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Under very mild conditions, we prove that the number of components
in a decomposable logarithmic combinatorial structure has a distribution
which is close to Poisson in total variation. The conditions are satisfied for
all assemblies, multisets and selections in the logarithmic class. The error
in the Poisson approximation is shown under marginally more restrictive
conditions to be of exact order O�1/ log n�, by exhibiting the penultimate
asymptotic approximation; similar results have previously been obtained
by Hwang [20], under stronger assumptions. Our method is entirely prob-
abilistic, and the conditions can readily be verified in practice.

1. Introduction. The joint distribution of the numbers �C�n�1 � � � � � C
�n�
n �

of cycles of sizes 1 ≤ i ≤ n in a uniformly chosen random permutation of n
objects is also known as the Ewens Sampling Formula ESFn�1�; the more
general ESFn�θ�, θ > 0, is obtained by weighting the distribution over the
set of permutations by θK0n , where K0n denotes the total number of cycles in
the permutation. K0n can be written as the sum of n independent Bernoulli
random variables ξi with parameter θ/�θ+ i− 1�:

K0n =
n∑
i=1

ξi�(1.1)

See Feller [13] and Rényi [28] for the case θ = 1 and Watterson [34] for general
θ. Hence, in particular, K0n approximately has a Poisson distribution [8]:

dTV�� �K0n��Po �κ0n�� = O�1/ log n��(1.2)

where κ0n =
∑n

i=1 θ/�θ + i − 1� and, for probability distributions P and Q on
�+,

dTV�P�Q� �= sup
A⊂�+

	P�A� −Q�A�	�

Distributional approximations for K0n have a long history. Goncharov [16,
17] showed that the number of cycles in a random permutation is asymptoti-
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cally normally distributed as n→∞:

K0n − log n√
log n

⇒N�0�1��(1.3)

Kolchin [22] derived approximations of the form

�K0n = k� = Po�log n��k� �1+ o�1�� �(1.4)

uniformly with respect to �log n�−7/12�k − log n� in any finite interval, while
Pavlov [27] established that

�K0n = k� = Po�log n��k�
{
1+O

(
	x	√
log n

+ �log n�−δ
)}

�(1.5)

for any fixed δ ∈ �0�1/2�, k = log n + x
√
log n, with x = o�√log n�. It follows

from (1.5) that

dTV�� �K0n��Po �log n�� = O
(�log n�−1/2+ε) �(1.6)

for any ε > 0� (1.3) then being an easy consequence. Analogous results for
random mappings were proved by Stepanov [31], Kolchin [23] and Pavlov
[27], for random mapping patterns by Mutafciev [25], for random polynomials
over a finite field by Car [11], Hansen [18] and Arratia et al. [3], and for the
irreducible factors of the characteristic polynomial of a matrix T ∈ GLn�Fq�
by Goh and Schmutz [15]. Note that Brenti’s ([10], Theorem 6.4.2) remarkable
representation of the law of �K0n� for random mappings as the law of

∑n
i=1 ξi

for independent Bernoulli random variables ξi implies a result analogous to
(1.2), again from [8].

All these settings are particular examples of the larger logarithmic class
of random decomposable combinatorial structures. By this, we mean random
vectors �C�n�1 � � � � � C

�n�
n � satisfying the Conditioning Relation

� �C�n�1 � � � � � C
�n�
n � = �

(
�Z1� � � � �Zn�

∣∣∣ n∑
i=1

iZi = n

)
�(1.7)

where �Zi� i ≥ 1� are independent random variables on �+, together with the
Logarithmic Condition

lim
i→∞

i�Zi = 1� = lim
i→∞

iƐZi = θ�(1.8)

for some θ > 0. The best studied sub-classes, to which all of the examples
above belong except for the random characteristic polynomials, are assem-
blies, where the Zi have Poisson distributions; multisets, where the Zi have
negative binomial distributions; and selections, where the Zi are binomially
distributed. Random permutations are a logarithmic assembly, random poly-
nomials a logarithmic multiset and random square free polynomials a loga-
rithmic selection.

Flajolet and Soria [14] proved a central limit theorem for the number of
components in considerable generality, as an application of their singularity
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analysis. Building on this, Hwang [20] has developed a powerful generating
function approach to show that a Poisson approximation of the accuracy given
in (1.2) can be established for a wide class of logarithmic assemblies, multisets
and selections; furthermore, he identifies the leading asymptotic term in the
total variation discrepancy. However, his method requires the distributions
of the Zi to come from families which are amenable to generating function
arguments, as is indeed the case for those appearing in assemblies, multisets
and selections. In this paper, we replace his approach by a probabilistic argu-
ment, which enables us to work with quite arbitrary distributions for the Zi.
We prove marginally more accurate approximations than Hwang’s — we iden-
tify the penultimate approximating distribution — under conditions which are
weaker than his, even for assemblies, multisets and selections, and which only
involve simply calculated parameters of the distributions of theZi. We still use
Fourier methods at one point, but only to make an accurate calculation in the
context of the Ewens Sampling Formula, and not for the general distributions
being approximated; our method for proving sharper approximations involves
the refinement of Stein’s method for perturbations of the Poisson distribution
in Barbour and Xia [9].

Logarithmic combinatorial structures share a number of useful properties.
First, it has been shown [29, 6, 30] under fairly general circumstances that,
if b = b�n� = o�n� as n→∞, then

dTV�� �C�n�1 � � � � � C
�n�
b ��� �Z1� � � � �Zb�� → 0�(1.9)

In this case, the numbers of small components behave jointly like the inde-
pendent random variables Zi. In contrast, the sizes of the largest components
L
�n�
1 ≥ L

�n�
2 ≥ · · · are essentially dependent; for any fixed r, the distribution of

n−1�L�n�1 � � � � �L
�n�
r � is well approximated, locally as well as globally, by that of

the r largest components of the Poisson–Dirichlet law PD�θ�. See [21, 32, 2, 26]
for particular structures and [19, 5] for general settings. For the distribution
of K0n =

∑n
i=1C

�n�
i , the total number of components, both small and large

components have to be considered simultaneously, and this makes the argu-
ment more complicated for our probabilistic approach; in contrast, K0n is one
of the easier quantities to treat by generating function methods.

A shortcut approach would be to take b = n/ log n in (1.9), leading to a nor-
mal approximation for

∑b
i=1C

�n�
i , and then to treat the remaining

∑n
i=b+1C

�n�
i

needed for K0n as a perturbation This indeed yields a central limit theorem,
but since

∑b
i=1 VarC

�n�
i = O�log n� and ∑n

i=b+1 ƐC
�n�
i = O�log log n�, this ap-

proach would lead at best to an error estimate of order O�log log n�log n�−1/2�
with respect to the usual metrics for weak convergence, an order much infe-
rior to that in (1.2), and for the total variation metric it would yield nothing
at all. Approximations such as (1.2) are more subtle, and are correspondingly
more difficult to establish; in particular, even the difference between κ0n and
θ log n is important for θ �= 1.
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We establish two analogues of (1.2) in great generality. The first, Theo-
rem 5.2, approximates the distribution ofK0n =K0n�C�n�� by the distribution
of K0�αn��Z�, for a suitably chosen α = αθ > 0, where we use the notation

Kvm�X� =
m∑

i=v+1
Xi� Tvm�X� =

m∑
i=v+1

iXi�(1.10)

the error can be shown to be of order O�1/ log n� under very mild conditions.
The constant αθ is given by exp�θ−1 − hθ�, where

ht = γ + '′�t+ 1�/'�t+ 1�(1.11)

is the t’th harmonic number
∑t

j=1 1/j if t is a positive integer; in the important
special case where θ = 1, it follows that αθ = 1, and hence that � �K0n� =
� �K0n�Z� 	T0n�Z� = n� is then asymptotically close to the unconditional
distribution of K0n�Z�.

The second, Theorem 5.4, goes further than (1.2), showing that

�� �K0n� − νn� = O�log−3/2 n��(1.12)

where

νn�s+ 1� = Po �τn��s�
(
1+ 1

2anτ
−2
n ��s− τn�2 − τn�

)
(1.13)

and

τn =
n∑
i=1

ƐZi − θhθ� an =
n∑
i=1
�VarZi − ƐZi� − θ2h′θ�(1.14)

Here, � · � denotes the total variation norm, which it is more natural to use
when signed measures, as νn may be, are involved: for probability measures
Q1 and Q2,

�Q1 −Q2� = 2dTV�Q1�Q2��
Under the conditions of Theorem 5.4, τn ∼ θ log n and the limit a∞ =
limn→∞ an exists and is finite. It is then easy to see that the measure νn
is O�1/ log n� away from the Poisson Po �τn� distribution in total variation,
whenever a∞ �= 0, so that no better rate than that given in (1.2) can be hoped
for in general. For assemblies, multisets and selections, this second approxi-
mation holds provided that

dTV�� �Zi��Po �θ/i�� = O��log i�−2��(1.15)

The proof of these results still separates the treatment of the small and the
large components. The small components are handled by proving in Section 4
that the convergence (1.9) takes place under extremely general conditions; as
a consequence, the distributions of K0b�C�n�� and K0b�Z� can be matched,
for suitable choice of b. In Section 3, we match the conditional distribution
of Kbn�C�n�� given �C�n�1 � � � � � C

�n�
b � = �c1� � � � � cb� to that of Kbn�C∗�n�� given

�C∗�n�1 � � � � � C
∗�n�
b � = �c1� � � � � cb�, where C∗�n� = �C∗�n�1 � � � � � C

∗�n�
n � has distribu-

tion ESFn�θ�. It then remains to show that, for all �c1� � � � � cb� excluding a
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set of small probability, the conditional distribution of Kbn�C∗�n�� is close to
the same fixed distribution, which is itself asymptotically Poisson. This final
step is discussed in Section 2, and the complete approximation theorems in
Section 5; the bulk of the detailed proof is deferred to Section 6.

