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For a random permutation of n objects, as n → ∞, the process giving the proportion of

elements in the longest cycle, the second-longest cycle, and so on, converges in distribution

to the Poisson–Dirichlet process with parameter 1. This was proved in 1977 by Kingman

and by Vershik and Schmidt. For soft reasons, this is equivalent to the statement that the

random permutations and the Poisson–Dirichlet process can be coupled so that zero is the

limit of the expected �1 distance between the process of cycle length proportions and the

Poisson–Dirichlet process. We investigate how rapid this metric convergence can be, and

in doing so, give two new proofs of the distributional convergence.

One of the couplings we consider has an analogue for the prime factorizations of

a uniformly distributed random integer, and these couplings rely on the ‘scale-invariant

spacing lemma’ for the scale-invariant Poisson processes, proved in this paper.

1. Introduction

Pick a permutation of n objects, with all n! possibilities equally likely. Write L
(n)
1 for the

length of the longest cycle, L(n)
2 for the length of the second-longest cycle, and so on,

with L
(n)
j = 0 if the permutation has fewer than j cycles. Kingman [18] and Vershik and
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Shmidt [22] proved that these lengths, taken as proportions of n, converge in distribution,

to a process (L1, L2, . . . ) now known as the Poisson–Dirichlet process (with parameter 1):

n−1
(
L

(n)
1 , L

(n)
2 , . . .

)
⇒ (L1, L2, . . . ). (1.1)

A condition equivalent to (1.1) is that for every fixed k, the distribution of the random

vector n−1(L(n)
1 , L

(n)
2 , . . . , L

(n)
k ) converges to that of (L1, L2, . . . , Lk).

The convergence in (1.1) is, by definition, based on the product topology for R
∞, and

states that for every bounded continuous f : R
∞ → R, we have

lim
n→∞

Ef
(
n−1
(
L

(n)
1 , L

(n)
2 , . . .

))
= Ef((L1, L2, . . . ).

Both processes n−1(L(n)
1 , L

(n)
2 , . . . ) and n−1(L(n)

1 , L
(n)
2 , . . . ) take values in the simplex ∆ :=

{(x1, x2, . . . ) : x1 + x2 + · · · = 1 and ∀i, xi � 0}, and the �1 distance is a bounded metric

on ∆ which induces the same topology as the restriction of the product topology to

∆ ⊂ R
∞. It then follows from Strassen’s theorem, together with the the Kantorovich–

Rubinstein theorem (see Chapter 11 of Dudley [10],) that the distributional convergence

claimed in (1.1) is equivalent to the following statement about couplings: ‘The processes

(L(n)
1 , L

(n)
2 , . . . ) and (L1, L2, . . . ) can be coupled, that is, simultaneously constructed on a

single probability space, so that

E

∑
i�1

|L(n)
i /n − Li| → 0 (1.2)

as n → ∞.’

In this paper, we investigate how rapidly the left side of (1.2) can converge to zero.

Rather than divide the cycle lengths by n, we prefer to multiply the Poisson–Dirichlet

components by n, so the quantity of interest is n times the expected �1 distance involved

in (1.2). Thus, for any given coupling we consider

dPD(n) := E

∑
i�1

|L(n)
i − nLi| (1.3)

= nE
∥∥n−1

(
L

(n)
1 , L

(n)
2 , . . .

)
− (L1, L2, . . . )

∥∥
1
.

Any coupling in which dPD(n) = o(n) as n → ∞ serves as a proof of the distributional

convergence in (1.1). We give three different couplings that do so, and hence three different

proofs of (1.1). The first coupling is the ‘natural’ coupling involved in the usual proof

of (1.1), and what is new is our analysis of the expected �1 distance for this coupling.

Our second and third couplings are novel, and thus provide two new proofs of (1.1). We

consider the convergence in (1.1) to be so fundamental that every explicit coupling that

achieves (1.2) would be interesting, and this, rather than a quest to minimize the distance

dPD(n), is our primary motivation. In particular, fourth and further couplings would be

interesting, even if they offer no improvement on the metric bound.

We give a lower bound in Theorem 2.2 stating that for any coupling,

lim inf
n→∞

(log n)−1 dPD(n) � 1/4.
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In Section 5, we analyse the obvious natural coupling, based on the canonical cycle

notation for a permutation, to show that it achieves

lim sup
n→∞

(log n)−1 dPD(n) � E|Q|,

where Q is a random variable defined in (5.12). Simulation shows that E|Q| .
= 0.39357 ±

0.00001. In Section 6 we consider a second coupling, which achieves

lim sup
n→∞

(log n)−1 dPD(n) � 1/3.

(We believe, but do not attempt to prove, that this coupling has limn→∞ (log n)−1 dPD(n) =

1/3.) In Section 8 we consider a third coupling, which achieves

lim sup
n→∞

(log n)−1 dPD(n) � 1/4,

and hence by comparison with the lower bound, this third coupling satisfies

lim
n→∞

(log n)−1 dPD(n) = 1/4. (1.4)

In Section 9 we give the analogous result for θ-biased permutations.

1.1. Age-ordered cycles

The age-ordering of the cycles of a permutation is described in detail and from first

principles in Section 4.1. For an introductory overview, it suffices to say that starting

from the list of cycle lengths (L(n)
1 , L

(n)
2 , . . . ), one can apply auxiliary randomization (a

size-biased permutation) to re-order the list to get an ‘age-ordered’ list (A(n)
1 , A

(n)
2 , . . . ), with

L
(n)
i = ith-largest of A

(n)
1 , A

(n)
2 , . . . . Furthermore, this age-ordered list, rescaled by n, has a

distributional limit (A1, A2, . . . ), called the GEM process, which has a remarkably simple

structure.

In each of our three couplings, we simultaneously construct the age-ordered cycle

lengths (A(n)
1 , A

(n)
2 , . . . ) and the scaled GEM (nA1, nA2, . . . ), aiming to make them close

to one another. Then we construct the Poisson–Dirichlet (L1, L2, . . . ) from the GEM

(A1, A2, . . . ) by applying RANK, that is, we take Li to be the ith-largest of A1, A2, . . . .

Lemma 3.2 below shows that RANK can only reduce the l1-distance, so that∑
i�1

|L(n)
i − nLi| �

∑
i�1

|A(n)
i − nAi|, (1.5)

and taking expectations then shows that

dPD(n) � dGEM(n) := E

{∑
i�1

|A(n)
i − nAi|

}
. (1.6)

The second and third couplings are rather different from the first. For coupling 1, we

show that

lim
n→∞

(log n)−1 dGEM(n) = E|Q|,

so that, by Lemma 3.2, lim supn→∞(log n)−1 dPD(n) � E|Q|. In contrast, for coupling 2,

we show that lim infn→∞(log n)−1 dPD(n) � 1/3, but do not get an estimate for dGEM(n);



34 R. Arratia, A. D. Barbour and S. Tavaré

rather, we show that, for some permutation σ of N, E
∑

i�1 |A(n)
i − nAσ(i)| is small, and then

apply Lemma 3.2. We use a similar strategy with coupling 3, matching a rearrangement

of the GEM random variables, and then applying Lemma 3.2 to deduce an upper bound

on dPD(n). This gives lim supn→∞(log n)−1 dPD(n) � 1/4, and comparison with the lower

bound from Theorem 2.1 then yields (1.4).

We believe that there is an essential difference between dPD(n) and dGEM(n). The idea is

that if one starts with a close coupling of n−1 (L(n)
1 , L

(n)
2 , . . . ) with (L1, L2, . . . ), and applies a

size-biased permutation to each process, then, since the sizes are slightly different, it is not

possible to use exactly the same permutation for size-biasing. The following conjecture

uses a constant strictly greater than 1/4, to assert that there is an essential difference

between dPD(n) and dGEM(n); it uses the particular constant E|Q| for the simple reason

that our first coupling achieves this constant.

Conjecture ($100). Any coupling of the age-ordered cycle lengths with the GEM has

lim infn→∞(log n)−1 dGEM(n) � E|Q|, where Q is specified by (5.12).

1.2. Comparison with prime factorization of an integer

Consider a random positive integer chosen uniformly from 1 to n, and let Pi(n) be the

size of its ith-largest prime factor, with Pi(n) = 1 if i is greater than the number of factors

of the random integer. Billingsley [7] proved in 1972 that

(log n)−1(logP1(n), logP2(n), . . . ) ⇒ (L1, L2, . . . ),

with the same Poisson–Dirichlet limit as in (1.1).

As in (1.3), one can consider the �1 distance to the limit, but this time scaling up by

log n rather than by n. Arratia [2] gave a coupling, similar to our third coupling for

permutations, which has

E

∑
| logPi(n) − (log n)Li| = O(log log n). (1.7)

A conjecture from [2], that O(1) can be achieved in place of O(log log n), remains open,

with a $100 prize offered for its resolution. Our third coupling for permutations, as well

as the coupling in [2], relies on the ‘scale-invariant spacing lemma’ for the scale-invariant

Poisson processes, proved in Section 7 in this paper.

2. A lower bound for all couplings

A lower bound asymptotic to (1/4) log n for E
∑

i�1 |L(n)
i − nLi| can be derived from the

fact that the intensity µ(a, b), defined by

µ(a, b) = E

∑
i�1

1l(Li ∈ (a, b)) for 0 < a < b � 1,

is given by the explicit expression µ(a, b) =
∫ b

a
x−1 dx. An alternate statement of this

property of the Poisson–Dirichlet process, from [12] and [17], is

E

∑
j�1

φ(Lj) =

∫ 1

0

φ(x)
dx

x
, (2.1)
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for any function φ that makes the integral absolutely convergent. One can also deduce

(2.1) directly from the distributional convergence in (1.1), together with the fact that

EC
(n)
i = 1/i for 1 � i � n, where C

(n)
i is the number of cycles of length i.

Theorem 2.1. Let L(n)
i denote the size of the ith-largest cycle of a random permutation, and

let Li be the ith coordinate of the Poisson–Dirichlet process with parameter 1. Uniformly

over all couplings of these two processes,

lim inf
n→∞

(log n)−1
E

∑
i�1

|L(n)
i − nLi| � 1

4
. (2.2)

Proof. The factor 1/4 arises as the long term average of the sawtooth function d(x,Z) =

|x − �x + .5	|. Since each L
(n)
i ∈ Z, any coupling has

E

∑
i�1

|L(n)
i − nLi| � E

∑
i�1

d(nLi,Z).

Using (2.1), we see that

E

∑
i�1

d(nLi,Z) =

∫ 1

0

d(nx,Z)x−1 dx =

∫ n

0

d(x,Z)x−1 dx ∼ 1

4
log n.

