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Abstract 
We consider random monic polynomials of degree n over a finite field of q elements, 

chosen with all q" possibilities equally likely, factored into monic irreducible factors. 
More generally, relaxing the restriction that q be a prime power, we consider that 
multiset construction in which the total number of possibilities of weight n is q". We 
establish various approximations for the joint distribution of factors, by giving 
upper bounds on the total variation distance to simpler discrete distributions. For 
example, the counts for particular factors are approximately independent and 
geometrically distributed, and the counts for all factors of sizes 1,2, ... , b, where 
b = O(n/log n) ,  are approximated by independent negative binomial random 
variables. As another example, the joint distribution of the large factors is close to 
the joint distribution of the large cycles in a random permutation. We show how 
these discrete approximations imply a Brownian motion functional central limit 
theorem and a Poisson-Dirichlet limit theorem, together with appropriate error 
estimates. We also give Poisson approximations, with error bounds, for the 
distribution of the total number of factors. 

1 a.  Introduction 

j = 1,2,  ... , n, whose joint distribution is given by 
For integers q 2 2 and n 2 1 we consider random variables 5 I $(n) ,  for 

P[y, = yl,. . . , Y" = yn] = q-" n " ( q i ) + y * - I )  
i-1 Yt 

where y l ,  ... , y n  3 0 satisfy x:-liyi  = n and 



348 RICHARD ARRATIA, A. D. BARBOUR AND SIMON TAVARE 
In (1*2), p is the Mobius function, with p(d) = ( -  1)” if d is the product of k distinct 
primes, and p(d) = 0 if d is divisible by a square. By Mobius inversion, (1 .2 )  is 
equivalent to 

qn = dN,(d), n 2 1. (1.3) 
dln 

From (1.3) one sees immediately that q” 2 nN,(n), and furthermore these two 
expressions are asymptotic, with relative error decaying exponentially fast as n +m, 
since their difference is 

c dN,(d) < c qd < c qd ( q / ( q -  1 ) ) p 2  < 2qnl2. 
dln, d < n  dln, d<n d < nl2 

We will make repeated use of this simple bound, for our purposes the crucial property 
of the N,(i). 

When q is a prime power, and F, is the finite field with q elements, N,(i) is the 
number of monic irreducible polynomials of order i over F,; see Lid1 and 
Niederreiter[20, p. 82ff.l. With n a random monic polynomial of degree n over F,, 
chosen uniformly at random from the qn possibilities, and q the number of 
irreducible factors of degree j in n, we have the joint distribution given by (1.1). 

The decomposition of random polynomials into irreducible factors is an example 
of a multiset construction. For i 2 1 there are N,(i) different types of objects of 
weight i, with an unlimited supply of each type of object. Among all possible 
multisets of total weight n, we select one at  random, and let 5 be the number of 
objects of weightj included; the joint distribution of these counts is given by (1.1). 
See Flajolet and Soria [14] and Arratia and Tavar6 [ l ]  for probabilistic treatments 
of multisets in general. With N,(i) given by ( 1 - 2 ) ,  where q is any positive integer, the 
total number of possible multisets of weight n is qn, and (1.3) is valid. This multiset 
construction for general q 2 2 ,  n 2 1 can be interpreted in terms of necklaces 
(Metropolis and Rota [21,22]). 

The purpose of this paper is to investigate simplifying approximations, with error 
bounds, for the joint distribution in (1.1). Our starting point was the result from 
Car [SI, that for large n and k 4 log n, the number of polynomials with exactly k 
factors is very close to {n-l qn(log n)”-’/(k- 1) !}. Effectively, the Poisson distribution 
with mean logn serves to approximate the distribution of the total number of 
factors, minus 1. Our approximations to (1.1) are also expressed in terms of 
comparison to simpler random objects, such as independent negative binomial 
random variables, Poisson processes, and random permutations. In  particular, the 
joint distribution of large factor sizes of a random polynomial is similar to the joint 
distribution of large cycle sizes in a uniform random permutation, about which much 
is known, see for example Kolchin[l7]. 