We assume throughout that the Conditioning Relation (1.7) and the Log-
arithmic Condition (1.8) both hold, together with some supplementary condi-
tion. The weakest that we use, which strengthens the Logarithmic Condition
slightly by implying some uniformity of decay in the tails of the distributions of
the Zi, but which imposes no extra requirement as to the rates of convergence
in (1.8), is the Uniform Logarithmic Condition.

ULC�0�� There exist constants �e�i�� i ≥ 1� and �cs� s ≥ 1� such that �
�i� e�i� ↓ 0 as i→∞� and D1 =

∑
s≥1

scs <∞�

�ii� 	i�Zi = s� − δs1θ	 ≤ e�i�cs for all i� s ≥ 1�

For the sharper results, in which the orders of the error bounds are to be of
a specified accuracy, some extra control is needed over the way in which the
distributions of the Zi, as is implicit in the Logarithmic Condition, come close
to Be �θ/i�. We choose to strengthen ULC�0� by requiring in addition either

ULC�1�� e�i� = O��log i�−2� and F�x� �= ∑
s>x

scs = O��log x�−1�(1.16)

or

ULC�r�� e�i� = O��log i�−2� and
∑
s≥1

srcs <∞�(1.17)

for some r > 1. These conditions are agreeably simple, but, as is often the case
with moment conditions, could probably be slightly weakened. In the case of
assemblies, multisets and selections, they are easy to verify, as is shown in
the following proposition.

Proposition 1.1. For assemblies, multisets and selections, the Logarith-
mic Condition already implies that ULC(0) is satisfied, and ULC(r) is also
satisfied for each r > 1 if, in addition,

	i�Zi = 1� − θ	 = O��log i�−2��(1.18)

Proof. For assemblies, where Zi ∼ Po �θi�, and for selections, where Zi ∼
Bi �mi�pi�, observe that the Logarithmic Condition implies that, for s ≥ 2,

i�Zi = s� ≤ i

s!
�ƐZi�s ≤

θs∗
s!is−1

≤ i−1cs�(1.19)

where cs = θs∗/s! and θ∗ = supi≥1 iƐZi < ∞; Condition ULC(0) follows auto-
matically, with e�i� = max�i−1� supj≥i 	j�Zj = 1� − θ	�, and ULC(r) also if
	i�Zi = 1� − θ	 = O��log i�−2�.
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For multisets, where Zi ∼ NB �mi�pi�, the argument is somewhat more
complicated. If mi ≥ 1 and s ≥ 2, we have

i�Zi = s� ≤


i�mipi�s

s!

(
1+ s

mi

)s
≤ i

s!
�2mipi�s� if s ≤mi,

ips
i2

mi+s−1 ≤ i�4pi�s ≤ i�4mipi�s� if s > mi,
(1.20)

and i�Zi = s� ≤ imip
s
i if mi < 1; thus, whatever the value of mi, we have

i�Zi = s� ≤ i�4θ∗/i�s + θ∗p
s−1
i �(1.21)

with θ∗ as before. Now the Logarithmic Condition implies that

�Zi = 2�/�Zi = 1� = 1
2�mi + 1�pi → 0(1.22)

as i → ∞, so that pi → 0 also. Hence, for s ≥ 2 and i > i1 = max�8θ∗� i0�,
where i0 = max�i � pi > 1/2�, we have i�Zi = s� ≤ e0�i�cs with e0�i� =
max�i−1� pi� and cs = 5θ∗2−�s−2�; hence 	i�Zi = s�−δs1θ	 ≤ e�i�cs for all i > i1
and s ≥ 1, with e�i� = supj≥imax�	j�Zj = 1� − θ	� e0�j��. The extension to
all i ≥ 1 is immediate, because ƐZr

i < ∞ for all i, and ULC(r) is satisfied if
	i�Zi = 1� − θ	 = O��log i�−2�. ✷

2. Conditioning the Ewens Sampling Formula. Let C∗�n� be distri-
buted according to the Ewens Sampling Formula, the joint distribution re-
sulting from the Conditioning Relation (1.7) when Zi = Z∗i ∼ Po �θ/i� for
each i. In this section, we show that the conditional distribution of Kbn�C∗�n��
given Tbn�C∗�n�� = l is orderO�λ−1bn � close to the Poisson distribution Po �θλbn−
θhθ + 1�, uniformly in n/2 ≤ l ≤ n and 0 ≤ b ≤ n/4, where

λbn = θ−1Ɛ�Kbn�Z∗�� = hn − hb�
the notation Kbn and Tbn is defined in (1.10) and ht in (1.11). Note that
the Conditioning Relation and the independence of the Zi imply that we can
equally consider the conditional distribution of K∗

bn = Kbn�Z∗� given T∗bn =
Tbn�Z∗� = l; using the notation Xr� s� = �Xr� � � � �Xs� and suppressing the
superscript �n�, we have, for any y ∈ �n

+,

�C∗b+ 1� n� = yb+ 1� n� 	Tbn�C∗� = l�

= �C∗b+ 1� n� = yb+ 1� n��Tbn�C∗� = l�
�Tbn�C∗� = l�

= �Z∗b+ 1� n� = yb+ 1� n��Tbn�Z∗� = l�T0n�Z∗� = n�
�Tbn�Z∗� = l�T0n�Z∗� = n�

= �Z∗b+ 1� n� = yb+ 1� n��Tbn�Z∗� = l��T0b�Z∗� = n− l�
�Tbn�Z∗� = l��T0b�Z∗� = n− l�

= �Z∗b+ 1� n� = yb+ 1� n� 	Tbn�Z∗� = l��

(2.1)
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To derive the conditional distribution of K∗
bn given T∗bn = l, note first

that the unconditional distribution of K∗
bn is Po �θλbn�, and that, conditional

on K∗
bn = s, the distribution of Z∗b+ 1� n� is multinomial:

� �Z∗b+ 1� n� 	K∗
bn = s� =MN �s� � �U���(2.2)

where

�U = r� = 1/�rλbn�� b+ 1 ≤ r ≤ n�(2.3)

Thus, conditional on K∗
bn = s, T∗bn has the distribution of Ws =

∑s
j=1Uj,

where the �Uj� j ≥ 1� are independent and identically distributed with the
distribution of U. Hence

�K∗
bn = s 	T∗bn = l� = �K∗

bn = s�T∗bn = l�
�T∗bn = l� = Po �θλbn��s�

�Ws = l�
�T∗bn = l� �(2.4)

and further progress depends on understanding the distribution ofWs. For the
following approximation to the conditional probability in (2.4), whose proof is
deferred to Section 6, we need to define the measure ν�ρ� c1� c2� with density

ν�ρ� c1� c2��s� = Po �ρ��s� (1+ c1ρ
−1�s− ρ� + 1

2c2ρ
−2��s− ρ�2 − ρ�) �(2.5)

possibly signed, satisfying ν�ρ� c1� c2���+� = 1.

Lemma 2.1. Fix any 0 < γ < 1 and 1/2 < α1 < 1 < α2 < 3/2, and set
b = nγ�. Then, uniformly in α1θλbn ≤ s ≤ α2θλbn and in n/2 ≤ l ≤ n, we have∣∣∣∣Po �θλbn��s+ 1��Ws+1 = l�

�T∗bn = l� − ν�θλbn�−θhθ� θ2�h2
θ − h′θ���s�

∣∣∣∣
≤ kPo �θλbn��s�

{
λ−2bn �1+ 	s− λbnθ	� + λ−3bn 	s− λbnθ	3 + �1− l/n�θ̄/2

}
�

where k = k�θ� γ� α1� α2� and θ̄ = min�θ�1�.