The asymptotic in the last step comes from the fact that d(x,Z) = x if 0 < x � 1/2, so

that
∫ 1/2

0
d(x,Z)x−1 dx = 1/2, while for k = 1, 2, . . . ,

d(x,Z) =

{
k − x, if x ∈ [k − 1/2, k],

x − k, if x ∈ [k, k + 1/2],

so that the contribution from ‘one sawtooth’ is∫ k+.5

k−.5

d(x,Z)

x
dx =

∫ k

k−.5

k − x

x
dx +

∫ k+.5

k

x − k

x
dx

= k

(∫ k

k−.5

dx

x
−
∫ k+.5

k

dx

x

)
= k log(k2/(k2 − 1/4)) = −k log(1 − 1/(4k2)).

Hence ∫ 1

0

d(nx,Z)x−1 dx =
1

2
+

n−1∑
k=1

−k log

(
1 − 1

4k2

)
+

∫ n

n−.5

n − x

x
dx, (2.3)

and, since −k log(1 − 1
4k2 ) ∼ 1/(4k), the sum, as well as the entire right side of (2.3), is

asymptotic to (1/4) log n.

3. Lemmas for sorting and �1 distances

There is a well-known ‘rearrangement inequality’ stating that, for any nonincreas-

ing sequences (li, 1 � i � k) and (mi, 1 � i � k) and permutations ρ and σ,
∑k

1 limi �∑k
1 lρ(i)mσ(i). Lemma 3.1 treats differences rather than products, and we provide a simple
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direct proof, very similar to the proof of the rearrangement inequality. Lemma 3.2, an

extension of Lemma 3.1, implies that the RANK function is a contraction for the �1

distance.

Lemma 3.1 may be viewed as a special case of the result (1.1.14) in [20], or Exercises

11.8.1–2 in [10]. Recall that for any random variables X,Y , with cumulative distribution

functions F,G, the Wasserstein distance, infcouplings E|X − Y |, equals
∫ ∞

−∞ |F(t) − G(t)| dt,
and this infimum is achieved by constructing both X and Y using their quantiles applied

to a single uniform [0,1] random variable. Dudley [10, p. 342] traces the history back

to Gini in 1914 and Dall’Aglio [8]. The special case of Lemma 3.1 is that of empirical

distributions: X is chosen uniformly from the multiset {l1, . . . , lk} and Y is chosen uniformly

from the multiset {m1, . . . , mk}. But in a sense this is circular, since proofs of the result on

infcouplings E|X − Y | start with the discrete case, and then take limits to get the general

case.

Lemma 3.1. If l1 � l2 � · · · � lk and m1 � m2 � · · · � mk , then for any permutations ρ, σ

on {1, 2, . . . , k},
k∑
1

|�i − mi| �
k∑
1

|�ρ(i) − mσ(i)|. (3.1)

Proof. Without loss of generality, the permutation σ can be taken to be the identity with

σ(i) = i for i = 1 to k. Thus our goal is to show that the ‘score’ s(ρ) :=
∑k

1 |lρ(i) − mi| is

minimized by taking ρ to be the identity permutation.

Any time there is a reversal, i.e., i < j with lρ(i) > lρ(j), we can apply the transposition (i j)

without increasing the score. To check this, write a = mi, A = mj, b = lρ(j), B = lρ(i), so that

a � A and b � B. We have s(ρ) − s(ρ ◦ (i j)) = |a − B| + |A − b| − (|a − b| + |A − B|) � 0,

which can be verified by considering cases such as a < A < b < B, which yields zero, a <

b < A < B, which yields 2|A − b|, or a < b < B < A, which yields 2(B − b). An arbitrary

permutation ρ can be transformed into the identity in a finite number of such steps.

Lemma 3.2. If l1 � l2 � · · · and m1 � m2 � . . . then, for any permutations ρ, σ on N,∑
i�1

|li − mi| �
∑
i�1

|lρ(i) − mσ(i)|.

Hence the map RANK is a contraction on �1.

Proof. As in the previous lemma, without loss of generality σ can be taken to be the

identity permutation, so our goal is to show, for an arbitrary permutation of N, that∑
i�1 |li − mi| �

∑
i�1 |lρ(i) − mi|. This in turn is equivalent to showing that, for arbitrary

k � 1,

k∑
i=1

|li − mi| �
∑
i�1

|lρ(i) − mi|. (3.2)
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Fix k. The set of ordered pairs {(ρ(1), 1), . . . , (ρ(k), k), (1, ρ−1(1)), . . . , (k, ρ−1(k))} is a match-

ing between two sets, say A and B, with

k � n = |A| = |B| � 2k.

Note that {1, 2, . . . , k} ⊂ A ∩ B. Label the elements of these sets so that A = {i1, i2, . . . , in}
and B = {j1, j2, . . . , jn} with i1 < i2 < · · · < in and j1 < j2 < · · · < jn (and hence 1 = i1 =

j1, . . . , k = ik = jk). The matching of A and B can be expressed as {(1, τ(1)), . . . , (n, τ(n))}
for a permutation τ of {1, . . . , n}. We have, writing for example i(a) ≡ ia,

k∑
a=1

|la − ma| =

k∑
a=1

|li(a) − mj(a)| �
n∑

a=1

|li(a) − mj(a)|

�
n∑

a=1

|la − mτ(a)| �
∑
i�1

|lρ(i) − mi|.

In the above, the middle inequality is justified by Lemma 3.1 applied to the permutation

τ, while the first and third inequalities are simply by inserting additional nonnegative

terms.

4. Canonical cycle notation and the GEM

The easy path to understanding the structure of (L(n)
1 , L

(n)
2 , . . . ), which are the cycle lengths

taken in decreasing order, is to consider first a more elaborate construction: the cycle

lengths in the order produced by writing out the canonical cycle notation for a permutation

on [n] := {1, 2, . . . , n}.

4.1. Age order of the cycles

A permutation ρ ∈ Sn can be written as an (ordered) product of cycles in the following

way: start the first cycle with the integer 1, followed by its image ρ(1), the image of ρ(1)

and so on. Once this cycle is completed, the second cycle starts with the smallest unused

integer followed by its images, and so on. For example, the permutation ρ ∈ S10 given by

ρ =

(
1 2 3 4 5 6 7 8 9 10

9 2 7 3 6 4 5 8 10 1

)
(4.1)

is decomposed as

ρ = (1 9 10)(2)(3 7 5 6 4)(8), (4.2)

a permutation with two singleton cycles (or fixed points), one cycle of length 3, and one

of length 5. This example with n = 10 has cycle lengths in decreasing order given by

(L(n)
1 , L

(n)
2 , . . . ) = (5, 3, 1, 1, 0, 0, . . . ), while the cycle lengths in canonical, or age order are

(A(n)
1 , A

(n)
2 , . . . ) = (3, 1, 5, 1, 0, 0, . . . ).

The distribution now known as the GEM arose in population biology, in [14, 11, 19].

Just as the Poisson–Dirichlet distribution (with parameter 1) may be characterized as the

limit occurring in (1.1), the GEM distribution with parameter 1 may be characterized as
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the distributional limit for the proportions of elements in the cycles taken in age order:

n−1
(
A

(n)
1 , A

(n)
2 , . . .

)
⇒ (A1, A2, . . . ). (4.3)

Conditional on the values (L(n)
i , i � 1), the joint distribution of (A(n)

i , i � 1) is obtained

by size-biasing. The size-biased order derived from any finite collection {l1, . . . , lm} ⊂ R+

with sum L is the random permutation σ of {1, 2, . . . , m} obtained from the relations

P[σ(1) = j] = lj/L;

P[σ(r + 1) = j | σ(1) = j1, . . . , σ(r) = jr] = lj

{
L −

r∑
i=1

lji

}−1

,

0 � r � m − 1. For an infinite collection {l1, l2, . . . } with sum L < ∞, the same construction

can be used to define the size-biased order σ of N, but if L = ∞, the algorithm fails.

However, the size-biased order can be more generally defined as a random ordering of

{lj , j � 1} with the property that any finite collection of them are in their size-biased order.

Such a random order can be realized by the following simple construction. Assign to each lj
the value λj = l−1

j Sj , where (Sj , j � 1) are independent standard exponential random

variables, and arrange the lj in increasing order of λj . If the sets {lj , j � 1} ∩ (M−1,M)

are finite for each M ∈ N, the lj can be indexed by i ∈ Z in increasing order of λj . The

size-biased ordering of a random sequence {Lj, j � 1} is obtained in the same way, by

first sampling the multiset consisting of its values, and then using the independent Sjs to

determine their order.

4.2. Coupling to independent discrete random variables

The probabilistic structure found in writing the canonical cycle notation for a randomly

chosen permutation involves independent Bernoulli (1/i) random variables, for i = 1, 2, . . . .

We call this structure the Feller coupling, and trace it back to Feller (1945) and Rényi

(1962); see also Arratia, Barbour and Tavaré (1992). In writing the canonical cycle

notation for a random ρ ∈ Sn, say with n = 10, one always starts with ‘(1’, and then

makes a ten-way choice, between ‘(1)(2’, ‘(1 2’, . . . , and ‘(1 10’. One continues with a

nine-way choice, an eight-way choice, . . . , a two-way choice, and finally a one-way choice.

Say that Di, chosen from 1 to i, is used to make the i-way choice – take item Di from the

i available choices listed in increasing order; the example (4.2) has (D10, D9, . . . , D2, D1) =

(9, 9, 1, 1, 5, 3, 3, 2, 1, 1). Clearly, the map constructing canonical cycle notation,

(D1, D2, . . . , Dn) �→ ρ,

from [1] × [2] × · · · × [n] to Sn, is one-to-one, and hence a bijection. This is the natural

coupling; starting with D1, D2, D3, . . . independent, and with no further randomization,

we produce random permutations, simultaneously for n = 1, 2, . . . , distributed uniformly

over Sn.

Define ξi to be the indicator function

ξi = 1l{Di = 1} = 1l{end cycle when there is an i-way choice}. (4.4)
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Thus

P[ξi = 1] =
1

i
, P[ξi = 0] = 1 − 1

i
, i � 1,

and

ξ1, ξ2, ξ3, . . . , are independent.

The sequence ξ1ξ2ξ3 . . . ξn read from ξn down to ξ1 determines the list of cycle lengths in

age order. The length A
(n)
1 of the first cycle is the waiting time to the first of ξn, ξn−1, . . .

to take the value 1, the length A
(n)
2 of the next cycle is the waiting time to the next 1, and

so on.