Using a bijection discovered by Gessel and Reutenauer [15] between { 1, . . . , q}” and 
multisets of necklaces, Diaconis, McGrath, and Pitman [ 101 found the distribution 
(1.1) for the cycle structure of non-uniformly distributed random permutations of n 
elements derived from random riffle shuffles. In their setting, the parameter q 
represents the number of decks into which the original deck is cut before the riffle 
shuffle, and can be any positive integer, not necessarily a prime power. They give a 
variety of exact formulae for the distribution of the counts, analogous to classical 
formulae for the uniform case. Using the method of moments, they obtain the 
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asymptotic independence and negative binomial distribution of the small counts, 
and the same Poisson-Dirichlet limit for the big counts as for the cycles of a 
uniformly distributed random permutation. Hansen [ 161 establishes a Poisson- 
Dirichlet limit distribution for a general class of combinatorial structures whose 
generating functions have a logarithmic singularity, and observes that polynomials 
over finite fields satisfy this condition. Here, we systematically establish approxi- 
mations for the joint distribution of factors, by giving upper bounds on the total 
variation distance to simpler discrete distributions. For example, the counts for 
individual factors are approximately independent and geometrically distributed, 
and the counts for all factors of sizes 1,2 ,  ... , b, where b = O(n/log n), are 
approximated by independent negative binomial random variables. As another 
example, the joint distribution of the large factors is close to the joint distribution 
of the large cycles in a random permutation. We show how these discrete 
approximations imply, as easy corollaries, a Brownian motion functional central 
limit theorem and a Poisson-Dirichlet limit theorem, together with appropriate error 
estimates. We conclude with Poisson approximations, with error bounds, for the 
distribution of the total number of factors. 

1 b. Notation 
We use the language of random polynomials throughout this paper. For the 

general case, q can be any integer at  least two, not necessarily a prime power. The 
multisets considered here, having q" objects of weight n, may still be described in 
terms of polynomials decomposed into products of monic irreducible factors. To do 
this, use the field of rationals. Pick N,(i) irreducible polynomials of degree i ,  such as 
(xi + p k ) ,  k = 1 , 2 , .  . . , N,(i), where p k  is the kth prime. Consider all products of these, 
and select at random any of the q" such products of degree n, with all possibilities 
equally likely. 
& is the number of factors of degree i, so xri& 
E are independent negative binomial (Nq(i), q-i) random variables, which give the 

distributional limit of the &, as n-tco. 
fi  are independent Poisson random variables, with the same means a,s the e. 
X, is the number of occurrences of the irreducible factor $,, under an arbitrary fixed 

enumeration of the possible factors. 
S(j) is the degree of $j, so that x S(j)X, = n and & E EX, l(S(j)  = i). 
Tj are independent geometric (p6u)) random variables, which give the distributional 

limit of the X, as n+m. 
I & = EX, is the total number of irreducible factors, for a randomly chosen 
polynomial of degree n. 

Mk is the label of the kth factor selected in size-biassed sampling, so 6(&fk) is the size 
of that factor. We take S(0) = 0 and set Mk = 0 in case k >KO. Check that 

L k  is the size of the kth largest factor degree in a randomly chosen polynomial of 

Ak is the size of the kth oldest cycle in a random permutation of n objects, with value 

ci is the number of cycles of size i, so sic, 

n. 

xj = x k , l  l(Mk =j)* 

degree n, with value 0 if there are fewer than k factors. 

0 if k > KO, the total number of cycles. Check that n = & , , h k .  

n and c, = x, l(hk = i).  
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A, is the size of the kth largest cycle in a random permutation of n objects, with 

value 0 if there are fewer than k cycles. 

2. Size-biassed sampling 
The cycle structure of random permutations is most easily analysed in terms of a 

size-biassed sampling scheme, which not only generates the cycle structure but also 
gives an ordering among the cycles. We describe here two constructions that generate 
an ordered list of lengths of cycles. The first construction is motivated by a 'record 
value process ' (RBnyi [MI). Let (I,), a be independent Bernoulli 0-l) random 
variables, set q = 1 = min > 0: I, = l}, and define 

q = min{j > q+: I, = 1) A ( n + l ) ,  

< n + l}. The 

i 2 2. 