As a result of this lemma, it is an easy matter to deduce that the conditional
distribution of K∗

bn, given T
∗
bn = l, is asymptotically well approximated by the

same distribution for all l such that n − l is much smaller than n, since λbn
grows like log n as n→∞. An obvious candidate is ν�θλbn�−θhθ� θ2�h2

θ−h′θ��.
For this choice, where both c1 = −θhθ and c2 = θ2�h2

θ − h′θ� are fixed and ρ =
θλbn � log n→∞, the measure ν�ρ� c1� c2� is a relatively small perturbation
of the Poisson distribution Po �ρ�. Note that ν�ρ� c1� c2��s� > 0 for all s in an
interval α1ρ ≤ s ≤ α2ρ, where 0 < α1 < 1 < α2 and αl = αl�c1� c2�, so that, by
the properties of the Poisson distribution, there are probability measures ν′

such that �ν′ − ν�ρ� c1� c2�� = O�e−βρ�, for some β = β�c1� c2�. It is also the
case that, if σ , b1 and b2 are such that

σ + b1 = ρ+ c1� b2 − b21 = c2 − c21�(2.6)

then �ν�σ� b1� b2� − ν�ρ� c1� c2�� ≤ kρ−3/2 for some k = k�c1� c2� b1� b2�: see
Barbour and Xia [9], Theorem 3.2.
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Theorem 2.2. With b = nγ� for 0 < γ < 1 fixed, we have

�� �K∗
bn−1 	T∗bn = l�−ν�θλbn�−θhθ� θ2�h2

θ−h′θ��� = O�log−3/2 n+�1−l/n�θ̄/2�
for all 0 ≤ l ≤ n.

Proof. For 0 ≤ l < n/2, it is clear that � · � ≤ 2 is a good enough estimate.
Otherwise, let ν denote � �K∗

bn − 1 	T∗bn = l�, so that, from Lemma 2.1,

	ν�s� − ν�θλbn�−θhθ� θ2�h2
θ − h′θ���s�	 ≤ k1ζ�s�

where

ζ�s� = Po �θλbn��s�
{
λ−2bn �1+ 	s− λbnθ	� + λ−3bn 	s− λbnθ	3 + �1− l/n�θ̄/2

}
�

for all α1θλbn ≤ s ≤ α2θλbn and n/2 ≤ l ≤ n. However,∑
s≥0

ζ�s� ≤ k2 log
−3/2 n+ �1− l/n�θ̄/2�(2.7)

and then, for any fixed α1 < 1 < α2,

	ν�λ� c1� c2�	�α1λ� α2λ�c�
≤ ∑

s∈α1λ�α2λ�c
Po �λ��s� (1+ λ−1	c1		s− λ	 + 1

2λ
−2	c2	�s− λ�2)

≤ �1+ 	c1	 + 1
2 	c2	� �Po �λ��0� α1λ�� + Po �λ��α2λ− 2�∞��� �

(2.8)

exponentially small as λ→∞. Then (2.7) and (2.8) with λ = θλbn also imply
that ν�α1θλbn� α2θλbn�c� = O�log−3/2 n�, and the theorem follows. ✷

An alternative version, which exploits the freedom of choice of ρ, c1 and c2
in (2.6), uses an expression which is obviously close to a Poisson distribution,
in that c1 is chosen to be zero. Let Rbn denote the distribution of 1+W, where
W is a random variable with distribution differing as little as possible from
ν�ρbn�0�−θ2h′θ�, where

ρbn = θ�hn − hb − hθ��(2.9)

take

Rbn�s+1�=�W= s� =Po �ρbn��s�
(
1− 1

2ρ
−2
bn θ

2h′θ��s−ρbn�2−ρbn�
)

(2.10)

for 	s− ρbn	 ≤ γθρbn, with γθ = �2θ2h′θ�−1/2, and set

Rbn�ρbn�1+ γθ�� + 1� = 1−Rbn

{[
0� ρbn�1+ γθ��

]}
�

noting that both

Rbn

{(ρbn�1+ γθ���∞
)}

and
∑

j>ρbn�1+γθ��
	ν�ρbn�0�−θ2h′θ�	�j��j+ ρbn�

are of smaller order than O�ρ−3/2bn �.
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Corollary 2.3. If b = nγ� for fixed 0 < γ < 1, then

dTV�� �K∗
bn 	T∗bn = l��Rbn� ≤ k�log−3/2 n+ �1− l/n�θ̄/2�

for all 0 ≤ l ≤ n, for some k = k�γ� θ�.

3. The large components. In this section, we show that the conditional
distribution of the sizes of the large components, given the sizes of the small
components, is almost the same for all the logarithmic combinatorial struc-
tures under consideration. Using the notation Xr� s� = �Xr� � � � �Xs�, we
prove that the conditional distribution of Cb + 1� n�, given that Tbn�C� = l,
is close to that of C∗b + 1� n� given Tbn�C∗� = l, uniformly in n/2 ≤ l ≤ n
and 0 ≤ b ≤ n/4, where C∗ is distributed according to the Ewens Sampling
Formula and all superscripts �n� are suppressed. As a result, the conditional
distribution of Kbn�C� is close to that of Kbn�C∗�, so that the approximations
in Theorem 2.2 can be carried over to quite general logarithmic combinatorial
structures.

As a first step, we show that the unconditional distributions of Zb+ 1� n�
andZ∗b+1� n� are close. We assume throughout that Condition ULC(0) holds,
and note that then

	�Zi = 0� − �1− θ/i�	 ≤ D1i
−1e�i�� 	�Zi = 1� − θ/i	 ≤ D1i

−1e�i�(3.1)

and

�Zi ≥ 2� ≤ D1i
−1e�i� �(3.2)

we define

EL�b� n� = b−1 + e�b� +
n∑

i=b+1
i−1e�i� + n−1 log n�(3.3)

Lemma 3.1. If ULC(0) holds, then

dTV�� �Zb+ 1� n���� �Z∗b+ 1� n��� = O�EL�b� n���(3.4)

uniformly in b and n.

Proof. Take any y ∈ �0�1�n. Then
�Zb+ 1� n� = yb+ 1� n��
�Z∗b+ 1� n� = yb+ 1� n�� =

n∏
i=b+1

�Zi = 0�1−yi�Zi = 1�yi
e−θ/i�θ/i�yi

≥
n∏

i=b+1
�1−D1i

−1e�i�−O�i−2���1−D1θ
−1e�i��yi

≥ 1−D1

n∑
i=b+1

i−1e�i�−D1θ
−1

n∑
i=b+1

e�i�yi−O�b−1��
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Hence, for any A ⊂ �n−b
+ , it follows that

�Zb+ 1� n� ∈ A� ≥ �Zb+ 1� n� ∈ A ∩ �0�1�n−b�
≥ �Z∗b+ 1� n� ∈ A� − �Z∗b+ 1� n� ∈ A \ �0�1�n−b�

−D1θ
−1

n∑
i=b+1

e�i��Z∗i = 1� −O�EL�b� n��

= �Z∗b+ 1� n� ∈ A� −O�EL�b� n���
since �⋃n

i=b+1�Z∗i ≥ 2�� = O�b−1� and �Z∗i = 1� ≤ i−1θ. The lemma is now
immediate. ✷

The next step is to compare the densities of Tbn�Z� and Tbn�Z∗�. The ran-
dom variables Tbn�Z∗� have been well studied. As observed in [7],

l�Tbn�Z∗� = l� = θ�Tbn�Z∗� < l− b��(3.5)

and, as proved by Vervaat [33], n−1T0n�Z∗�
�−→ Xθ, where Xθ has an every-

where positive density fθ on �0�∞� which satisfies the equation

xfθ�x� = θ�x− 1 < Xθ ≤ x�� x > 0�(3.6)

in particular,

lim inf
n→∞ �Tbn�Z∗� < n/4� ≥ lim

n→∞�T0n�Z∗� < n/4� = �Xθ < 1/4� > 0�(3.7)

In the next lemma, we show that the density of Tbn�Z� has much the same
properties.

Lemma 3.2. If ULC(0) holds, then

�1�� l�Tbn�Z� = l� ≤ θ+O�EL�1� n��
for all l and b. Furthermore,

�2�� �Tbn�Z� = l�
�Tbn�Z∗� = l� = 1+O�EL�b� n���

uniformly in n/2 ≤ l ≤ n and 0 ≤ b ≤ n/4.

Proof. Start with any l� b ≥ 0. Writing Tbn for Tbn�Z� and setting T�i�bn =
Tbn − iZi, we have

l�Tbn = l� = Ɛ�Tbn1�l��Tbn��
=

n∑
i=b+1

∑
s≥1

is�Zi = s�Ɛ�1�l��T�i�bn + is���(3.8)

Now, since conditioning gives

�Tbn = l−m� =∑
s≥0

�Zi = s��T�i�bn = l−m− is��(3.9)
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it follows that

	�Tbn = l−m� − �1− θ/i��T�i�bn = l−m� − �θ/i��T�i�bn = l−m− i�	

≤ θ

i

D1e�i�
θ

{
�T�i�bn = l−m� + �T�i�bn = l−m− i�

}
+O�i−1e�i��

= O�i−1e�i���
and hence that

	�T�i�bn = l−m� − �Tbn = l−m�	 = O�i−1�� b+ 1 ≤ i ≤ n

and

�T�i�bn = l− i� = �Tbn = l− i� − i−1θ��Tbn = l− 2i� − �Tbn = l− i��
+O�i−2 + i−1e�i���

Using these last two estimates to simplify the right hand side of (3.8), we
obtain

l�Tbn = l� =
n∑

i=b+1
i�Zi = 1�

×
{
�Tbn = l− i� − i−1θ��Tbn = l− 2i� − �Tbn = l− i��

+O�i−2 + i−1e�i��
}

+
n∑

i=b+1

∑
s≥2

is�Zi = s���Tbn = l− is� +O�i−1��

= θ�Tbn < l− b� +O�EL�b� n�� +O

{∑
s≥2

smax
i≥b+1

i�Zi = s�
}

= θ�Tbn < l− b� +O�EL�b� n���
in view of ULC(0), where we have used the fact that

∑
r≥0�Tbn = r� = 1.