We may view this in terms of ‘an artificial 1 in position n + 1’, and consider the sequence

ξ1ξ2ξ3 . . . ξn1 of length n + 1 that begins and ends with 1. Every i-spacing in 1ξ2ξ3 . . . ξn1,

that is, every pattern 10i−11 of two ones separated by i − 1 zeros, corresponds to a

cycle of length i. The size of the rightmost spacing in 1ξ2ξ3 . . . ξn1 gives the size of the

first cycle in canonical cycle notation. The example (4.2) with n = 10 has (D1, . . . , Dn) =

(1, 1, 2, 3, 3, 5, 1, 1, 9, 9), so ξ1ξ2ξ3 . . . ξn1 = 11000011001. We read the spacings from right

to left to see that the cycle lengths in age order are (A(n)
1 , A

(n)
2 , . . . , A

(n)
4 ) = (3, 1, 5, 1), with

(A(n)
1 , A

(n)
2 , . . . ) = (3, 1, 5, 1, 0, 0, . . . ).

The single set of realizations (Di, i � 1) enables one to generate a coupled set of

realizations of uniform random permutations σ(n) for each n � 1, for which, for each

fixed j, the random variables

C
(n)
j :=

n−j−1∑
r=1

1l{ξr = 1, ξr+1 = · · · = ξr+j−1 = 0, ξr+j = 1}

+ 1l{ξn−j = 1, ξn−j+1 = · · · = ξn = 0},

the numbers of cycles of lengths j in σ(n), converge a.s. as n → ∞ to random variables C (∞)
j .

The joint distribution of {C (∞)
j , j � 1} is that of independent Poisson random variables

with means 1/j: see Arratia and Tavaré [6] and Diaconis and Pitman [9].

Now let M0 = 1 and Mi = min{j > mi−1, ξj = 1}, i � 1; set M
(n)
i = Mi ∧ n. Then the

differences B
(n)
i = M

(n)
i − M

(n)
i−1, i � 1, form the cycle lengths of σ(n) in reverse age (size-

biased) order, followed by an infinite string of zeros, and we also have B
(n)
i → Bi := Mi −

Mi−1 a.s. for each i. A random vector with the same distribution as (B(n)
i , i � 1) can equally

be realized by sampling (C (n)
j , 1 � j � n), and then arranging the C (n)

j elements of size j, 1 �
j � n, together in reversed size-biased order, again filling out with zeros. Now define the

events

E
(n)
1m := {C (n2)

j = C
(∞)
j , 1 � j � m}, E

(n)
2m := {B(n2)

j = Bj, 1 � j � n}

and

E
(n)
3m :=

{
min
j>n

B
(n2)
j � m

}
.

Then simple calculation shows that limn→∞ P[E(n)
lm ] = 0 for each fixed m, l = 1, 2, 3.

However, all elements of the sequence (Bi, i � 1) of size at most m are realized in
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the correct order on the set E(n)
1m ∩ E

(n)
2m ∩ E

(n)
3m , by taking (C (n2)

j , 1 � j � n2), performing the

size-biased ordering to get (B(n2)
j , 1 � j � n), and then taking the elements of size at

most m in (B(n2)
j , 1 � j � n); since, on this set, we could equally well have begun with

(C (∞)
j , 1� j �m) in place of (C (n2)

j , 1� j �m), it follows that the infinite sequence (Bi, i � 1)

is itself in reversed size-biased order. Hence, to construct the age-ordered distributions,

we just need to sample independent Poisson random variables with means 1/j, j � 1, and

reverse size-bias the outcome, to obtain the sequence (Bi, i � 1), and from it to deduce

the (ξj , j � 1).

5. The first coupling: using canonical cycle notation

A simple calculation shows that A(n)
1 is uniformly distributed over {1, 2, . . . , n} – it might

be constructed from a uniform [0,1] random variable U using the ceiling function,

A
(n)
1 = �nU�. Similarly, A

(n)
2 is uniform on 1 to n − A

(n)
1 , meaning that conditional on

n − A
(n)
1 = m, if m > 0 then A

(n)
2 is uniformly distributed over {1, 2, . . . , m}, and otherwise

A
(n)
2 is zero. We could take A

(n)
2 = �(n − A

(n)
1 )U ′� with U,U ′ i.i.d. Likewise A

(n)
3 is uniform

on 1 to n − A
(n)
1 − A

(n)
2 , and so on.

The easy way to view this is in terms of the number of elements not yet used after k

cycles have been taken:

N0 = n; Nk ≡ N
(n)
k := n − A

(n)
1 − · · · − A

(n)
k for k � 1. (5.1)

Then, conditional on N0 = n,N1 = n1, . . . , Nk = nk , if nk > 0 then Nk+1 is uniformly

distributed over {0, 1, . . . , nk − 1}, while if nk = 0 then Nk+1 = 0. There is an obvious

coupling which achieves this: take U1, U2, . . . to be i.i.d. uniform [0,1] random variables

and from them construct the process A
(n)
1 , A

(n)
2 , . . . via

N
(n)
0 = n, N

(n)
k := �N(n)

k−1Uk	 for k � 1, (5.2)

A
(n)
k := N

(n)
k−1 − N

(n)
k for k � 1. (5.3)

This yields the process (A(n)
1 , A

(n)
2 , . . . ) distributed exactly as the process of cycle lengths in

age order, for a random permutation.

Define

S0 = 1, Sk := U1U2 · · ·Uk, Ak := Sk−1 − Sk, for k � 1. (5.4)

Since �nx	/n → x for all x, by induction on k � 0 we see that N(n)
k /n → Sk as n → ∞, and

by differencing, that A(n)
k /n → Ak . This proves, using only elementary analysis, that

n−1
(
A

(n)
1 , A

(n)
2 , . . .

)
→ (A1, A2, . . . ) (5.5)

under the coupling (5.3), for all realizations of the uniform random variables Ui; the

weak convergence in (4.3) naturally follows.

With or without coupling, (5.4) is a simple description of the GEM(1) limit (A1, A2, . . . );

it is due to Ignatov [15, 16] and others; see [5, p. 119] for further history.
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5.1. Analysis of the expected �1 distance

The goal of this section is to explain and prove the following theorem, stating that the

expected �1 distance for the coupling above is asymptotic to a certain constant times log n

as n → ∞.

Theorem 5.1. For the process of cycle lengths in age order, of a permutation chosen uni-

formly at random from Sn, in comparison with the GEM process (5.3), scaled up by a factor

of n, the expected �1 distance (1.6), for the coupling given by (5.2)–(5.4), has the following

asymptotic value as n → ∞:

dGEM(n) ∼ E|Q| log n, (5.6)

where the distribution of Q is given by (5.12).

To start the proof, let us write tk(n) = E|Tk(n)| for the kth term of (1.6), the scaled-up

expected �1 distance, for the coupling given by (5.2)–(5.4):

tk(n) := E|Tk(n)| where Tk(n) := nAk − A
(n)
k . (5.7)

We use curly braces to denote the fractional part function, {x} := x − �x	, so that

�x	 = x − {x}.

Lemma 5.2. For k � 0,

N
(n)
k − nSk = −

k∑
j=1

{N(n)
j−1Uj}Uj+1 · · ·Uk. (5.8)

Proof. For k = 0, both sides are zero. For k � 1,

N
(n)
k − nSk = �N(n)

k−1Uk	 − nSk−1Uk

= N
(n)
k−1Uk − {N(n)

k−1Uk} − nSk−1Uk

= −{N(n)
k−1Uk} + Uk

(
N

(n)
k−1 − nSk−1

)
. (5.9)

Using induction to expand (N(n)
k−1 − nSk−1), we get (5.8).

We use the notation U := 1 − U for the complement of a uniformly distributed variable.

Starting from (5.7), and using (5.9) to get the third line below,

Tk(n) = (nSk−1 − nSk) −
(
N

(n)
k−1 − N

(n)
k

)
=
(
N

(n)
k − nSk

)
−
(
N

(n)
k−1 − nSk−1

)
(5.10)

= −{N(n)
k−1Uk} −

(
N

(n)
k−1 − nSk−1

)
Uk

= −{N(n)
k−1Uk} + Uk

k−1∑
j=1

{N(n)
k−j−1Uk−j}

k−1∏
l=k−j+1

Ul,

an empty product being taken to be 1.
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Now let W1,W2, . . . and V1, V2, . . . be mutually independent uniform random variables,

and consider the random variables

Qk = −V0 +

k−1∑
j=1

{
Vj

j∏
l=1

Wl

}
(5.11)

and

Q = −V0 +
∑
j�1

{
Vj

j∏
l=1

Wl

}
. (5.12)

Since E|Q − Qk| = 2−k is summable, Qk → Q almost surely and in L1. Clearly EQ = 0, but

for E|Q| we have no closed form expression.

(Heuristic. Imagine k large, but n much larger, say larger even than ek , so that nSk is large.

We claim that Tk is close in distribution to Qk , and hence close to Q. Superficially, this

does not appear to be so – in the fourth line of the display (5.10), there are k independent

uniform variables, while in (5.11), there are 2k − 1 independent uniforms. However, when

N is large, {NU} is approximately independent of U, in the sense that the low order bits

of U give the approximate value of U, while higher order bits of U control the value of

{NU}.)

To carry out this approximation, start with the i.i.d. uniform [0,1] variables W1,W2, . . .

and V1, V2, . . . . Note that Qk from (5.11) is exactly equal in distribution to

Q′
k = −Vk + Wk

k−1∑
j=1

{
Vk−j

k−1∏
l=k−j+1

Wl

}
. (5.13)

Given n � 1, we define

N0 := n; Nk := �Nk−1Wk	, k � 1,

and

Uk := (Nk + Vk)/Nk−1 if Nk−1 � 1; Uk := Vk if Nk−1 = 0.

It is then an elementary calculation to check that we have satisfied (5.2); i.e., we check

that Nk = �Nk−1Uk	, that Uk is uniform, and that U1, U2, . . . are independent. It is also

immediate that

{Nk−1Uk} = Vk if Nk−1 � 1, (5.14)

and that

|Uk − Wk| � 1/max(1, Nk−1). (5.15)

Combining this coupling with (5.10), we have

Tk = −Vk + Uk

k−1∑
j=1

{
Vk−j

k−1∏
l=k−j+1

Ul

}
, (5.16)
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which matches formula (5.13) for Q′
k , except that Q′

k has the variables W which are

independent of the V s, while Tk has the variables U which are dependent on the V s.

We use (5.15) in Lemma 5.3 to show that E|Tk − Q′
k| is O(n−δ) small, uniformly in

k � (1 − ε) log n. This, together with E|Q′
k| = E|Qk| → E|Q|, implies that as n → ∞,∑

k�(1−ε) log n

E|Tk| ∼
∑

k�(1−ε) log n

E|Qk| ∼ (1 − ε)E|Q| log n.

Combining this with estimates for the remaining ranges, and arguing with fixed but

arbitrarily small ε > 0, the final outcome is that the expected �1 distance given by

(1.6), for this particular coupling, is asymptotic to E|Q| log n, as was stated formally in

Theorem 5.1.

For the range (1 − ε) log n < k � (1 + ε) log n, it suffices to use (5.10) to see that for

all k, n, E|Tk| < 2; we have 2ε log n terms in this range, so the net contribution, at most

4ε log n, is made small relative to log n by taking ε small.