Let KO = max {i : can be used to generate a uniformly distributed 
permutation of {1,2, ... , n}, where KO is the number of cycles, A, n+  1 -TKO is the 
length of the cycle containing 1, A2 = TKO - is the length of the cycle containing 
the smallest element not in the first cycle, and so on. The length A, of the ith cycle 
is TKo--i+2-TKo-i+1 if i < K O ,  with Ai = 0 if i > KO. 

A second description of the same size biassed sampling scheme has random 
variables T; and xo such that (q, T,, ... , 
T x 0 , .  . , , q, E ) .  Set > 1 choose 8 uniformly at  
random from the integers {1,2, ... , = 1, define Eo = i-2. 

From this second coupling one sees that for all dt 3 1, 1 < i < k such that 
X;-,di < n, 

pas the same distribution as 
= n +  1, and, given E,. . . , q-l, if 

l}; otherwise if 

k (-1 -1 

PIAl=d,, ..., A k = d , ] = n ( n - x d j )  (-1 I-1 . (2.1) 

Aspects of these two constructions of the cycle structure of a random permutation 
have been exploited in several places, among them Feller[l2], Vershik and 
Shmidt [%I, Diaconis and Pitman[9], Donnelly and Joyce[ll], Barbour[3], and 
Arratia, Barbour and Tavad [2]. 

In order to obtain a parallel construction for the factorization of a random 
polynomial n of degree n, let q50 denote the unit polynomial, and let the allowable 
irreducible monic polynomials be listed in some order as q51, q52,. . . . Let XI denote the 
number of times 4, appears as a factor in n, and let yd = x5:ag)-dX,, where S(j) is the 
degree of 4,, so that yd denotes the number of factors of degree d in n. Now consider 
the random sequence of integers (Mk)kal constructed as follows. Choose n uniformly 
at  random, and then select its irreducible factors one at a time, by sampling at 
random from those not already selected, with probabilities proportional to their 
degree. If factor q5,,, is selected at step k, set Mk = m. If n is exhausted after k steps, 
set M, = 0, j > k, and set Ki = k. Then it is easily seen that 

PIMl = m] = n-'6(m) EXrn. (2.2) 
The general joint probability is determined by the formula 

whenever m, 3 1, 1 < i < k, and x;-l 6(mJ < n ;  mi,. . . , mi represent the distinct 
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values taken by the sequence m,, . . . , mk, and sl, s2,. . . , sl their multiplicities; and 
(x), = x(x- 1 ) .  . . (2- r +  1 ) .  The joint distribution of the degrees of the factors sampled 
in this way is then obtained by adding (2.3) over the relevant choices of m,, ... ,mk:  

P[&(M, = d,,  . . . , & ( M k )  = dk] = { n IC di i-id} x e - -  ~{i ( x m ; ) q } .  
i-1 n-&-l j ml:b(ml) -d l  mk:8(mk)-dk 

(2.4) 
In order to exhibit a parallel between (2-4)  and (2*1) ,  it is necessary to note the 

following facts about our random polynomials. First, of the qn allowable polynomials 
of degree n, qn-" have a given allowable irreducible polynomial p of degree r < n as 
a factor, which, expressed in terms of probabilities, says that 

P[p divides 7r3 = q-,, r < n. (2.5) 

Secondly, as proved after (1*3), the number N&d) of irreducible monic polynomials of 
degree d satisfies 

f 1 i V q ( 1 )  = 1 ;  0 < l -q-ddNq(d)  < 2q-d/2, d 2 2.  (2.6) 

Thus, if obtaining the same factor twice were unusual, as is the case if q is big, the 
right hand side of (2-4)  might be expected to be close to 

because of (2 .5) ,  and (2.6) then suggests that this is in turn almost 

i-1 -1 

i-1 i ( n - Z d * )  1-1 7 

the right hand side of (2-1) .  Thus a parallel with the cycle structure of a random 
permutation seems reasonable, insofar as the above argument can be made precise. 
It turns out that, even for q small, much can be gained by this approach : see Section 
5 .  However, equation (2.5) suggests an even more direct line of investigation. 

3. Factors of small degree 
Let Jk = { j  : S(j) < k}, and write X( J,) for the vector (X, , j  E Jk) with components 

ordered by increasingj. Let c = (cl,j E Jk) be a similar vector of non-negative integers. 
Then (2.5) implies that 

whenever &JkclS(j) < n, and P[X(Jk)  2 c] = 0 otherwise. This suggests that, if 
k < n, the distribution of X ( J k )  should be close to that of a vector of independent 
geometric random variables if1 - Ge(q-"))), where Ge(0) { r }  = ( 1  -8) @, r 2 0. This is 
the substance of the following theorem. 