Part (1) now follows, since EL�b� n� ≤ EL�1� n� for all b.
Now take n/2 ≤ l ≤ n and 0 ≤ b ≤ n/4. Then it follows that

�Tbn�Z� = l�
�Tbn�Z∗� = l� =

�Tbn�Z� < l− b� +O�EL�b� n��
�Tbn�Z∗� < l− b�

= 1+O�EL�b� n���
from Lemma 3.1, (3.5) and (3.7). This proves Part (2). ✷

As a consequence of Lemma 3.2, we can also derive the following estimate,
which is used in Section 5.

Corollary 3.3. Uniformly in 0 ≤ b ≤ n/4, for any 0 < β ≤ 1,

Ɛ�Tβ
0b�C�IT0b�C� ≤ n/2�� = O�bβ1+EL�b� n����
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Proof. Direct calculation gives

Ɛ�Tβ
0b�C�IT0b�C� ≤ n/2��

=
n/2�∑
t=0

tβ�T0b�Z� = t��Tbn�Z� = n− t�
�T0n�Z� = n�

=
n/2�∑
t=0

tβ�T0b�Z� = t��Tbn�Z∗� = n− t�
�T0n�Z∗� = n� �1+O�EL�b� n���

≤ 2
n/2�∑
t=0

tβ�T0b�Z� = t�
�T∗0n ≤ n− 1� �1+O�EL�b� n����

where Lemma 3.2(2) and (3.5) give the last two lines. But

n/2�∑
t=0

tβ�T0b�Z� = t� ≤ Ɛ
{
T
β
0b�Z�

}
≤ �ƐT0b�Z��β

=
(

b∑
i=1

i
∑
s≥1

s�Zi = s�
)β
≤ bβ�θ+ e�1��1+D1��β�

by ULC(0), which, with (3.7), proves the corollary. ✷

Combining these two preliminary results, we can now prove the closeness
of the conditional distributions of the sizes of the large components in an arbi-
trary combinatorial structure satisfying ULC(0) and in the Ewens Sampling
Formula.

Theorem 3.4. For any combinatorial structure satisfying ULC(0),

dTV�� �Cb+1� n� 	Tbn�C� = l��� �C∗b+1� n� 	Tbn�C∗� = l�� = O�EL�b� n���
uniformly in n/2 ≤ l ≤ n and 0 ≤ b ≤ n/4.

Proof. We start much as in the proof of Lemma 3.1. For any y ∈ �0�1�n
such that

∑n
i=b+1 iyi = l, we have

�Cb+ 1� n� = yb+ 1� n� 	Tbn�C� = l�
�C∗b+ 1� n� = yb+ 1� n� 	Tbn�C∗� = l�

= �Zb+ 1� n� = yb+ 1� n��
�Z∗b+ 1� n� = yb+ 1� n��

�Tbn�Z∗� = l�
�Tbn�Z� = l�(3.10)

≥ 1− �D1/θ�
l∑

i=b+1
e�i�yi −O�EL�b� n��

≥ 1− �D1/θ�
{ l/2�∑
i=b+1

e�i�yi + e�l/2��
l∑

i=l/2�+1
yi

}
−O�EL�b� n���(3.11)
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We thus find that, for any A ⊂ �n−b
+ ,

�Cb+ 1� n� ∈ A 	Tbn�C� = l�
≥ �C∗b+ 1� n� ∈ A 	Tbn�C∗� = l�

−�
[

n⋃
i=b+1

�C∗i ≥ 2� 	Tbn�C∗� = l

]
(3.12)

−�D1/θ�
l/2�∑
i=b+1

e�i��C∗i = 1 	Tbn�C∗� = l� −O�EL�b� n���

since, if Tbn�C∗� = l, then
∑l

i=l/2�+1C
∗
i ≤ 1. Hence there are two remaining

elements to be bounded in �3�12�.
First, using the Conditioning Relation, (3.5) and (3.9), we observe that, for

i ≤ l/2,

�C∗i = 1 	Tbn�C∗� = l� = �Z∗i = 1��T�i�bn�Z∗� = l− i�
�T∗bn = l�

≤ e−θ/i
θ

i

eθ/i�T∗bn < l− i− b�
�T∗bn < l− b�

(
l

l− i

)
= O�i−1��

where T∗bn denotes Tbn�Z∗�, so that

�D1/θ�
l/2�∑
i=b+1

e�i��C∗i = 1 	Tbn�C∗� = l� = O�EL�b� n���(3.13)

Then, by similar estimates,

�C∗i = r 	Tbn�C∗� = l� = e−θ/i

r!

(
θ

i

)r �T�i�bn�Z∗� = l− ir�
�T∗bn = l�

≤ 1
r!

(
θ

i

)r �T∗bn < l− ir− b�
�T∗bn < l− b�

( �l/r�
�l/r� − i

)
�

(3.14)

If i ≤ l/2r, we bound (3.14) by 2θr
r!ir ; if l/2r < i < l/r, we bound by �2rθ�r

r!lr

( �l/r�
�l/r�−i

)
,

and if i = l/r, we bound by �rθ�r
r!lr

l
�T∗bn<l−b� . Adding over the range i ≥ b + 1,

this gives

�

[
n⋃

i=b+1
�C∗i = r� 	Tbn�C∗� = l

]

≤ 2θr

r!br−1
+ �2eθ�r
r3/2lr−1

log�l/r� + �eθ�r
r1/2lr−1�T0n�Z∗� < n/4� �

and hence, adding over r ≥ 2, it follows that

�

[
n⋃

i=b+1
�C∗i ≥ 2� 	Tbn�C∗� = l

]
=O�b−1 + n−1 log n�=O�EL�b� n���(3.15)
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uniformly in n/2 ≤ l ≤ n and 0 ≤ b ≤ n/4. Putting (3.13) and (3.15) into (3.12)
gives the theorem. ✷

4. The small components. The purpose of this section is to prove the ap-
proximation (1.9) of the joint distribution of the sizes of the small components
�C�n�1 � � � � � C

�n�
b � by that of the independent random variables �Z1� � � � �Zb�, in

the generality required in this paper. In order to achieve this, we first need
two technical estimates. Define

b2 = b2�Z� = max�i � �Zi = 0� < 1/2��(4.1)

finite because of the Logarithmic Condition, and recall that

F�x� = ∑
s>x

scs�(4.2)

where the cs are as for ULC(0).

Lemma 4.1. If ULC(0) holds, then

m�T0b�Z� =m� = O�n−1b+F�n/4b���
uniformly in b2 ≤ b ≤ m/2 and m ≥ n/2. In particular, m�T0b�Z� = m� =
o�1� if b = o�m�, and is of order O�b/m� under ULC(2).

Proof. As for equation (3.8),

m�T0b =m� =
b∑
i=1

∑
s≥1

is�Zi = s��T�i�0b =m− is�

≤
b∑
i=1

∑
s≥1

e�i�scs�T�i�0b =m− is� + θ
b∑
i=1

�T�i�0b =m− i��
(4.3)

where T0b = T0b�Z� and T
�i�
0b = T0b − iZi. Now, from Markov’s inequality, for

any t > 0,

�T�i�0b ≥ t� ≤ �T0b ≥ t� ≤ t−1ƐT0b = O�b/t��(4.4)

uniformly in b and t, by the Logarithmic Condition and from the defini-
tion (1.10) of T0b. Hence, for 1 ≤ i ≤ b2 in (4.3), we have

b2∑
i=1

(∑
s≥1

e�i�scs�T�i�0b =m− is� + θ�T�i�0b =m− i�
)

≤
b2∑
i=1

{
e�1�

m/2b2�∑
s=1

scs + θ

}
�T�i�0b ≥m/2� + e�1�b2

∑
s>m/2b2

scs

≤ b2
{�θ+ e�1�D1�4n−1ƐT0b + e�1�F�n/4b2�

}
= O�n−1b+F�n/4b2���

(4.5)
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uniformly in m ≥ n/2. For i > b2 in (4.3), we use the elementary inequality
�T�i�0b =m− is� ≤ 2�T0b =m− is� to give

θ
b∑

i=b2+1
�T�i�0b =m− i� ≤ 2θ�T0b ≥m/2� = O�b/n��(4.6)

again by Markov’s inequality, uniformly in b ≤ m/2 and m ≥ n/2. Finally,
since

∑
i≥0 �T0b =m− is� ≤ 1 for any s, it follows that

b∑
i=b2+1

∑
s≥1

e�i�scs�T�i�0b =m− is�

≤ 2e�1�
{

b∑
i=b2+1

m/2b�∑
s=1

scs�T0b =m− is� + ∑
s>m/2b

scs

}

≤ 2e�1�
{
D1�T0b ≥m/2� + ∑

s>m/2b

scs

}

= O�n−1b+F�n/4b���

(4.7)

uniformly in b2 ≤ b ≤ m/2 and m ≥ n/2. Putting (4.5) – (4.7) into (4.3), the
lemma follows. ✷

Lemma 4.2. If ULC(0) holds, then lim infn→∞ n�T0n�Z� = n� > 0.