For k � k0 := (1 + ε) log n, large deviation theory easily shows that
∑

k�k0
ETk → 0.

Here are the details. Consider a ‘good event’ Gk , defined by

Gk =

{
log Sk
k

< (−1 + ε/2)

}
.

As in the proof of Lemma 5.3, standard large deviation theory gives the upper bound

P(Gc
k) � e−δk , where δ = δ(ε) > 0. Using (5.2) and (5.4), we have 0 � N

(n)
k � nSk so that

|Tk| � nSk , and on the good event this gives |Tk| � exp(log n + (−1 + ε/2)k). For k = k0,

this upper bound is no more than n−ε/2+ε2/2, and goes down exponentially fast with

increasing k, so the sum over all k � k0 is comparable to the bound at k0. For the

contribution from the bad event, observe first that from (5.10), we have |Tk| � k always,

and
∑

k�k0
ke−δk = O(e−δk0/2) = O(n−δ/2).

The proof of Theorem 5.1 is completed by the following lemma.

Lemma 5.3. Fix ε > 0, and let k0 ≡ k0(n) := �(1 − ε) log n	. There exists a δ > 0, so that

uniformly in 1 � k � k0,

E|Tk − Q′
k| = O(n−δ). (5.17)

Proof. Consider a ‘good event’ Gn, defined by

Gn =

{
log Sk0

k0
> −(1 + ε/3)

}
.

Since − log Sk is the sum of k i.i.d. exponentially distributed random variables with mean

1, large deviation theory gives an upper bound of the form P(Gc
n) � e−I(ε/3)k0 � n−δ1 , where

δ1 = (1 − ε)I(ε/3) > 0.

For the contribution from the bad event, observe first that from (5.10) and (5.13) we

have |Tk − Q′
k| � 1 + k always, so with respect to this contribution (5.17) is satisfied.

Assume that the good event occurs. For ε ∈ (0, 1), we have the bound (1 + ε/3)(1 − ε) <

1 − ε/2, and hence nSk0
> nε/2. Since Nk is obtained from nSk using k applications of the

floor function, we have Nk > nε/2 − k0 for every k � k0. Finally, consider the difference
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of Q′
k from (5.13) and the coupling expression (5.16) for Tk . One converts Q′

k to Tk by

replacing factors Wi by Ui, in expressions that are products of factors in (0, 1), so that

such a replacement causes a change not exceeding |Ui − Wi| in absolute value, and by

(5.15) this is at most 1/Nk0
< 1/(nε/2 − k0). There are 1 + 2 + · · · + k − 1 places to make

such a replacement, and hence for every k � k0, on the good event

|Tk − Q′
k| � k2

0/Nk0
= O

(
n−ε/4

)
. �

6. The second coupling: to exploit E|U − U ′| = 1/3

Our second coupling achieves

dPD(n) ∼ 1

3
log n,

with the constant 1/3 arising as the expected value of the difference of two independent

uniform (0,1) random variables. To do this, we consider the ‘scale-invariant’ Poisson

process X on (0,∞) with intensity dx/x, restricted to (0, n), and for each i = 2, 3, . . . , we

throw away any points representing a second, third, or further arrival of X in an interval

(i − 1, i]. The ‘first arrival’ in (i − 1, i], if there is one, corresponds to ξi = 1 in the Feller

coupling.

For large i, the ‘first arrival’ in (i − 1, i] is approximately at i − U, where U is uniform,

and if the Feller process has adjacent arrivals at i < j, corresponding to a cycle of length

j − i, there is a matching spacing in X of length approximately (j − U ′) − (i − U) =

(j − i) + (U − U ′); with E|U − U ′| = 1/3, this accounts for a (1/3) log n contribution to

dPD(n). The act of restoring ‘extra’ arrivals in an interval (i − 1, i] can be viewed as

splitting a small piece, of length at most 1, from a spacing already accounted for as

(j − U ′) − (i − U), and matching these additional small pieces with zeros in the age-

ordered cycle process – since A
(n)
j = 0 for j greater than the number of cycles of the

random permutation. Then Lemma 3.2 is applied.

6.1. Details for this coupling

In the point process X, for any 0 < a < b < n, the number X(a, b] of points in the interval

(a, b] is Poisson with mean EX(a, b] =
∫ b

a
dx/x = log(b/a), and disjoint intervals have

independent counts. If we label the points of X in decreasing order, so that

n > X1 > X2 > · · · ,

then the sequence X1, X2, X3 . . . is distributed exactly as nU1, nU1U2, nU1U2U3, . . . , which

are the points in (5.4), scaled up by n. Thus the GEM, scaled up by n, is

(nA1, nA2, nA3, . . . ) = (n − X1, X1 − X2, X2 − X3, . . . ). (6.1)

We extend of course by taking Li := ith-largest of the A1, A2, . . . .

Let

Ni = X(i − 1, i], i = 2, 3, . . . (6.2)
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so that Ni is Poisson with mean

λi := ENi = log(i/(i − 1)) = 1/i + 1/(2i2) + 1/(3i3) + · · · ,

and P(Ni = 0) = 1 − (1/i). Taking N1 = ∞, we define

ξi := min(1, Ni), i = 1, 2, 3, . . . , (6.3)

thereby coupling the scale-invariant Poisson process X with the Bernoulli process ξ1, ξ2, . . .

of the Feller coupling (4.4). The paragraph following (4.4) gives the age-ordered cycle

lengths A
(n)
1 , A

(n)
2 , . . . in terms of spacings between successive ones in 1ξnξn−1 · · · ξ3ξ21. In

detail, write

K := ξ1 + ξ2 + · · · + ξn

so that K represents the number of cycles in our random cycle structure. Define M0 ≡ n + 1

and for j = 1 to K , let Mj be the index of the jth 1 in ξn · · · ξ2ξ1, so that MK = 1 always,

A
(n)
j = Mj−1 − Mj, j = 1 to K, (6.4)

and A
(n)
j = 0 for j > K . Of course we take L

(n)
i := ith-largest of A(n)

1 , A
(n)
2 , . . . . At this stage,

we have defined our second coupling; it only remains to estimate dPD(n).

The Poisson process X, restricted to (i − 1, i], can be constructed from the count Ni,

together with an i.i.d. sequence Xi,1, Xi,2, . . . of locations in (i − 1, i] distributed with density

fi(x) := 1/(xλi). This density can be expressed as a mixture of the uniform density on

(i − 1, i], taken with weight 1/(iλi) = 1/(1 + 1/(2i) + 1/(3i2) + · · · , and some other density

on (i − 1, i], taken with weight d(i) := 1 − 1/(iλi) = 1/(2i) + O(i−2). Thus we can take Vi

uniform on (0,1), so that

E|(i − Vi) − Xi,1| < d(i), (6.5)

for every i � 2. For the interval (0,1], there is an infinite number of arrivals (but not in

i.i.d. locations); we may label these in decreasing order as X1,1 > X1,2 > · · · > 0. Note that

X1,1 is uniformly distributed in (0,1), so we may define d(1) = 0 and consider (6.5) to also

hold for i = 1. Finally, note that the ξ1, ξ2, . . . from (6.3) and the V1, V2, . . . from (6.5) can

be taken to be mutually independent.

The Poisson process X restricted to (0, n] is realized as the random set of points

{Xi,j : 1 � i � n, 1 � j � Ni}. (6.6)

We get a subset X̂ of X by taking only those Xi,j with Ni > 0 and j = 1, so that

the cardinality of Ŝ is K . Label these points as X̂j with n � X̂1 > X̂2 > · · · > X̂K , with

X̂K ∈ (0, 1]. For j = 1 to K , let Mj be the index of the jth 1 in ξn · · · ξ2ξ1, so that X̂j =

XMj,1 ∈ (Mj − 1,Mj] and MK = 1 always. If the spacings construction (6.1) were applied

to X̂ in place of X, the �1 distance to the age-ordered list of cycle lengths, that is, the �1

distance between (n − X̂1, X̂1 − X̂2, . . . , X̂K−1 − X̂K, 0, 0, . . . ) and (A(n)
1 , A

(n)
2 , . . . , A

(n)
K , 0, 0, . . . ),

would be

D = |(n − X̂1) − (n + 1 − M1)| +

K∑
j=2

|(X̂j−1 − X̂j) − (Mj−1 − Mj)|. (6.7)
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Looking back at (6.5), we write Uj := VMj
so that

|X̂j − (Mj − Uj)| � d(Mj) (6.8)

and hence ∣∣∣∣∣∣D −
K∑
j=2

|Uj−1 − Uj |

∣∣∣∣∣∣ � 2 + 2

K∑
j=2

d(Mj). (6.9)

Since EK = 1 + 1/2 + · · · + 1/n ∼ log n, and limi→∞ d(i) = 0, and always Mj � j, it follows

first that the expectation of the left side of (6.9) is o(log n); then since E
∑K

2 |Uj−1 − Uj | ∼
E|U − U ′| log n = (1/3) log n, it follows that ED ∼ (1/3) log n.

What is the effect of replacing X with X̂ in the spacings construction? There is an easy

bound, provided that we consider the spacings arranged from large to small. Namely, the

�1 distance between RANK(n − X̂1, X̂1 − X̂2, . . . ) and n(L1, L2, . . . ) = RANK(n − X1, X1 −
X2, . . . ) is at most

2

n∑
j=2

(Ni − 1)+ + 2. (6.10)

(For the first sum above: any second, third, or further arrival in (i − 1, i] serves to split off

a piece of a spacing involving the first arrival, but the split off piece has length at most 1,

so the effect on the �1 distance of the ranked lists of deleting one of these extra arrivals

is at most 1 + 1, using Lemma 3.2. The second term in (6.10), 2, comes from splitting the

interval (0, X̂K ) into an infinite number of subpieces.) Since ENi ∼ 1/i, the expectation of

the positive part of (Ni − 1) is O(1/i2), and the expected �1 distance in (6.10) is O(1) as

n → ∞.

Now comes a subtle point: the rearrangement inequality in Lemma 3.2 implies that the

�1 distance between RANK(n− X̂1, X̂1 − X̂2, . . . ) and (L(n)
1 , L

(n)
2 , . . . ) = RANK(A(n)

1 , A
(n)
2 , . . . )

is at most D, and hence has mean asymptotically at most (1/3) log n. We believe that there

exists a matching lower bound, asymptotic to (1/3) log n, but in view of the third coupling,

it does not seem worth pursuing this.

The net result of these arguments is that we have proved

Theorem 6.1. The second coupling, given by (6.1)–(6.4), achieves

lim sup
n→∞

(log n)−1dPD(n) � 1/3.