THEOREM 3.1. For all k 2 1, 

I2 

dTv( y ( x ( J k ) ) ,  y ( i f ( J k ) ) )  = o( k e-(n/zk)  log (4/3)). 

PSP 114 
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Remark 3.2. This shows, for instance, that the distributions of X( Jk) and z( Jk) are 
asymptotically close as n+m, if k = k (n )  = O(n/log n), and that the accuracy of 
approximation is very high if k = nP' for some /3 < 1. 

Proof. To start with, observe that if Z = (Z,,  jE Jk) is any non-negative random 
vector, 

IJkI 

r-1 SEE 
P [ Z = c ] = P [ Z > c ] + C  ( - l ) r  P [ Z > c + C e , ] ,  (3.2) 

where Br is the set of all r-subsets of Jk and e, denotes the sth coordinate vector. 
Using (3.2) on X(Jk)  and z ( J k )  for c satisfying x jEJkc ,  S(j) = 1 < n yields 

lJkl 

r-1 Begr 

P [ z ( J k )  = c] = n ( 1  - q - b ( j ) )  q-cW) =: q-z exp - q-"N,(i)} =: k-l q-'. (3.4) 

Hence the relative error in approximating P[X(Jk)  = c]  by P [ z ( J k )  = c] is of order at  
most 

(3.3) IP[x (Jk)  = c] -P[z (Jk )  = '11 < x l(l+C,Bb(S)>n)q -(Z+C&Bd(s)). 

On the other hand, using (2.6), 
k 

k J k  { i-1 

when 1 = & J k c j S ( j )  < n. 
The contribution to the sum in (3.5) from those B c J ,  such that xS,,S(s) = t is 

just 
q-t {# of polynomials of degree t in H k }  = P [ d t ) ~ H k ] ,  

where H ,  is the set of monic polynomials with distinct irreducible factors all of degree 
no greater than k ,  and dt) is a uniform random polynomial of degree t .  Applying (2.3) 
with t for n gives 

" n t,NP(tJ -tu < P[pWEH' P[7+t'EHk] < x Q k l ,  
121 t l+ ...+ tt-t 11-1 ( n - C Z  t,) 

1 9t j9  k, all j  

where p( t )  is a uniform random permutation of t objects, and Hk is the set of 
permutations with all cycles of length no greater than k ,  in view of (2.1) and (2.6). But 
now, from (2*1), 

P[p't'EHk] < kk/{t(t-k) ...( t - ( k - l ) [ t / k ] ) }  < l / [ t / k ] ! ,  

where [ a ]  denotes the integer part. Hence (3.5) is of order at most 

k l / [ t / k ] !  = O(k2 / [ (n - l ) / k ] ! )  = 0 k2 exp --log-+-}) n n  
t > n-Z ( { ;k 2k 2k ' (3.6) 

provided that 1 < n/2 .  
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where the x are independent negative binomial NB (Ng(i), q-$) random variables. 
Elementary computations, using (2.6) and the inequality 

( 1  - P ) - ~  < exp {np+np2}  in 0 < p < 3 / 5 ,  

show that, for 1 < z < @ < g, 

k 
i-' { (2 - 1 )  + q-' z"} i-'(zI - 1 )  < 3 exp {zk - I } .  

Hence, for such z, 

P [ i i~ > n / 2  < 3 exp { - ( n / 2 )  log z + z k -  11. 
i-1 1 (3.7) 

If k 2 log n/log(@), we can take z = (n /2k)1 /k  in (3*7) ,  which yields 

n n  n n  
P[ ix > n / 2  < 3e-' exp { --log ;k -+-} 2k 2k = O(exp { -5 log -+-}) 2k 2k ' (3.8) 

6-1 1 
To obtain the estimate which is valid for all k, take z = 1 + (3k)-' < 2q/3 and use the 
weaker inequality 

( 1  -p)-" < e2"p in 0 < p < 2 / 3 ,  
to give 

The theorem follows from (3-5) ,  (3*6) ,  (3.8) and (3 .9) .  I 
Recall that 

COROLLARY 3.3. For all k 2 1 ,  

are independent negative binomial NB (Ng(i), fi) random variables. 