Proof. Pick b = b�n� ≤ n/4 in such a way that b = o�n� and that b
still grows fast enough to ensure that EL�b� n� → 0 as n → ∞. This can be
achieved, for instance, by taking

b�n� =
{ n1/2�� if e�√n�� ≤ 4/ log2 n,
min

(n exp{−�e�√n���−1/2}�� n/4�) � otherwise,

and any larger sequences b�n� still satisfying b�n� = o�n� are also suitable.
Then we have

n�T0n�Z� = n� =∑
s≥0

n�T0b�Z� = s��Tbn�Z� = n− s�

≥ n
n/2�∑
s=0

�T0b�Z� = s��Tbn�Z∗� = n− s��1−O�EL�b� n���

≥ 1
2n

n/2�∑
s=0

�T0b�Z� = s��Tbn�Z∗� = n− s�

for all n large enough, by Lemma 3.2 (2). But now, from (3.5), for s ≤ n/2,

n�Tbn�Z∗� = n− s� ≥ θ�Tbn�Z∗� < n− s− b� ≥ θ�T0n�Z∗� < n/4�
is bounded away from 0, and �T0b�Z� < n/2� = 1 − O�n−1b� from (4.4),
completing the proof of the lemma. ✷
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Theorem 4.3. If ULC(0) holds, then

>1 = dTV�� �C1� b���� �Z1� b��� = O�ES�b� n���
uniformly in 0 ≤ b ≤ n/4, where

ES�b� n� = EL�b� n� + n−1b+F�n/4b��(4.8)

EL�b� n� is as defined in (3.3) and F�x� as in (4.2). If b � nγ for some 0 < γ < 1
and ULC(2) holds, we have

dTV�� �C1� b���� �Z1� b��� = O�1/ log n��

Remark. Under ULC(0), if b = b�n� = o�n� is such thatEL�b� n� → 0, then
ES�b� n� → 0 also. Hence dTV�� �C1� b���� �Z1� b��� → 0 as n→∞ when-
ever b = o�n� if ULC(0) holds, since dTV�� �C1� b���� �Z1� b��� increases
with b. This is a very weak condition for such convergence. For smaller values
of b, the element EL�b� n� in the estimate of > is not accurate, but sharper
rates under such circumstances are not needed in this paper; we are free to
choose any (large) b that suits us, and we only require an approximation of
order O�1/ log n�. With rather more work, sharper approximations of order
O�n−1b+F�n/4b�� can in fact be established in considerable generality [4].

Proof. As in [4], from the conditioning relation, we have

2>1 =
∑
r≥0
	�T0b�C�n�� = r� − �T0b�Z� = r�	

= �T0b > n� +
n∑
r=0

pr

∣∣∣∣1− �Tbn = n− r�
�T0n = n�

∣∣∣∣
≤ �T0b > n/2� + r−1n

n∑
r=n/2�+1

prqn−r(4.9)

+r−1n
n/2�∑
r=0

pr

∣∣∣∣∣
∑
s≥0

ps�qn−s − qn−r�
∣∣∣∣∣ �(4.10)

where we use the shorthand pt = �T0b = t�, qt = �Tbn = t� and rn =
�T0n = n�, the argumentZ being suppressed where possible. Hence it follows
that

2>1 ≤ �T0b > n/2� + r−1n
n∑

r=n/2�+1
prqn−r

+r−1n
n/2�∑
r=0

pr

{n/2�∑
s=0

ps	qn−s − qn−r	

+
n∑

s=n/2�+1
psqn−s + qn−r�T0b > n/2�

}
�

(4.11)
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Most of the elements in (4.11) can be easily bounded. First, from Lemma 4.2,
we have rn ≥ cn−1 for some c > 0, and then

r−1n
n/2�∑
r=0

prqn−r�T0b > n/2� ≤ �T0b > n/2� = O�b/n��(4.12)

from (4.4). Furthermore, from Lemmas 4.1 and 4.2,

r−1n
n∑

r=n/2�+1
prqn−r ≤ r−1n max

r>n/2
pr = O�n−1b+F�n/4b���(4.13)

Combining these estimates, we thus find that

2>1 = r−1n
n/2�∑
r=0

n/2�∑
s=0

prps	qn−s − qn−r	 +O�ES�b� n���(4.14)

However, from Lemma 3.2,

	�qn−s − qn−r� − ��T∗bn = n− s� − �T∗bn = n− r��	

= O

(
max
t≥n/2

�T∗bn = t�EL�b� n�
)
= O�n−1EL�b� n���

(4.15)

since

�T∗bn = t� = θt−1�T∗bn < t− b� ≤ t−1θ

for all t ≥ 1, by (3.5); and, again by (3.5), for 0 ≤ s� r ≤ n/2,

	�T∗bn = n− s� − �T∗bn = n− r�	

= θ

∣∣∣∣�T
∗
bn < n− s− b�
n− s

− �T∗bn < n− r− b�
n− r

∣∣∣∣
≤ 2θ

n
	s− r	4θ

n
+ 4θ	r− s	

n2

≤ 4θn−2�r+ s��1+ 2θ��

(4.16)

where, for the first inequality, we use (3.5) to give the bound �T∗bn = l� ≤
4θn−1 for l ≥ n/4. Substituting (4.15) and (4.16) into (4.14) yields

>1 = O�EL�b� n� + n−1b+ES�b� n�� = O�ES�b� n���

as required. Under ULC(2), with b � nγ, all that is needed is to check that
ES�b� n� = O�1/ log n�; note here that, under ULC(2), F�x� = O�1/x�. ✷
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5. Theorems. We now prove the main results of the paper. The first ap-
proximation to the distribution of K0n = K0n�C�n�� is derived by combining
Corollary 2.3 and Theorems 3.4 and 4.3. The result is somewhat unwieldy, but
has neater consequences. Let Qbn denote the convolution of � �K0b�Z�� and
Rbn, the latter defined as for Corollary 2.3.

Lemma 5.1. For any combinatorial structure satisfying ULC(0), if b = nγ�
for some fixed 0 < γ < 1, then

dTV�� �K0n�C�n����Qbn� = O�λ−3/2bn +ES�nγ�� n���
where λbn = hn − hb as before.

Proof. Writing pkt�X� = �K0b�X� = k�T0b�X� = t�, and suppressing
the superscript �n�, direct calculation shows that

>2 = 2dTV�� �K0n�C���Qbn�
≤ ∑

k≥0

∑
t≥0

∑
s≥1

∣∣∣�K0b�C� = k�T0b�C� = t�Kbn�C� = s�

−�K0b�Z� = k�T0b�Z� = t�Rbn�s�
∣∣∣

≤ ∑
k≥0

∑
t≥0

pkt�C�
∑
s≥1
	�Kbn�C� = s 	K0b�C� = k�T0b�C� = t� −Rbn�s�	

+∑
k≥0

∑
t≥0
	pkt�C� − pkt�Z�	�

Now the latter sum is just 2dTV
(
� �K0b�C��T0b�C���� �K0b�Z��T0b�Z��

)
,

which is bounded byO�ES�b� n�� from Theorem 4.3. Furthermore, by the Con-
ditioning Relation, as for (2.1),

�Kbn�C� = s 	K0b�C� = k�T0b�C� = t� = �Kbn�Z� = s 	Tbn�Z� = n− t��
Hence we have reached the estimate

>2 ≤
∑
k≥0

∑
t≥0

pkt�C�

× {2dTV(� �Kbn�Z� 	Tbn�Z� = n− t��� �Kbn�Z∗� 	Tbn�Z∗� = n− t�)
+2dTV

(
� �Kbn�Z∗� 	Tbn�Z∗� = n− t��Rbn

)}
+O�ES�b� n���

For 0 ≤ t ≤ n/2, the second of these differences is uniformly of order O�λ−3/2bn +
�t/n�θ̄/2�, by Corollary 2.3; hence, from Corollary 3.3, its contribution is of order
O�λ−3/2bn +�b/n�θ̄� = O�λ−3/2bn �. In the same range of t, the first of the distances
is bounded by O�EL�b� n��, from Theorem 3.4. Then, finally,∑

k≥0

∑
t>n/2

pkt�C� = �T0b�C� > n/2�

≤ n−1ƐT0b�Z� +O�ES�b� n�� = O�n−1b+ES�b� n���
by Theorem 4.3 and (4.4). This completes the proof of the lemma. ✷
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Theorem 5.2. For any combinatorial structure satisfying ULC(0), we have

dTV
(
� �K0n�C�n����� �K0�αn��Z��

) = O�log−1 n+ES�nγ�� n���(5.1)

for any fixed 0 < γ < 1, where α = αθ = exp�θ−1 − hθ� and ES�b� n� is as
defined in (4.8).