7. The scale-invariant spacings lemma

The following ‘scale-invariant spacings lemma’ was first presented in [1], an unpublished

manuscript, and was used in a coupling for prime factors with the Poisson–Dirichlet

process in [2]; see also [4]. It will be used in our third coupling, in Section 8.

Start with the Poisson process P with intensity θ/x dx. Consider the process Y with a

point for each spacing in P. To be precise, the points of P can with probability one be

labelled Xi ∈ (0,∞) for i ∈ Z so that

· · · < X2 < X1 < 1 < X0 < X−1 < · · · , (7.1)
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with limi→∞ Xi = 0, limi→−∞ Xi = ∞. The spacings are the points Yi := Xi − Xi+1 for −∞ <

i < ∞, and

Y :=
∑
i∈Z

δYi
(7.2)

is a random counting measure on (0,∞); here δYi
(A) = 1 if Yi ∈ A and = 0 otherwise.

Lemma 7.1 (The scale-invariant spacing lemma). For any θ > 0, the random measures P
and Y have the same distribution.

Proof. Start with a Poisson process R on (0,∞)2 having points (W,Y ) with intensity

θ exp(−wy) dy dw. The intensity for the projection π1 on the w coordinate is θ/w dw, and

similarly for the y-projection π2; i.e., each projection is a copy of the process P. Label the

points of R as (Wi, Yi) in decreasing order of their w-coordinates, say with W−1 > 1 > W0,

so that · · · > W−1 > W0 > W1 > W2 > · · · . Define, for −∞ < j < ∞,

Xj :=
∑

−∞<i�j

Yi, (7.3)

and let X be the process with these points. Since the spacings of X are by construction

the points Yi of a process which has the same distribution as P, the goal is to show that

X also has the same distribution as P. We do this by calculating, for k = 0, 1, 2, . . . , for

0 < x0 < x1 < · · · < xk , the intensity for the process X to have points at xi for i = 0 to k

and no points in (xi, xi+1) for i = 0 to k − 1.

Consider, for c > 0, the restriction of R to (c,∞) × (0,∞). The intensity function of the

y-projection of this process is

fc(y) =

∫
w>c

θ exp(−wy) dw = θ exp(−cy)/y.

For the case c = 1, this intensity function arises in the study of the Poisson–Dirichlet

process [17], and the sum of the y-coordinates has the Gamma distribution with parameter

θ and density g(x; θ) = xθ−1e−x/Γ(θ). For general c > 0, since fc(y) = cf1(cy), the process

with parameter c is the same as the process with parameter 1, rescaled by dividing each

y-coordinate by c. In particular, the sum Sc of the y-coordinates of the points in this

process has density function g(x; θ, c) = c(xc)θ−1e−xc/Γ(θ).

For X to have a point at x, there must be some value c such that Sc = x. Taking

w0 to be the infimum of such c, the process R must have a point on the line w = w0

(not necessarily the point labelled (W0, Y0)), and R must have x for the sum of the

y-coordinates of the points in (w0,∞) × (0,∞). Thus the intensity function for the pair

(x, w0) is (θ/w0)g(x; θ, w0). Integrating out w0 yields∫
w>0

θ

w

w(xw)θ−1e−xw

Γ(θ)
dw =

θ

x

which shows that X has the same intensity as the Poisson process P.

For a Poisson process on (0,∞) with intensity f(x) dx, for 0 < a < b, the intensity

function to have two consecutive points at a, b is f(a)f(b) exp(−
∫ b

a
f(x) dx); and for the
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process P this simplifies to (θ/a)(θ/b)(a/b)θ = θ2aθ−1b−θ−1. Similarly, the intensity function

for P to have three consecutive points at a < b < c simplifies to θ3aθ−1b−1c−θ−1, and for

four consecutive points at a < b1 < b2 < c the expression simplifies to θ4aθ−1b−1
1 b−1

2 c−θ−1.

Since the case with two points does not illustrate the full pattern, we show below the

details of computing the intensity for X to have three consecutive points at a = x0,

b = x0 + y0, c = x0 + y0 + y1, to check that it agrees with the intensity for P.

The configuration of three consecutive points specified for X above requires that for

some 0 < w1 < w0, R has points at (w0, y0) and (w1, y1), with no points in the strip

(w1, w0) × (0,∞), and with the sum Sw0
of y-coordinates of points in (w0,∞) × (0,∞) equal

to x0. The intensity function for this, with respect to dx0 dy0 dy1 dw0 dw1, is a product with

four factors:

θ exp(−w0y0) · θ exp(−w1y1) · (w1/w0)
θ · w0(x0w0)

θ−1 exp(−x0w0)/Γ(θ),

which reduces to

θ2xθ−1
0 Γ(θ)−1wθ

1 exp(−w1y1) exp(−w0(x0 + y0)).

Integrating over 0 < w1 < w0 yields

θ2xθ−1
0

Γ(θ)

∫ ∞

0

dw1 w
θ
1e

−w1y1

∫ ∞

w1

dw0 e
−w0(x0+y0)

=
θ2xθ−1

0

Γ(θ)

∫ ∞

0

dw1 w
θ
1e

−w1y1
e−w1(x0+y0)

x0 + y0

=
θ2xθ−1

0

(x0 + y0)Γ(θ)

∫ ∞

0

dw1

(
w1(x0 + y0 + y1)

x0 + y0 + y1

)θ

e−w1(x0+y0+y1)

=
θ2Γ(θ + 1)

Γ(θ)
xθ−1

0

1

x0 + y0
(x0 + y0 + y1)

−θ−1

= θ3aθ−1b−1c−θ−1

as desired.

For the general case, to calculate the intensity for k + 1 given points to be consecutive

points of X, take b0 < b1 < · · · < bk and set

yi = bi+1 − bi, 0 � i � k − 1; a = b0; c = bk.

The intensity for R to have points at (wj, yj) for j = 0 to k − 1, with 0 < wk−1 < · · · <
w1 < w0, to have no points in ∪k−1

1 (wj−1, wj) × (0,∞), and to satisfy Sw0
= a, is

k−1∏
j=0

θe−wjyj (wk−1/w0)
θ w0(aw0)

θ−1e−x0w0/Γ(θ).

Integrating over wk−1 < wk−2 < · · · < w0, the innermost integral is still∫ ∞

w1

dw0 exp(−w0(x0 + y0)) =

∫ ∞

w1

dw0 exp(−w0b1),

which produces the ‘b−1
1 ’ factor along with the function exp(−w1b1). This combines with

the already present factor exp(−w1y1), so the next integration is
∫ ∞
w2

dw1 exp(−w1b2), which
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produces the ‘b−1
2 ’ factor. Continuing to integrate, the final result is

θkΓ(θ + 1)Γ(θ)−1aθ−1

{
k−1∏
j=1

b−1
j

}
c−θ−1 = θk+1aθ−1

{
k−1∏
j=1

b−1
j

}
c−θ−1,

as required.

8. The third coupling: to exploit E|U − 1/2| = 1/4

8.1. Motivating and defining the coupling

As in the proof of Lemma 7.1, start with the Poisson process R on (0,∞)2 with intensity

θ exp(−wy) dy dw, now for θ = 1. The joint intensity e−wy dw dy may be factored as the

marginal intensity (1/y) dy for Y , times the conditional intensity ye−wy dw for W given

Y = y. Hence the Y values form the Poisson process on (0,∞) with intensity dy/y, and

given a Y arrival at y, its ‘label’ W is exponentially distributed with mean 1/y. So we

construct our realization of R by first sampling the Y -process. If its points are labelled in

any way as (Y ∗
j , j � 1), attach to each Y ∗

j the associated W ∗
j = S∗

j /Y
∗
j , where (S∗

j , j � 1)

is an independent sequence of independent standard exponential random variables.

We now re-label, dropping the ∗s. Instead of labelling as at (7.3), we now label so that

· · · > W2 > W1 > W0 > W−1 > W−2 > · · · , (8.1)

and we define Xi =
∑

j�i Yj , so that, by Lemma 7.1, both of the sets {Xi, i ∈ Z} and {Yi, i ∈
Z} are distributed as the scale-invariant Poisson process on (0,∞) with intensity dx/x.

The event that there is a point of X at any integer n, or that Yi = Yj for some i �= j,

has probability 0, and we remove all such outcomes from our probability space! Translate

the indexing so that X1 is the largest Xi before n. Thus

0 < · · · < X2 < X1 < n < X0 < X−1 < X−2 < · · · < ∞, (8.2)

the spacings are indexed with

Yi := Xi − Xi+1 ∈ (0,∞), for i ∈ Z,

and

X1 =
∑
j�1

Yj < n and X0 =
∑
j�0

Yj > n. (8.3)

The GEM, scaled up by a factor of n, is constructed from the subintervals of (0, n) with

boundaries X1, X2, . . . ; that is,

(nA1, nA2, nA3 . . . ) =

((
n −
∑
i�1

Yi

)
, Y1, Y2, . . .

)
.

The Poisson–Dirichlet is formed by applying the function RANK, so that Li is the

ith-largest of A1, A2, . . . , for i � 1.
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We next define a deterministic step function f : (0,∞) → Z+ to be applied to the points

Yi, i ∈ Z. The function f is defined, using the Euler constant γ, by

(0, exp(−γ)) �→ 0,

[exp(−γ), exp(−γ + 1)) �→ 1, (8.4)

[exp(−γ + 1), exp(−γ + 1 + 1/2)) �→ 2,

and so on. For k = 1, 2, . . . , the map f takes an interval of x−1 dx measure 1/k onto k,

so that the number Zk of times that k appears in the multiset {f(Yi), i ∈ Z} is Poisson

with EZk = 1/k, with Z1, Z2, . . . independent. Also, the interval (0, e−γ), which is mapped

to zero, has infinite dx/x measure, so the multiset {f(Yi), i ∈ Z} has an infinite number of

copies of zero.

A small table of approximate values shows that starting the step boundaries with offset

exp(−γ) gives us a function which is very close to ‘round to the nearest integer’:

f−1(0)
.
= (0, 0.561459483566885),

f−1(1)
.
= [0.561459483566885, 1.52620511159586),

f−1(2)
.
= [1.52620511159586, 2.51628683093936),

f−1(3)
.
= [2.51628683093936, 3.51176116633948),

f−1(10)
.
= [9.50437851808436, 10.5039627325698),

f−1(100)
.
= [99.5004187539487, 100.500414587371),

f−1(1000)
.
= [999.500041687504, 1000.50004164584),

f−1(10000)
.
= [9999.50000416701, 10000.5000041666).

The sequence Yi is exactly in a size-biased permutation: this is clear from our construc-

tion. The sequence f(Yi) is not exactly in a size-biased permutation, although it comes

close. If the sequence f(Yi) were in a size-biased permutation, it would have all the zeros

coming first, followed by positive integers tending from small to large, and the indicator

function of the set {
1 +
∑
j>i

f(Yj) : i ∈ Z

}
(8.5)

would be distributed exactly as the variables ξ1, ξ2, . . . for the Feller coupling in Section 4.2,

because

(Z1, Z2, . . . ) =d

(
C

(∞)
1 , C

(∞)
2 , . . .