Proof. This follows from Theorem 3.1 together with the fact that taking functionals 
never increases total variation distance, so 

~ T V ( = W K , . . .  , G), 2 ( E ,  e * * ,  %)) < 4 v ( - w ( J k ) ) ,  w w k ) ) ) .  

In fact, we have equality: see Arratia and Tavark [l]. 1 
Remark 3-4. This last result demonstrates the main difference between the factor 

structure in a random polynomial and the cycle structure of a random permutation. 
12-2 
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In the latter, the numbers of small cycles come very close to having independent 
Poisson distributions, with mean d-' for cycles of order d .  The corresponding 
approximation for the numbers of factors of small degree is by independent negative 
binomial distributions, with NB (Nq(d),q-d) for the factors of degree d,  whose mean, 
f d N q ( d )  (1  -q-d)-l,  is nonetheless not too different from d-l. 

4. Factors of medium degree 
In this section, we use the total variation estimate in Corollary 3.3 to study the 

factors of medium size, proving that the process B, defined by 

is close to a standard Brownian motion. The basis of the argument is the 'method of 
the common probability space '. We shall, without further comment, always assume 
that our space is rich enough to support all our constructions. We begin with the 
following elementary moment calculation. 

LEMMA 4.1.  For 1 < k < n, 

Proof. For the left hand inequality, observe that, from (2.5), EXj < &, for a l l j ,  
and hence that [EK < [Ez for all i. For the right hand inequality, 

N,(i)  qPi 1 
1 - q-i EX = < i( 1 - q p )  

follows from (2.6). 1 
LEMMA 4 2 .  For each n 2 1 ,  there i s  a coupling of { K ,  1 < i < n} and {z, 1 < i < n} 

I such that, if 

then 

Proof. Pick 

then, from Corollary 3.3, there exists a coupling of (q, . . . , y k )  and (E, . . . , E) so that 
P[(Y,, ... , y k )  =+ (E, ... , c)] = O(n-'). Extend this to a coupling of (F, ... , Y,) and 
(E, ... , Pn) in any way at  all. Then, using Lemma 41,  

n 

E(R,,1 A 1)  < P[(Y,,.**,Yk) 4 ( % ? * * * , p k ) ] +  E ([EY,+E$)/l/(logn) 
i -k+l  

= o(;llO$;). I 
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LEMMA 4.3. The coupling of Lemma 4 2  can be extended to include a set of independent 

random variables (t, 1 < i < n) with 8 - Po ( E x ) ,  in such a way that, if 

then 

Proof. Given the x ,  then $ can be constructed in such a way that, for each i, 

E I t - Z I  = g ) ,  
the Wasserstein distance between the law of and that of 8. Now 

This last inequality follows from the estimate 

@)? Po @/(I -PI) G @),Be ( P ) )  +d,(Be @),Po @/(I -PI) ,  
because Be @) is stochastically smaller than the other two distributions, so that the 
Wasserstein distance is in each case just the difference of the means. Adding over i 
gives 

2 log (1  - q-1) 
(1 -q-l)  ' 

<-  ?a 2 K i  E i  I&gI 6 iNq(i)q-" 1 -q-t < E  f m l  i(1 -q-i) 
i -1  i-1 

completing the proof. 1 
Now define 

[nt1 
u,(t) = EZ+ (nt- [ntl) E & + ] + ~ ,  

i -1  

and observe that, using (2.6) as in the proof of Lemma 4 1 ,  

sup (u,(t) -t log n1 G c < co 
O < t < l  

for a fixed constant c not depending on n. The partial sums CS-,t can then be 
thought of as the values taken by a Poisson process a t  times u,(tj),  where ntj = j. This 
is the basis for the approximation theorem which follows. 