Proof. By Lemma 3.1, and because∣∣∣∣∣
αn�∑
i=n

i−1e�i�
∣∣∣∣∣ = O�e�nmin�α�1��� = O�EL�b� n��

for b ≤ nmin�α�1/4�, it follows that
dTV

(
� �Kb�αn��Z���Po �θ�hαn� − hb��

) = O�EL�b� n���(5.2)

But, from the definition of α, we have

θ�hαn� − hb� = θ�hαn� − hn� + θ�hn − hb�
= θ�log α+O�n−1�� + θλbn = ρbn + 1+O�n−1��

uniformly in b, where ρbn is as in (2.9), and thus

dTV
(
Po �θ�hαn� − hb���Po �ρbn + 1�) = O�n−1� = O�EL�b� n���(5.3)

Finally, an application of Stein’s method for the Poisson distribution shows
that dTV�Po �ρbn+1��1+Po �ρbn�� ≤ ρ−1bn , and dTV�1+Po �ρbn��Rbn� = O�ρ−1bn �
follows directly from the definition of Rbn preceding Corollary 2.3.

Combining (5.2) and (5.3) with Lemma 5.1, the estimate (5.1) is estab-
lished. ✷

Corollary 5.3. If condition ULC(1) holds, then

dTV�� �K0n�C�n����� �K0�αn��Z��� = O�1/ log n��

Proof. Simply note that ES�nγ�� n� = O�1/ log n� under ULC(1), because
e�i� = O��log i�−2�. ✷

We finish by showing when a Poisson perturbation approximation is ap-
propriate. Here we make use of a version of Stein’s method given in Barbour
and Xia [9] for some simple signed compound Poisson measures and other re-
lated distributions, including the measures ν�ρ� c1� c2� introduced in Section 2.
Approximation by signed Poisson and compound Poisson measures has been
extensively studied in the classical settings, for instance in Kruopis [24] and
Čekanavičius [12], who have shown that very accurate approximations can be
obtained. Define ρbn = θ�hn −hb −hθ� = θλbn − θhθ as before in (2.9), and set

µ1 =
b∑
i=1

ƐZi� σ2
1 =

b∑
i=1

VarZi�

µ2 =
n∑

i=b+1
ƐZi − θhθ� σ2

2 =
n∑

i=b+1
VarZi − θhθ − θ2h′θ�
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Note that, under ULC(2),

	ρbn − µ2	 = O�log−1 b� and 	ρbn − θ2h′θ − σ2
2 	 = O�log−1 b��(5.4)

Let

τn = µ1 + µ2 =
n∑
i=1

ƐZi − θhθ�

an = σ2
1 + σ2

2 − �µ1 + µ2� =
n∑
i=1
�VarZi − ƐZi� − θ2h′θ�(5.5)

Let νn be any probability distribution which satisfies

νn�s+ 1� = Po �τn��s�
(
1+ 1

2anτ
−2
n ��s− τn�2 − τn�

)
(5.6)

for τnmax�1/2� �1− 	an	−1/2�� ≤ s ≤ τnmin�3/2� �1+ 	an	−1/2��.

Theorem 5.4. For any combinatorial structure satisfying ULC(3),

dTV�� �K0n�C�n����νn� = O�log−3/2 n��
for νn defined through (5.5) and (5.6).

Proof. Take b = n1/2, and use Lemma 5.1. Then we just need to show
that �� �S� − νn� = O�log−3/2 n�, where S = S1 + S2 and S1 and S2 are
independent, with � �S1� = � �K0b�Z�� and S2 ∼ Rbn.

Now, from the definition (2.10) of Rbn,

�� �S2 − 1� − ν�ρbn�0�−θ2h′θ�� = O�log−3/2 n��
since ρbn � log n. Then, from Barbour and Xia [9], Theorem 3.2,

�ν�ρbn�0�−θ2h′θ� − πu2�v2
� = O�log−3/2 n��

where u2 = ρbn+θ2h′θ, v2 = −θ2h′θ and πu�v is the (possibly signed) compound
Poisson measure on �+ with generating function

π̂u�v�z� �=
∑
r≥0

zrπu�v�r� = exp�u�z− 1� + 1
2v�z2 − 1���(5.7)

On the other hand, from Barbour and Xia ([9], Corollary 4.4 and Proposition
4.6),

�� �S1� − πu1�v1
� = O�log−3/2 n��

where u1 = 2µ1−σ2
1 � log n and v1 = σ2

1 −µ1 = O�1�; the condition ULC�3� is
needed here as a prerequisite for applying these results. Since πu1�v1

∗πu2�v2
=

πu1+u2�v1+v2 , it thus follows that

�� �S1 +S2 − 1� − πu1+u2�v1+v2� = O�log−3/2 n��(5.8)
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But now

u1 + u2 = 2µ1 − σ2
1 + ρbn + θ2h′θ

= 2�µ1 + µ2� − �σ2
1 + σ2

2 � +O�log−1 n� = τn − an +O�log−1 n�
and

v1 + v2 = σ2
1 − µ1 − θ2h′θ

= �σ2
1 + σ2

2 � − �µ1 + µ2� +O�log−1 n� = an +O�log−1 n��
because of (5.4). Applying Barbour and Xia [9], Corollary 2.4, we thus have

�πu1+u2�v1+v2 − πτn−an�an� = O�log−3/2 n��
and, again from Barbour and Xia ([9], Theorem 3.2),

�πτn−an�an − ν�τn�0� an�� = O�log−3/2 n��
Hence, from (5.8),

�� �S1 +S2 − 1� − ν�τn�0� an�� = O�log−3/2 n��
and the theorem follows. ✷

Corollary 5.5. For any combinatorial structure satisfying ULC(3),

dTV�� �K0n�C�n����1+ Po �τn�� =
	an	√
2πe

+O�log−3/2 n��

for τn and an defined in (5.5).

Proof. The calculation based on the explicit expression for the density
of νn is standard. ✷

Remark. Theorem 3.4 of Barbour and Xia [9] can be used to prove more
accurate approximations by shifted Poisson distributions. In particular, if an
is an integer, then

dTV

(
� �K0n�C�n����1− an + Po

( n∑
i=1

VarZi − θhθ − θ2h′θ

))
= O�log−3/2 n��

Many other variations of the results above can be achieved, under slightly
different conditions, by using similar methods. To take one example, if ULC(2)
is satisfied, then

dTV

(
� �K0n�C�n����Po

( n∑
i=1

ƐZi + 1− θhθ

))
= O�log−1 n��

As observed in the introduction, ULC(r) holds for all assemblies, multisets
and selections for which 	i�Zi = 1� − θ	 = O��log i�−2�, for any value of
r > 1. For these combinatorial classes, Hwang [20] needs the assumption that



352 R. ARRATIA, A. D. BARBOUR AND S. TAVARÉ

	i�Zi = 1� − θ	 = O�i−β� for some β > 0, which, in the context of approxi-
mations with errors of logarithmic magnitude, is substantially stronger. It is
not clear what assumptions about the distributions of the Zi are required in
general for his methods to be applicable, in the sense that the appropriate
bivariate generating function belongs to his class �� .

6. Proof of Lemma 2.1. In order to prove Lemma 2.1, we begin with
Fourier inversion and integration by parts, to obtain

nPo �θλbn��s+ 1��Ws+1 = l�

= Po �θλbn��s+ 1� 1
2π

∫ nπ

−nπ
e−itl/n

{
λ−1bn

n∑
r=b+1

r−1eitr/n
}s+1

dt(6.1)

= Po �θλbn��s�
nθ

2πl

∫ nπ

−nπ
e−itl/n

{
λ−1bn

n∑
r=b+1

r−1eitr/n
}s

Vbn�t�dt�

where

Vbn�t� =
eit/n�eitb/n − eit�
n�1− eit/n� �

note that

	Vbn�t�	 ≤
π

2
min�1�2	t	−1� ≤ 3π

2�	t	 + 1�(6.2)

in 	t	 ≤ nπ, since

�2/π2�x2 ≤ 1− cosx = 1
2 	1− eix	2 ≤ 1

2x
2(6.3)

in 0 ≤ x ≤ π. Similarly,

n�Tbn�Z∗� = l�
= nθ

2πl

∫ nπ

−nπ
e−itl/n exp

{
−θ

n∑
r=b+1

r−1�1− eitr/n�
}
Vbn�t�dt�(6.4)

We now approximate the integrals in (6.2) and (6.4) in a succession of lem-
mas. The argument is essentially straightforward, and rather tedious. We take
b = nγ� for some fixed γ, 0 < γ < 1, and use the notation O�EM�n�� to denote
any quantity of order n−β for some fixed β > 0; this is very much smaller
than the order λ−3/2bn ∼ log−3/2 n to which we are working. Constants denoted
by k with suffices depend only on the quantities θ, γ, α1 and α2; α1 and α2 are
fixed, and satisfy 1/2 < α1 < 1 < α2 < 3/2.