)
,

and the values of each are then arranged in (reversed) size-biased order. (A history

of this result, tracing it back to Rényi and Ignatov [15, 16], is given in Section 2.1

of [2].)

In order to have a size-biased permutation of the multiset {f(Yi), i ∈ Z} which is close

to the identity permutation on Z, we simply re-use the exponential random variables S∗
j ,
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Table 1.

i 8 7 6 5 4 3 2 1 0 −1

Yi 0.125 0.25 0.5 2.8 6.6 0.1 1.6 7.8 20.2 2.3

f(Yi) 0 0 0 3 7 0 2 8 20 2

Xi =
∑

j:j�i Yj 0.25 0.5 1.0 3.8 10.4 10.5 12.1 19.9 40.1 42.4∑
j:j�i f(Yj ) 0 0 0 3 10 10 12 20 40 42

defining new W -coordinates W̃ ∗
j = S∗

j /f(Y ∗
j ), and hence, in the labelling (8.2),

W̃i =
Si

f(Yi)
= Wi

Yi

f(Yi)
. (8.6)

Since the S∗
j are i.i.d. standard exponential, the points f(Yi), taken in order of decreasing

tilde labels W̃i, are in a size-biased permutation, tending from small to large.

Use the f(Yi), taken in order of their tilde labels, to form the sequence ξ1, ξ2, . . . for the

Feller coupling, and construct the age-ordered cycle lengths A(n)
1 , A

(n)
2 , . . . . Finally, we take

L
(n)
i := ith-largest of the A

(n)
1 , A

(n)
2 , . . . .

To summarize: we have defined a coupling, with the Li, L
(n)
i , Ai, A

(n)
i for i � 1 all realized

together. It only remains to estimate the �1 distances dPD(n) and dGEM(n)!

A technicality. To be careful, whenever Yi < e−γ , so that f(Yi) = 0, we take W̃i = ∞. With

probability 1, the non-infinite values among the W̃i are all distinct, and on this good event,

there is a permutation σ of the integers, with the property that for distinct i, j, σ(i) > σ(j)

if and only W̃i > W̃j or (W̃i = W̃j = ∞ and Yi < Yj < e−γ). Modulo translation, this

permutation is unique. The Feller coupling variables ξ1, ξ2, . . . are defined by

ξi = 1 if and only if i ∈
{

1 +
∑

σ(j)>σ(k)

f(Yj) : k ∈ Z

}
. (8.7)

8.2. An example

Suppose that the sequence (Yi), taking the index i decreasing through Z, has negative

powers of two, until the partial sum is exactly 1, followed by the values 2.8, 6.6, 0.1, 1.6, 7.8,

20.2, 2.3 and 5.4. We take 20 � n � 40.

Note that in (8.3), the placement of the origin, i = 0, depends on n via X1 < n < X0.

Thus, in case 20 � n � 40 the last three columns, starting with 7.8, 20.2 and 2.3, are

labelled with i = 1, 0,−1; if n = 41 they are labelled with i = 2, 1, 0; and if n = 19 they

are labelled with i = 0,−1,−2.

The example, with n = 35. The scaled-up GEM has first component nA1 = n − X1 = 35 −
19.9 = 15.1, nA2 = Y1 = 7.8, nA3 = Y2 = 1.6, nA4 = Y3 = 0.1, nA5 = Y4 = 6.6, nA6 = 2.8,

nA7 = 0.5, . . .

The example, with minimal differences in the size-biased permutations. This is the most

common situation, in which the labels W̃ defined in (8.6), excluding cases where f(Yi) = 0,
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have the same relative order as in (8.1). In this example, the Feller coupling, as at (8.5), is

based on 1 plus the partial sums of the sequence

. . . , 0, 0, 0, 3, 7, 0, 2, 8, 20, 2, . . . ,

so that ξ1ξ2 . . . has ones in positions indexed by

1, 4, 11, 13, 21, 41, 43, . . . . (8.8)

We have A(n)
1 = 15 (the spacing from 35+1 down to 21), A(n)

2 = 8 = f(Y1), A
(n)
3 = 2 = f(Y2),

A
(n)
4 = 7 = f(Y4) (notice that the value f(Y3) = 0 does not serve as the amount of spacing

between two successive ones in ξ1ξ2 · · · ξn1) and then A
(n)
5 = 3 = f(Y5) and A

(n)
j = 0 for

any j > 5. Using the rearrangement Lemma 3.2 to give an upper bound on dPD(n), we

will match nAj = Yj−1 with A
(n)
j = f(Yj−1) for j = 2, 3 and we will match nAj = Yj−1

with A
(n)
j−1 = f(Yj−1) for j � 5, so the ‘gap’ at j = 4 contributes nothing to dPD(n). This

example shows why our third coupling may be good for dPD(n), but not good enough for

dGEM(n) – because when Xi = x and Xi − Xi+1 < e−γ we will then usually have to match

A
(n)
j = f(Yj) with nAj = Yj−1 for all j > i, for a contribution to dGEM(n) that is order of

x, and
∫ n

1
x e−γ/x dx/x is order of log n.

The example, with dislocation in the size-biased permutations. Note that since Y2 = 1.6 is

left of Y1 = 7.8, we have of necessity that W2 > W1. But in (8.6), W̃2 is obtained from

W2 by multiplying by the factor Y2/f(Y2) = 1.6/2, while W̃1 is obtained from W1 by

multiplying by the somewhat larger factor Y1/f(Y1) = 7.8/8, so if W1 was only slightly

larger than W1, we will have W̃2 < W̃1, and 8 = f(Y1) will come left of 2 = f(Y2). Suppose

that this indeed happens. The Feller coupling, as at (8.5), is based on 1 plus the partial sums

of the sequence . . . , 0, 0, 0, 3, 7, 0, 8, 2, 20, 2, . . . , so that ξ1ξ2 . . . has ones in positions indexed

by 1, 4, 11, 19, 21, 41, 43, . . . . We have A
(n)
1 = 15, just as in (8.8), but A

(n)
2 = 2 = f(Y2) and

A
(n)
3 = 8 = f(Y1), in contrast with (8.8), and this contributes a large amount to dGEM(n).

Using the rearrangement Lemma 3.2 to give an upper bound on dPD(n), we will match

nA3 = Y2 with A
(n)
2 = f(Y2) and nA2 = Y1 with A

(n)
3 = f(Y1), so the extra difference in the

size-biased permutation does not cause an increase in the upper bound on dPD(n).

8.3. The principal differences

Our scaled-up GEM is viewed as a list of interval lengths subdividing (0, n), and the

Feller process as a list of interval lengths subdividing [1, n + 1]; in both cases, the

sum of the lengths is exactly n. The scaled-up GEM has as its components nA1 =

n −
∑

i�1 Yi and Y1, Y2, . . . . A natural fit to the age-ordered cycle lengths would be that

using (n + 1) − (1 +
∑

i�1 f(Yi)) and f(Y1), f(Y2), . . . , giving a distance of at most T1 + T2,

where

T1 :=
∑
i�1

|Yi − f(Yi)| and T2 =

∣∣∣∣∣∣
∑
i�1

(Yi − f(Yi))

∣∣∣∣∣∣ .
Although this match may not quite work, because the W̃ -ordering is not exactly the same

as the original, the essence of the proof is nonetheless to show that the error term T1 is
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indeed the dominant contribution to dPD(n). Our first two lemmas concern the asymptotics

of T1 and T2.

Lemma 8.1.

T1 :=
∑
i�1

|Yi − f(Yi)| has ET1 ∼ 1

4
log n. (8.9)

Proof. In the proof of Theorem 2.1, we calculated E
∑

i�1 |nLi − g(nLi)| ∼ (1/4) log n,

where g is the function ‘round to the nearest integer’, that is, g(x) = �x + .5	. This sum

differs from that in (8.9) in two ways. First, since our coupling takes nLi = ith-largest of

(n −
∑

i�1 Yi), Y1, Y2, . . . , the first of those differences is no longer present. Secondly, the

function g is replaced by f, and the table above makes it clear that f(x) − g(x) ∈ {−1, 0, 1}
for all x > 0. Write hi for the harmonic sum hi = 1 + 1/2 + · · · + 1/i. From the expansion

hi = γ + log i + 1/(2i) − 1/(12i2) + O(i−4) we have

exp(−γ + hi) = i exp

(
1

2i
− 1

12i2
+ · · ·

)
= i + .5 +

1

24i
+ O(i−2) (8.10)

so the set difference f−1(i) \ g−1(i) is an interval of length ∼ 1/(24i). Hence

E

∑
i:Yi<n

|f(Yi) − g(Yi)| =

∫ n

0

|f(x) − g(x)| dx/x = O(1); (8.11)

note that if we were integrating dx rather than dx/x, this error would be order of log n

and unacceptable.

Lemma 8.2.

T2 :=

∣∣∣∣∣∣
∑
i�1

(Yi − f(Yi))

∣∣∣∣∣∣ has ET2 = O(
√

log n). (8.12)

Proof. We will use Lemma 8.1 to approximate f by g, the function which rounds to the

nearest integer. Start by considering

Hn :=
∑

i:1/2�Yi<n

(Yi − g(Yi)).

This is compound Poisson, with values in [−.5, .5], and total Poisson intensity
∫ n

1/2
dx/x =

log(2n). The calculation∫ i+1/2

i−1/2

(y − g(y))dy/y =

∫ i+1/2

i−1/2

(y − i)dy/y

= 1 − i log((i + 1/2)/(i − 1/2)) = O(i−2)

shows that EHn = O(1) as n → ∞, and the bound |y − g(y)| � 1/2 shows that Var(Hn) =∫ n

1/2(y − g(y))2dy/y � (1/4) log(2n); combined, these give EH2
n � c log n, for some constant
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c < ∞ and for all n. This yields E|Hn| �
√

EH2
n = O(

√
log n). If we change Hn to

H ′
n :=

∑
i:0<Yi<n

(Yi − g(Yi)),

then Hn − H ′
n =
∑

i:0<Yi<1/2 Yi. The sum is positive a.s., with expectation 1/2, so E|Hn −
H ′

n| = 1/2, and hence E|H ′
n| = O(

√
log n).

Next, from (8.11) in the proof of Lemma 8.1, there is an O(1) error in replacing g by

the function f, so now we have

E

∣∣∣∣∣∑
i:Yi<n

(Yi − f(Yi))

∣∣∣∣∣ = O(
√

log n).