THEOREM 4-4. It is possible to construct B, and a standard Brownian motion B on the 
same probability space, in such a way that 

SUP IB,(t)-B(t)l A 1 
O < t < l  
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Proof. Let 2 be a Poisson process constructed to satisfy 

nt 
.W-h(t)) = c t 

(-1 

for all t such that nt is integral. A standard Brownian motion B can then be 
constructed on the same space in such a way that 

IZ(t) - t -B(t)l 
= K < m ,  :;: 2 v logt 

where EeAK < 00 for some h > 0, and so, in particular, EK < 00. This follows from the 
theorem of KGmlos, Major and Tusniidy[l8]; see also Kurtz[19], Lemma 3.1. With 
this construction, 

lZ(u,(t))-uu,(t)-B(u,(t))l <K(2+logun(l)) ,  0 < t d 1. (43) 

Now, by the triangle inequality, 

6-1 

1::; A 1 I + x (E-5) + c ( K - E )  +Ju,(t)-t lognl+IB(u,(t))-B(tlogn)l, (44) 
(-1 

and hence, writing B(t) = B(t log n)/d(log n),  

Now we have already established that IEK < co and that 

In addition, it follows easily from CsorgB and R6v6sz [7], Lemma 1.2.1, that 

E {  sup IB(u)-B(u)l} = O(d(l0g log n)) ,  
0 < u, 2, <log n+c 

(u-v(,c 

and a calculation based on the crude estimate 

~0(2/ i ){[r ,  a)), r 2 2, 

is enough to show that E(max,,,,, 5) < 5 .  Equation (42) now follows. I 
Remark 4.5. Theorem 4 4  highlights another similarity between the factor 

structure of a random polynomial and the cycle structure of a random permutation. 
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The weak convergence of B,  to B was proved first in the context of random 
permutations by DeLaurentis and Pittel [8]. The central limit theorem for the total 
number of factors appears in Flajolet and Soria[l4]; this is implied, together with a 
rate estimate of order [(log log n)/l/(log n ) ] ,  by taking t = 1 in Theorem 44 .  This rate 
can actually be improved to order [l/l/(log n ) ] ,  by combining Theorem 6.8 and the 
Berry-Esseen theorem. 

Remark 46 .  Instead of using a Brownian motion as an approximation to B,, one 
could equally well use a centred and normalized Poisson process, in the form 
{P(t log n ) - t  log n}/l/(log n ) ,  in which case no appeal need be made to the Kbmlos, 
Major and Tusnady theorem. In fact, the main conclusion to be drawn from this 
section, explaining why the factor and cycle structures are alike, is that 

d T V ( - Y ( ( q ,  1 < i < k ) ) ,  Y((8,  1 < i < k ) ) )  = O(n-l), (46)  
where 

1 = l (n)  = log,n and k = k(n) = ~ [ 4" ;:::I 1 

the 8s  being independent Poisson variates. This estimate, which covers all factors of 
medium degree, follows directly from the proofs of Lemmas 4 2  and 4.3, since 

dTv(-Y((g71 < i < k))7LP(($71 < i < k))) < d w ( ( g , l  < i < k ) , ( t , l  < i < k)). 
Another result in the same spirit is given in Theorem 5.8. 

5 .  Factors of large degree 
Although the joint distribution of the numbers of factors of small degree is not 

the same as that of the small cycles in a random permutation, the distinction 
fades as soon as either q or the sizes of the factors become large. For instance, for 
large n,  the distribution of the number of factors of degree d ,  NB ( N , ( G ? ) , ~ - ~ )  = 
NB (d-l qd( 1 + O(q-d/z)) ,  qPd) ,  is close to Po (d - l )  if 8 is large. The results of this section 
exploit this similarity. 

We start by making precise comparisons between (2.1) and (2.4). 

LEMMA 51. As for (2.3), suppose that m l , . . .  ,mk are positive integers such that 
&(mi) < n,  and let m i , .  . . , mi denote the distinct values taken, sl, s2,. . . , s1 their 

multiplicities. Then 
1 

[E n (X ,) 2 n 1 - ~ B , W ) ,  
m5 8 5 1  l - l s f . q  

and equality holds if zfm1 &(mi) = n.  

