 0 for
j ≤ δn, and hence the largest exponent in the moment generating
function bound for

∑n
j=1zj is |c|δ. Thus, for each c ≤ −φ∗, by

choosing δ(c) such that |c|δ(c) < φ∗, we find that the improvement
factor is asymptotically given by eu(c) once more, with c1(θ ) the
best choice of c. The simulations are then carried out with the
x = e−c1(θ )/n tilted versions of the sequence (Zj(δn), j ≥ 1), for
any δ such that |c1(θ )|δ < φ∗.

7. Discussion

Weconcludewith a brief discussion of the efficiency of the three
methods for simulating observations from the ESF. A reasonable
way to assign a ‘‘cost’’ to simulation algorithms is to report the
asymptotic growth, relative to n, of the number of calls to a random
number generator. With this notion of cost, to get one ESF sample,
the cost of the Feller coupling algorithm is O(log n), and the cost
of the algorithm based on the Chinese Restaurant coupling is O(n).
For the algorithm based on the conditioning relation the cost of
the straightforward algorithm is O(n2), a factor of n for the cost to
propose the independent (Z1, . . . , Zn) and an additional factor of n
for the expected number of trials needed to get one acceptance. The
cost can be improved toO(n log n) by coding to propose (Z1, . . . , Zn)
using only O(log n) calls to the random number generator; see Ar-
ratia and DeSalvo (2016), Section 5.1. For random mappings, the
preferredmethod is acceptance/rejection relative to ESF(θ = 1/2),
with an additional O(1) cost factor relative to whichever ESF gen-
erator is used.
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