Finally, the function f(x) − x is bounded, and

E

{∑
i�0

1l{Yi < n}
}

� 1 +
∑
i<0

1l{Xi−1 − Xi < n}

� 1 +

∫ ∞

n

n dx

x(n + x)
� 2,

so that thus

E

∣∣∣∣∣∑
i�1

(Yi − f(Yi))

∣∣∣∣∣ = O(1) + E

∣∣∣∣∣∑
i:Yi<n

(Yi − f(Yi))

∣∣∣∣∣ = O(
√

log n). �

8.4. Analysis of the coupling

The remainder of the argument concerns the effect of switching the order from the W -

ordering to the W̃ -ordering. To do so, a number of preliminaries are needed. To start

with, define

f∞(w) := P

[ ∑
i:Wi>w

Yi > 1

]
.

Then we have the following lemma.

Lemma 8.3. For all w > 0,

f∞(w) � min{1, 2(1 + w)e−w}.

Proof. For any bounded function g : R+ → R+, let

(Tg)(w) := w

∫ ∞

w

x−2e−x dx + w

∫ ∞

w

x−1

∫ ∞

0

e−xzg(x(1 − z)) dz dx,

and, for all w � 0, set f0(w) = 0 and

fn(w) := P

J(w)+n∑
i=J(w)

Yi > 1

 , n � 1,
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where J(w) := min{i : Wi > w}. Then it is clear that f∞(w) ↑ fn(w) as n → ∞, and, because

P

J(x)+n∑
i=J(x)

Yi > 1 − z

 = fn(x(1 − z)), x > 0, 0 � z � 1,

by scaling, it also follows that fn+1 = Tfn for all n � 0. Clearly, f0(w) � K(1 + w)e−w for

all K,w > 0, and fn(w) � 1 for all n and w. Then, if fn(w) � K(1 + w)e−w for all w > 0,

it follows from the definition of T that

fn+1(w) � w

∫ ∞

w

x−2e−x dx + w

∫ ∞

w

x−1

∫ ∞

0

e−xzK(1 + x(1 − z))e−x(1−z) dz dx

= w

∫ ∞

w

e−x

{
1

x2
+

K

x
+

K

2

}
� e−w + Ke−w + 1

2
Kwe−w.

Thus it follows that fn+1(w) � K(1 + w)e−w for all w such that Kw/2 � 1. However,

fn+1(w) � 1 � K(1 + w)e−w for all w < 2/K provided that (K + 2)e−2/K � 1, true for

K = 2. Hence, for K = 2, it follows by induction that fn(w) � min{1, 2(1 + w)e−w} for

all n, proving the lemma.

Now, if W 1
0 := sup{w :

∑
i:Wi>w Yi > 1}, it follows that

{W 1
0 > w} =

{ ∑
i:Wi>w

Yi > 1

}
,

and hence that

EW 1
0 =

∫ ∞

0

P[W 1
0 > w] dw � 2

∫ ∞

0

(1 + w)e−w dw = 4.

Hence we have proved the following corollary.

Corollary 8.4.

EW0 � 4n−1.

We now turn to consideration of the differences between the values {f(Yi), i � 1} =

{f(Yi), Wi > W0} and {f(Yi), W̃i > W0}. The latter set is a ‘left-hand segment’ of the

infinite reverse size-biased multiset {f(Yi), i ∈ Z}, and is close to the coupled reverse

age-ordered cycles. The two sets differ because, for some i < 0, W̃i > W0, and, for some

i > 0, W̃i < W0; the effects of these two exchanges are treated in Lemmas 8.5 and 8.6,

respectively. We begin by defining

c1 := min
y:f(y)�1

{y−1f(y)}, c2 := max
y>0

{y−1f(y)}.

Then, for y = (y1, y2, . . . ) an increasing sequence of positive reals and u, v > 0, we let

A(u, v; y) denote the event

{(W0, Y0) = (u, v)} ∩ {π2R{(u,∞) × R+} = y}.
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Lemma 8.5. Defining

η1 :=
∑
i�1

{f(Y−i)1l{W̃−i > W0}},

we have Eη1 � c2/c1.

Proof. We use the fact that, conditional on A(w0, y0; y), we have

L(W−i, i � 1) = L
(
w0

i∏
j=1

Uj, i � 1

)
,

where U1, U2, . . . are independent and uniformly distributed on (0, 1). Hence

E{f(Y−i)1l{W̃−i > W0}}

= E

(
f(Y−i)1l

{
W0

i∏
j=1

Uj(Y−i/f(Y−i)) > W0

})

� E

{
f(Y−i)1l{Ui(Y−i/f(Y−i)) > 1}

i−1∏
j=1

1l{Uj > c1}
}

� E{f(Y−i)(Y−i − f(Y−i))+ /Y−i}(1 − c1)
i−1 � c2(1 − c1)

i−1,

and the lemma follows.

Lemma 8.6. Defining

η2 :=
∑
i�1

{f(Yi1l{W̃i < W0}},

we have Eη2 � 4c2.

Proof. Conditional on A(w0, y0; y), the point set {Wi, i � 1} has the same distribution

as the set {Ŵj , j � 1}, where Ŵj := w0 + y−1
j Ej and E1, E2, . . . are independent standard

exponential random variables. Hence∑
i�1

E{f(Yi)1l{W̃i < W0} |A(w0, y0; y)}

=
∑
j�1

f(yj)P
[
(yj/f(yj))

(
w0 + y−1

j Ej

)
< w0

]
.

But it is easy to see that

f(yj)P
[
(yj/f(yj))

(
w0 + y−1

j Ej

)
< w0

]
= f(yj)P[Ej < (f(yj) − yj)+ w0] � f(yj)w0,

so that∑
j�1

f(yj)P
[
(yj/f(yj))

(
w0 + y−1

j Ej

)
< w0

]
� w0

∑
j�1

f(yj) � w0c2

∑
j�1

yj � w0c2n.

The lemma now follows from Corollary 8.4.
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Corollary 8.7. Enumerate the set {f(Yi) : i ∈ Z \ {0}, W̃i > W0} as {Fj, j � 1}. Then there

is a matching σ of the set {Fj, j � 1} and the set {Yi, i � 1} such that

E

∣∣∣∣∣∑
i�1

(Yi − Fσ(i))

∣∣∣∣∣ = E

∣∣∣∣∣
(
n −
∑
i�1

Yi

)
−
(
n −
∑
j�1

Fj

)∣∣∣∣∣ = O(
√

log n)

and

lim sup
n→∞

{log n}−1
E

{∑
i�1

|Yi − Fσ(i)|
}

� 1

4
.

Proof. Match Yi with f(Yi) for all i � 1 such that also W̃i > W0, and use Lemmas 8.5

and 8.6 to control the remainder, which is therefore of order O(1). This implies that the

first expectation is bounded by T2 + O(1) and the second by T1 + O(1), and Lemmas 8.1

and 8.2 complete the bound.

Since the f(Yi) in the W̃i-ordering are in size-biased order, the set {Fj, j � 1} consists of

a ‘left-hand segment’ from the reverse size-biased order, and is close to being that for which

the sum is closest to n from below. If f(Y0) were added to the collection, and the difference

between Yi and f(Yi) were temporarily neglected, the sum would be the first to exceed n.

Thus, from Corollary 8.7, we would be more or less finished if we always had f(Y0) as

next element after the {Fj, j � 1} in the W̃i-ordering. This need not quite be the case, and

the next two lemmas control the possible error made when completing the approximation.

We first consider the case in which f(Y0) > Y0, and so W̃0 < W0. Here, the main concern

is that there may be indices i < 0 such that W̃0 < W̃i < W0, so that the corresponding f(Yi)

would be taken before f(Y0). The possible contribution from indices i > 0 satisfying

W̃0 < W̃i < W0 is already more than covered by Lemma 8.6.

Lemma 8.8. If f(y0) > y0, then∑
i�1

E{(f(Y−i) ∧ f(Y0))1l{W̃0 < W̃−i � W0} |A(w0, y0; y)} � c2
2/c1.

Proof. We argue much as for Lemma 8.5, obtaining

E{(f(Y−i) ∧ f(y0))1l{W̃0 < W̃−i � W0} |A(w0, y0; y)}

� E

(f(Y−i) ∧ f(y0))1l{(y0/f(y0)) < Ui(Y−i/f(Y−i) � 1}

i−1∏
j=1

1l{Uj > c1/c2}
∣∣∣A(w0, y0; y)


� f(y0){c2(f(y0) − y0)+ /f(y0)}(1 − c1/c2)

i−1

� c2(1 − c1/c2)
i−1.

The lemma now follows immediately.
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For the complementary case, in which f(Y0) < Y0 and so W̃0 > W0, we are principally

concerned about indices i > 0 such that W0 < W̃i < W̃0, so that f(Y0) would be taken

before the corresponding f(Yi). The possible contribution from indices i < 0 satisfying

W0 < W̃i < W̃0 is taken care of by Lemma 8.5.

Lemma 8.9. If f(y0) < y0, then∑
i�1

E{f(Y0)1l{W0 < W̃i < W̃0} |A(w0, y0; y)} � 4c2.

Proof. The argument here is like that of Lemma 8.6. We start by computing

E{f(Y0)1l{W0 < Ŵj(yj/f(yj)) < W̃0} |A(w0, y0; y)}
= E{f(y0)1l{w0 <

(
w0 + y−1

j Ej

)
(yj/f(yj)) < w0(y0/f(y0))}}

� f(y0)P

[
w0

{
1 − yj

f(yj)

}
<

Ej

f(yj)
< w0

{
y0

f(y0)
− yj

f(yj)

}]
� f(y0)f(yj)w0{(y0/f(y0)) − 1} � w0f(yj).

Once again, adding over j, this yields∑
i�1

E{f(Y0)1l{W0 < W̃i < W̃0} |A(w0, y0; y)} � w0

∑
j�1

f(yj),

and the lemma follows from Corollary 8.4.

Using these two lemmas, the main theorem can be proved. Let τ(i) denote the index of

the ith nonzero element of the set {f(Yl), l ∈ Z} in decreasing W̃ -ordering, and let In be

such that

In∑
i=1

f(Yτ(i)) � n <

In+1∑
i=1

f(Yτ(i)).

Write Y
(1)
0 = n −

∑
i�1 Yi and Y

(1)
i = Yi, i � 1, and then Y

(2)
0 = n −

∑In
i=1 f(Yτ(i)) and

Y
(2)
i = f(Yτ(i)), 1 � i � In, with Y

(2)
i = 0 for i > In. These are the scaled GEM and age-

ordered cycle lengths to be matched, as realized in our coupling.

Theorem 8.10. There is a matching ρ of {Y (1)
i , i � 0} and {Y (2)

i , i � 0} such that

E

∑
i�0

|Y (1)
i − Y

(2)
ρ(i)|

 � 1

4
log n + o(log n).

Hence, by comparison with the lower bound from Theorem 2.1, the coupling defined in

Section 8.1 achieves

dPD(n) ∼ 1

4
log n.