Lemma 6.1. For 	t	 ≤ nπ, we have∣∣∣∣∣
n∑

r=b+1
r−1eitr/n

∣∣∣∣∣ ≤ �3π/2� + e−1 + log+�n/b	t	��
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Proof. Without loss of generality, take t > 0. Representing the sum as a
complex integral, and choosing a ray as contour, we have∣∣∣∣∣

n∑
r=b+1

r−1eitr/n
∣∣∣∣∣ =

∣∣∣∣
∫ eit/n

0

ub�un−b − 1�
u− 1

du

∣∣∣∣
≤
∫ 1

0

yb	1− yn−bei�n−b�t/n	
	1− yeit/n	 dy

=
∫ 1

0
yb
{�1− yn−b�2 + 2yn−b�1− cos�n− b�t/n��

�1− y�2 + 2y�1− cost/n��
}1/2

dy�

For n ≤ 	t	 ≤ nπ,

��1− y�2 + 2y�1− cost/n���1/2 ≥ ��1− y�2 + 2y�1− cos 1��1/2 ≥ sin 1�

and thus the integral is at most 2/ sin 1 ≤ 3π/2. For 	t	 ≤ n, the integral is
bounded piecemeal, since∫ 1

0
yb+�n−b−1�/2

{
1− cos�n− b�t/n�

1− cost/n�
}1/2

dy ≤
∫ 1

0
y�n+b−1�/2π�n− b�/2dy ≤ π�

and then, from (6.3), since 1 ≤ b ≤ n, we have∫ 1

1−t/n
yb − yn√

2y�1− cost/n�� dy ≤
t

n

1√
2�1− cost/n�� ≤ π/2�

and finally∫ 1−t/n

0

(
yb − yn

1− y

)
dy =

n∑
r=b+1

r−1�1− t/n�r

≤
∫ n

b
x−1e−tx/n dx

=
∫ t

tb/n
z−1e−z dz ≤ e−1 + log+�n/bt�� ✷

Corollary 6.2. If α1θλbn ≤ s ≤ α2θλbn and λbn ≥ 6��3π+1�/2+e−1�, then

I6�2 �=
∣∣∣∣∣
∫
�n/b�1/2≤	t	≤nπ

e−itl/n
{
λ−1bn

n∑
r=b+1

r−1eitr/n
}s

Vbn�t�dt
∣∣∣∣∣ = O�EM�n���

Proof. From Lemma 6.1, if λbn ≥ 6��3π + 1�/2+ e−1�, then it follows that∣∣∣∣∣λ−1bn
n∑

r=b+1
r−1eitr/n

∣∣∣∣∣
s

≤ �2/3�α1θλbn

in �n/b�1/2 ≤ 	t	 ≤ nπ and in the given range of s, because then

log+�n/b	t	� ≤ 1
2 log�n/b� ≤ 1

2�λbn + 1��
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and hence the quantity within the moduli is at most 2/3. Using the bound
on Vbn�t� given in (6.2), the corollary follows. ✷

Now, for any 0 ≤ ε < 1, define the complex valued function

Gε�t� =
∫ t

εt

(
1− eiy

y

)
dy =

∫ 	t	
ε	t	

(
1− cosy

y

)
dy− i sign�t�

∫ 	t	
ε	t	

siny
y

dy�

for t ∈ �, noting also that Gε�−t� = Gε�t� and that 	eGε�t� ≥ 0 for all t.
The following property of Gε that we use in what follows can be derived from
known properties of the sine and cosine integrals ([1], pp 231–33):

G∗ = sup
0≤ε<1

sup
t
	Gε�t� −min�log�	t	 + 1�� log�ε−1��	 <∞�(6.5)

Lemma 6.3. With Gε defined as above,∣∣∣∣∣λ−1bn
n∑

r=b+1
r−1eitr/n − (1− λ−1bnGb/n�t�

)∣∣∣∣∣ ≤ n−1	t	�1+ 2λ−1bn ��

Proof. It is enough to take t ≥ 0, since the result for t < 0 then follows
by conjugation. First, it is immediate that

n∑
r=b+1

r−1�1− eitr/n�

=
∫ t�n+1�/n

t�b+1�/n

(
1− eiy

y

)
dy−

n∑
r=b+1

∫ �r+1�t/n
�rt/n�

{(
1− eiy

y

)
−
(
1− eitr/n

�rt/n�
)}

dy�

Hence, by routine calculation, it follows that∣∣∣∣∣λ−1bn
n∑

r=b+1
r−1eitr/n − (1− λ−1bnGb/n�t�

)∣∣∣∣∣
= λ−1bn

∣∣∣∣∣
n∑

r=b+1
r−1�1− eitr/n� −Gb/n�t�

∣∣∣∣∣
≤ λ−1bn

{∫ �b+1�	t	/n
b	t	/n

	y−1�1− eiy�	dy+
∫ �n+1�	t	/n
	t	

	y−1�1− eiy�	dy
}

+λ−1bn
n∑

r=b+1

∫ �r+1�t/n
�rt/n�

∣∣��rt/n� − y� + yeitr/n − �rt/n�eiy∣∣ �rt/n�−2 dy
≤ 2t
nλbn

+λ−1bn
n∑

r=b+1

∫ �r+1�t/n
�rt/n�

{	y− �rt/n�	 	1− eitr/n	 + �rt/n�	eitr/n − eiy	}
×�rt/n�−2 dy

≤ 2t
nλbn

+ λ−1bn
n∑

r=b+1

t

2nr
�
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where we have twice used the inequality 	eiu − eiv	 ≤ 	u− v	 for real u and v,
proving the lemma. ✷

Corollary 6.4. For s ∈ �+ such that α1θλbn ≤ s ≤ α2θλbn,

I6�4 �=
∣∣∣∣∣
∫ √n/b

−
√
n/b

e−itl/n
{(

λ−1bn
n∑

r=b+1
r−1eitr/n

)s
− (1− λ−1bnGb/n�t�

)s}
Vbn�t�dt

∣∣∣∣∣
= O�EM�n���

Proof. Take

a = (1− λ−1bnGb/n�t�
)
� a+ ε = λ−1bn

n∑
r=b+1

r−1eitr/n�

and observe that 	a+ ε	 ≤ λ−1bn
∑n

r=b+1 r
−1 = 1; using the inequality

	�a+ ε�s − as	 ≤ s	ε	max�	a	s� 	a+ ε	s� ≤ s	ε	�1+ 	ε	�s ≤ s	ε	es	ε	

for any s ∈ �+, it follows from Lemma 6.3, in view of the range of t, and
from (6.2) that

I6�4 ≤ k6�4 s
∫ √n/b

−
√
n/b

n−1	t	 es/
√
nbmin�1� 	t	−1�dt = O��nb�−1/2 log�n/b���

which is enough. ✷

Lemma 6.5. If λ ≥ 1, G ∈ 
 and s ∈ �+ satisfy λ−1	G	 ≤ 9/16 and
�1/2�θλ ≤ s ≤ �3/2�θλ, then

DG�s� �= 	eθG�1− λ−1G�s − �1− λ−1G�s− λθ� + 1
2λ
−2G2��s− λθ�2 − λθ��	

≤ k6�5�	G	 + 1�6 {λ−2�1+ 	s− λθ	� + λ−3	s− λθ	3} e59θ	G	/64�
Proof. By Taylor’s expansion, writing w = s− λθ, we have

DG�s� =
∣∣exp�θG+ �λθ+w� log�1− λ−1G��
−1+ λ−1Gw− 1

2λ
−2G2�w2 − λθ�∣∣

= ∣∣exp�−λ−1Gw− 1
2λ
−2G2�λθ+w� + η1�

−1+ λ−1Gw− 1
2λ
−2G2�w2 − λθ�∣∣ �

where 	η1	 ≤ k1λ
−2	G	3, because of the restrictions on w and 	G	. Then we

have ∣∣exp�−λ−1Gw� − �1− λ−1Gw+ 1
2λ
−2G2w2�∣∣

≤ 	w	
3	G	3
6λ3

exp�λ−1	G	 	w	� ≤ 	w	
3	G	3
6λ3

exp�θ	G	/2��
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and ∣∣exp�− 1
2λ
−2G2�λθ+w�� − �1− 1

2λ
−2G2�λθ+w��∣∣

≤ k2λ
−2	G	4 exp�27θ	G	/64��

again by Taylor’s expansion and because of the restrictions on w and 	G	. The
lemma follows upon multiplying and collecting terms. ✷