Proof. The proof consists mainly of finding upper bounds for the possible error in

particular matchings, in a number of particular cases.
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To start with, consider the case where f(Y0) > Y0, so that W̃0 < W0, and the set of

lengths {Fj, j � 1}, the values of f(Yl) for which W̃l > W0, typically needs augmenting in

order to have total length n. Let F−l , 1 � l � L, be the values f(Y−i) for those i � 1 for

which W̃0 < W̃−i < W0, taken in W̃ -order, writing L for their total number. Define Ql ,

l � 0, to be the undershoot n −
∑

j�1 Fj −
∑l

s=1 F−s at stage l, when all of the {Fj, j � 1}
and the first l of the F−s have been taken. Clearly, once the undershoot Ql � 0, no more

elements are taken.

The first sub-case is when the undershoot Q0 � 0. Here, the Fj already match the Yi as

given by Corollary 8.7, and there is additional mismatch only because of the unmatched

element Y (1)
0 = n −

∑
i�1 Yi and the piece of length

∑
j�1 Fj − n = −Q0 � 0 which has to

be removed from the Fjs; hence the error can be kept to at most(∑
j�1

Fj − n

)
+

(
n−

∑
i�1

Yi

)
+
∑
i�1

|Yi − Fσ(i)| �
∣∣∣∣∣∑
j�1

Fj −
∑
i�1

Yi

∣∣∣∣∣+ ∑
i�1

|Yi − Fσ(i)|. (8.13)

We next consider the sub-case in which 0 < Q0 � f(Y0). Here, we begin by taking the

successive elements F−l , 1 � l � L, and, when they are exhausted, any remaining interval

is then more than covered by the element f(Y0), QL being matched with Y
(1)
0 . Usually,

F−l is matched with 0, at a cost of F−l . However, if one of the F−l is big enough to itself

cover the whole remaining interval, i.e., F−l � Ql−1, it is used to do so, with Ql−1 matched

with Y
(1)
0 , and no more are then needed; this happens in particular if F−l � f(Y0). (The

possible effect of elements arising in the W̃ -interval (W̃0,W0) from f(Yi) with i � 1 is

controlled by Lemma 8.6, and can introduce an extra error of no more than 2η2.) We can

then bound the error additional to
∑

i�1 |Yi − Fσ(i)| by the expression

L∑
l=1

1l{Ql−1 > 0}
[
1l{F−l < f(Y0)}(F−l1l{F−l < Ql−1} + R1,l1l{F−l � Ql−1})

+ 1l{F−l � f(Y0)}R1,l

]
+ R1,L+11l{QL > 0},

where, for 1 � l � L + 1, the error R1,l in matching Ql−1 and Y
(1)
0 is

R1,l :=

∣∣∣∣∣
[
n −
∑
j�1

Fj −
l−1∑
s=1

F−s

]
−
[
n −
∑
i�1

Yi

]∣∣∣∣∣ �
∣∣∣∣∣∑
j�1

Fj −
∑
i�1

Yi

∣∣∣∣∣+
l−1∑
s=1

F−s.

In this sum, since Q0 > 0, there is exactly one of the R1,l , and some or all of those of the

F−l that are smaller than f(Y0). Hence, in this sub-case, the total error is at most∣∣∣∣∣∑
j�1

Fj −
∑
i�1

Yi

∣∣∣∣∣+∑
i�1

|Yi − Fσ(i)|

+2
∑
i�1

f(Y−i)1l{f(Y−i) < f(Y0)}1l{W̃0 < W̃−i � W0} + 2η2. (8.14)

Within the case where f(Y0) > Y0, there now remains only the possibility that Q0 >

f(Y0). Here, the previous procedure can be used to match, but using n′ = f(Y0) +
∑

j�1 Fj

in place of n throughout. This leaves an interval of length at most n − n′ unmatched.
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However, we have

n − n′ �
∑
i�0

Yi −
∑
j�1

Fj − f(Y0) = Y0 − f(Y0) +
∑
i�1

Yi −
∑
j�1

Fj

� 1 +

∣∣∣∣∣∑
j�1

Fj −
∑
i�1

Yi

∣∣∣∣∣, (8.15)

to be added to the error in the previous sub-case.

The case in which f(Y0) < Y0, so that W0 < W̃0, is argued in rather similar fashion.

Here, we shall denote the set {f(Yi), W0 < W̃i < W̃0} ⊂ {Fj, j � 1} by {Fj, j ∈ R}. The

matching of Corollary 8.7 is not quite a matching for our coupling, if R is not empty. To

modify the matching to become one, we consider sub-cases. First, if f(Y0) � n −
∑

j /∈R Fj ,

then n −
∑

i�1 Yi is matched to n −
∑

j /∈R Fj instead of to n −
∑

j�1 Fj , and the elements

{Fj, j ∈ R} are missing in the new matching, so that there is an extra error of at most

2
∑

j∈R Fj . Note also that, under these circumstances,
∑

j∈R Fj � f(Y0), so that the extra

error is at most

2
∑
j∈R

(Fj ∧ f(Y0)). (8.16)

The next sub-case has n −
∑

j�1 Fj � f(Y0) < n −
∑

j /∈R Fj , in which case we can match

n −
∑

i�1 Yi with f(Y0); some of the {Fj, j ∈ R} are again missing. The former match

differs from the original by at most

f(Y0) −
(
n −
∑
j�1

Fj

)
�
(
n −
∑
j /∈R

Fj

)
−
(
n −
∑
j�1

Fj

)
=
∑
j∈R

Fj,

again leading to an upper bound of 2
∑

j∈R Fj for the extra error; and an alternative

matching with error at most 2f(Y0) could also be achieved by matching f(Y0) with 0, so

that (8.16) is a bound for the extra error in this sub-case, too. In the final sub-case, in

which f(Y0) < n −
∑

j�1 Fj , we again match n −
∑

i�1 Yi to f(Y0) and the pieces making

up the undershoot n −
∑

j�1 Fj − f(Y0) with 0, leading to an error of at most∣∣∣∣∣n −
∑
i�1

Yi − f(Y0)

∣∣∣∣∣+
(
n −
∑
j�1

Fj − f(Y0)

)

�
(∑

i�1

Yi + Y0 − n

)
+ |f(Y0) − Y0| + n −

∑
j�1

Fj − f(Y0)

� 2 +
∑
i�1

Yi −
∑
j�1

Fj,

to replace the original error of |
∑

i�1 Yi −
∑

j�1 Fj | in matching n −
∑

i�1 Yi to n −∑
j�1 Fj; thus the increase is here at most 2. Taking expectations, it follows that the

overall bound in the case f(Y0) < Y0 is at most∣∣∣∣∣∑
j�1

Fj −
∑
i�1

Yi

∣∣∣∣∣+∑
i�1

|Yi − Fσ(i)| + 2
∑
i�1

f(Y0)1l{W0 < W̃i < W̃0} + 2. (8.17)
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The conclusion of the theorem now follows from the bounds (8.13)–(8.17), Lemmas 8.6–8.9

and Corollary 8.7.

9. θ-biased permutations

To derive a lower bound for E
∑

i�1 |L(n)
i − nLi|, we use the intensity measure µ(dx) = θ(1 −

x)θ−1x−1 dx for 0 < x < 1, called the ‘frequency spectrum’ in Ewens [12], corresponding

to the Poisson–Dirichlet distribution with parameter θ. We obtain the following result.

Theorem 9.1. For any θ > 0, let L
(n)
i denote the size of the ith-largest component of the

Ewens sampling formula, and let Li be the ith coordinate of the Poisson–Dirichlet process

with parameter θ. Uniformly over all couplings of these two processes,

lim inf
n→∞

(log n)−1
E

∑
i�1

|L(n)
i − nLi| � 1

4
θ. (9.1)

Proof. As in Theorem 2.1, any coupling has

E

∑
i�1

|L(n)
i − nLi| �

∫
(0,1]

d(nx,Z)µ(dx)

=

∫ 1

0

d(nx,Z)(1 − x)θ−1 θ

x
dx =

∫ n

0

d(x,Z)

(
1 − x

n

)θ−1
θ

x
dx

= θ

∫ n

0

d(x,Z)x−1 dx + θ

∫ n

0

d(x,Z)

((
1 − x

n

)θ−1

− 1

)
1

x
dx

∼ θ

4
log n,

this last following from the monotone convergence theorem and (2.3).

Theorem 9.2. For any θ > 0, the coupling of Section 8.1, using exactly the function f given

by (8.4), but with the scale-invariant Poisson processes taken to have intensity θ/x dx,

achieves

dPD(n) ∼ θ

4
log n.

Proof. Every consideration in Section 8, with the factor θ inserted into the intensity

for the scale-invariant Poisson process, goes through exactly as it did in the special case

θ = 1.
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[6] Arratia, R. and Tavaré, S. (1992) The cycle structure of random permutations. Ann. Probab. 20

1567–1591.

[7] Billingsley, P. (1972) On the distribution of large prime divisors. Periodica Mathematica

Hungarica 2 283–289.

[8] Dall’Aglio, G. (1956) Sugli estremi dei momenti delle funzioni di ripartizione doppia. Ann.

Scuola Norm. Sup. Pisa 10 35–74.

[9] Diaconis, P. and Pitman, J. W. (1986) Permutations, record values and random measures.

Unpublished lecture notes, Statistics Department, University of California, Berkeley.

[10] Dudley, R. M. (1989) Real Analysis and Probability, Wadsworth and Brooks/Cole, Pacific

Grove, CA.

[11] Engen, S. (1975) A note on the geometric series as a species frequency model. Biometrika 62

97–699.

[12] Ewens, W. J. (1972) The sampling theory of selectively neutral alleles. Theoretical Population

Biology 3 87–112.

[13] Feller, W. (1945) The fundamental limit theorems in probability. Bull. Amer. Math. Soc. 51

800–832.

[14] Griffiths, R. C. (1979) On the distribution of allele frequencies in a diffusion model. Theoretical

Population Biology 15 140–158.

[15] Ignatov, T. (1981) Point processes generated by order statistics and their applications. In Point

Processes and Queuing Problems (P. Bartfái and J. Tomkó, ed.), North-Holland, pp. 109–116.

[16] Ignatov, T. (1982) A constant arising in the asymptotic theory of symmetric groups, and

Poisson–Dirichlet measures. Theory Probab. Appl. 27 136–147.

[17] Kingman, J. F. C. (1975) Random discrete distributions. J. Royal Statist. Soc. Ser. B 37 1–22.

[18] Kingman, J. F. C. (1977) The population structure associated with the Ewens sampling formula.

Theoretical Population Biology 11 274–283.

[19] McCloskey, J. W. (1965) A model for the distribution of individuals by species in an

environment. PhD thesis, Michigan State University.
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