Corollary 6.6. For �1/2�θλbn ≤ s ≤ �3/2�θλbn and λbn ≥ 16�G∗ + 1�, we
have

I6�6 �=
∣∣∣∣∣
∫ √n/b

−
√
n/b

e−itl/n��1− λ−1bnGb/n�t��s −Wb/n�s� t��Vbn�t�dt
∣∣∣∣∣

≤ k6�6�λ−2bn �1+ 	s− λbnθ	� + λ−3bn 	s− λbnθ	3��
where

Wε�s� t� �= 1− λ−1bnGε�t��s− λbnθ�

+ 1
2λ
−2
bnGε�t�2��s− λbnθ�2 − λbnθ�e−θGε�t��

(6.6)

Proof. We use Lemma 6.5 to bound the difference within the braces. In
the given range of t, (6.5) shows that∣∣e−θGb/n�t�∣∣ ≤ eθG∗�1+ 	t	�−θ� 	Gb/n�t�	 ≤ G∗ + log�	t	 + 1��(6.7)

and (6.2) is used to bound 	Vbn�t�	. Combining these observations, we find a
bound for I6�6 of

k1

∫ √n/b

0
�t+ 1�−θ�1+ log�t+ 1��6

× {λ−2bn �1+ 	s− λbnθ	� + λ−3bn 	s− λbnθ	3
} �t+ 1�59θ/64�t+ 1�−1 dt�

which is of the required order; note that λbn ≥ 16�G∗ + 1� is enough to ensure
that λ−1bn 	Gb/n�t�	 ≤ 9/16 	t	 ≤ �n/b�1/2. ✷

Lemma 6.7. For α1θλbn ≤ s ≤ α2θλbn, we have

I6�7 �=
∣∣∣∣∣
∫ √n/b

−
√
n/b

e−itl/nWb/n�s� t��Vbn�t� − iG′b/n�t��dt
∣∣∣∣∣ = O�EM�n���

Proof. Elementary Taylor estimates using (6.2) show that, for 	t	 ≤ nπ,

	Vbn�t� − iG′b/n�t�	 =
	eitb/n − eit	
n	t	 	1− eit/n	 	in�1− eit/n� − teit/n	

≤ 2
n	t	 	1− eit/n	 	e

−it/n − �1− it/n�	 ≤ πn

t2
t2

2n2
≤ π/�2n��
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Hence, recalling (6.6) and (6.7), it follows that

I6�7 ≤ k1

∫ √n/b

0
�t+ 1�−θ�1+ log2�t+ 1��n−1 dt

= O�n−1�n/b��1−θ�/2 log2�n/b���
which is enough. Note also that, t and b ≤ n,

	G′b/n�t�	 = 	t−1�eitb/n−eit�	 ≤ min�1�2	t	−1� ≤ 3/�	t	+1�� ✷(6.8)

Lemma 6.8. For α1θλbn ≤ s ≤ α2θλbn and n/2 ≤ l ≤ n, we have

I6�8 �=
∣∣∣∣∣
∫ √n/b

−
√
n/b
�e−it − e−itl/n�Wb/n�s� t�G′b/n�t�dt

∣∣∣∣∣ ≤ k6�8�1− l/n�θ̄/2�

where θ̄ = min�1� θ� as before.

Proof. In the given range of s and for 	t	 ≤ √
n/b, from (6.6), (6.7) and

(6.8), we have

	Wb/n�s� t�G′b/n�t�	 ≤ k1�1+ 	t	�−θ−1�1+ log2�	t	 + 1���
furthermore, for n/2 ≤ l ≤ n, we have

	e−it − e−itl/n	 ≤ min�2� t�1− l/n���
Now integrate 	e−it − e−itl/n	 	Wb/n�s� t�G′b/n�t�	 with respect to t. If θ > 1, this
gives an upper bound for I6�8 of

k2

∫ ∞
0
�1+ 	t	�−θ−1	t	�1− l/n��1+ log2�	t	 + 1��dt = O�1− l/n��

if θ ≤ 1 and �1− l/n�−1 ≤ �n/b�1/2, split the integral into two parts to give

I6�8 ≤ k3

{∫ n/�n−l�

0
	t	�1− l/n��1+ 	t	�−θ−1�1+ log2�	t	 + 1��dt

+
∫ √n/b

n/�n−l�
�1+ 	t	�−θ−1�1+ log2�	t	 + 1��dt

}

≤ k4�1− l/n�θ�1+ log2�n/�n− l��� ≤ k5�1− l/n�θ/2�
the remaining case is simpler. ✷

Lemma 6.9. For α1θλbn ≤ s ≤ α2θλbn, we have

I6�9 �=
∣∣∣∣∣
∫ √n/b

−
√
n/b

e−it�Wb/n�s� t�G′b/n�t� −W0�s� t�G′0�t��dt
∣∣∣∣∣ = O�EM�n���
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Proof. Since

G0�t� −Gb/n�t� =
∫ tb/n

0

(
1− eiy

y

)
dy�

we find that 	G0�t� − Gb/n�t�	 ≤ 	t	b/n and that 	G′0�t� − G′b/n�t�	 ≤ b/n, and
the remaining argument is straightforward, in view of (6.6), (6.7) and (6.8). ✷

Lemma 6.10. For α1θλbn ≤ s ≤ α2θλbn, we have∫ ∞
√
n/b
	W0�s� t�G′0�t�	dt = O�EM�n���

Proof. Uniformly for all t and in the given range of s, we have

	W0�s� t�G′0�t�	 ≤ k1�1+ 	t	�−1−θ�1+ log2�	t	 + 1���
and the conclusion is immediate. ✷

Returning to the proof of Lemma 2.1, observe that Corollaries 6.2, 6.4
and 6.6, together with Lemmas 6.7–6.10, can be combined with (6.2) to give

nPo �θλbn��s+ 1��Ws+1 = l�
Po �θλbn��s�

=
(
nθ

2πl

∫ ∞
−∞

e−it−θG0�t�
{
1− λ−1bnG0�t��s− λbnθ�

+1
2
λ−2bnG

2
0�t��s− λbnθ�2 − λbnθ�

}
G′0�t�dt

+O
{
λ−2bn �1+ 	s− λbnθ	� + λ−3bn 	s− λbnθ	3 + �1− l/n�θ̄/2

})
�

(6.9)

uniformly in α1θλbn ≤ s ≤ α2θλbn and n/2 ≤ l ≤ n. An entirely similar chain
of reasoning, but without needing Corollary 6.6, yields

n�Tbn�Z∗� = l� =
nθ

2πl

∫ ∞
−∞

e−it−θG0�t�G′0�t�dt+O�EM�n�+�1−l/n�θ̄/2��(6.10)

These integrals can now be explicitly evaluated.
Integrating by parts, we first obtain that

θ

2π

∫ ∞
−∞

ie−it−θG0�t�G′0�t�dt =
1
2π

∫ ∞
−∞

e−it−θG0�t� dt = fθ�1��
where fθ is the probability density of the random variable Xθ given in (3.6),
and satisfies fθ�1� = θ�Xθ ≤ 1� and

d

dθ
�Xθ ≤ 1� = −hθ�Xθ ≤ 1��(6.11)

where hθ is as in (1.11). Similarly, we obtain

θ

2π

∫ ∞
−∞

ie−it−θG0�t�G0�t�G′0�t�dt =
1

2πθ

∫ ∞
−∞

e−it−θG0�t��1+ θG0�t��dt

= �θ−1fθ�1� − f′θ�1���
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and

θ

2π

∫ ∞
−∞

ie−it−θG0�t�G2
0�t�G′0�t�dt

= 1
πθ2

∫ ∞
−∞

e−it−θG0�t��1+ θG0�t� + 1
2θ

2G2
0�t��dt

= 2�θ−2fθ�1� − θ−1f′θ�1� + 1
2f
′′
θ�1���

Combining these results with (6.9) and (6.10) gives

Po �θλbn��s+ 1��Ws+1 = l�
Po �θλbn��s��Tbn�Z∗� = l�
= 1+ λ−1bn c1�s− λbnθ� +

1
2
λ−2bn c2��s− λbnθ�2 − λbnθ�

+O
{
λ−2bn �1+ 	s− λbnθ	� + λ−3bn 	s− λbnθ	3 + �1− l/n�θ̄/2

}
�

uniformly in α1θλbn ≤ s ≤ α2θλbn and n/2 ≤ l ≤ n, with

c1 = −�θ−1fθ�1� − f′θ�1��/fθ�1� = −hθ
and

c2 =
(
2�θ−2fθ�1� − θ−1f′θ�1�� + f′′θ�1�

)
/fθ�1� = −h′θ + h2

θ�

these last calculations following from (6.11). This completes the proof of
Lemma 2.1. ✷
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[28] Rényi, A. (1962). On the extreme elements of observations.MTA III. Oszt. Közl. 12 105–121.
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Department of Mathematics
University of Southern California
Los Angeles, California 90089-1113
E-mail: rarratia@hto.usc.edu

stavare@hto.usc.edu

A.D. Barbour
Abteilung für Angewandte Mathematik
Universität Zürich
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