Proof. The lemma follows from (2.5) because 

with equality if &(mi) = n.  I 



358 RICHARD ARRATIA, A. D. BARBOUR AND SIMON TAVARE 
COROLLARY 52. If d,  2 1 for each i and c: - ,d i  < n, then 

k 

P [ 6 ( M 1 ) = d 1 ,  ..., 6 ( M k ) = d k ] >  n 
t-1 

d t 2 2  

Proof. Adding over the possible choices of m,, . . . , mk consistent with the degree 
sequence d, ,  . . . , dk gives 

and the corollary follows using (2.6). I 
LEMMA 5.3. With the notation of Lemma 5.1, 

(i) 

and 

(ii) 

Proof. The first part consists of two different ways of counting the choices of j 
objects from a total of &Xm, order being distinguished: in the former, they are 
enumerated by first accounting for their m-grouping. 

For the second, we use the fact that En:-, (Z,)8, is an increasing function of the 
joint tail probabilities P [ Z ,  2 z l ,  ... , Z ,  2 4,  so that, from (2*5), 

where the 3,s are independent geometric Ge(q-B")) random variables. Hence, if 
d; ,  . . . , d; denote the distinct d,-values, and ul,. . . , ut their multiplicities, the first part 
yields 

m,:b(ml)-dl mk:b(mk) -dk  

COROLLARY 5.4. If d,,  . . . , dk 2 1 a d  di < n,  

Proof. This follows from (2-3) and Lemma 53(ii), using the inequality (1 -z)-l < 
exp {3z/2} in 0 < z G i. 

The comparisons of probabilities in Corollaries 5-2 and 5.4 lead immediately to the 
following comparison between the factor and cycle processes, which shows that they 
are close in distribution if q is large. 

I 
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denote the sequence of orders of the cycles 

obtained by size-biassed sampling from a uniform random permutation, (M,),,,,,; the 
corresponding sequence of irreducible factors, Then 

THEOREM 5.5. As for (2-1)-(2*3), let 

= SUP c (P[{A,)1,,,Ko = 21 - w w d } , , , , K ;  = 21) 

< SUP c (P[{A,},,,,Ko = XI. 2 

A c x  z s A  

k 
q-dtI2 

A c x z e A  6-1 
d 1 2 2  

< 2E( q-iAfIIA, 2 21) 
l , t ,K, 

n 

3-2 

= 2 q-jI2 EC,, 

where C, = # {i : Ai = j}. The theorem follows because EC, = j-l for all j < n. 

orders, we have 

I 
COROLLARY 56. For the counts of factors of different degrees and of cycles of different 

d,"(-Y(Y,, . . . , Yn), 9(C1,. . . , (7,)) < q-1+ O(q-1). I 
Remark 5-7. It follows from Corollary 3.3 with k = 1 and Feller [13], chapter 4.4, 

that 

dTv( 3( K ) ,  Y ( C , ) )  2 e-l- (1 - q-')Q - l / ( n  + 1 )  ! - O(e-na) 2 cq-' - O(ePna),  

where a = 4 log 8, so that the q-order of approximation in Corollary 5.6 cannot be 
improved. 

If q is not large, it still makes sense to approximate the joint distribution of the 
large factors. For I < r < n, take x E X(r) to consist of elements (k, ( d , ) t , )  such 
that now k2 1,  d,  2 1 for each i, cf::dt<n-r and n-r<CF-,d, <n.  Let 
(K,, (A,),,,,,,) denote the random element of x obtained by taking the cycle lengths 
sampled as above, but stopping when fewer than r objects are left to be permuted, 
and let (Ki, (S(M,)),,,,,;) be the corresponding random element derived from the 
factor process. Then 

E{  2 q-iAiIIA, 2 2]} = q-,I2 EC,,, 
(-1 

where C,, = # {i < K ,  : A, = j}. Furthermore, using the record value description to 
compute the expectations, 
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In consequence, we have the following result. 
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THEOREM 5.8. For the size-biassed cycle lengths and factor sizes, 

for any 1 < r < n, where cql = 2q-'/( 1 -q-i). For the counts of factors of large degree and 
of cycles of large order, 

Proof. Use Corollary 5.2 as for Theorem 5 5 ,  and note that A, < r for all : 

i > K r .  I 
The size-biassed sequence of factor degrees can be viewed in terms of a random 

splitting of the unit interval. The elements n-'S(M,), n-lS(M,), . . . , are thought of as 
lengths successively removed from [0,1], corresponding to cutting at  the points 
1 -n-'S(M,), 1 -n-'(S(M1) +a(&?,)), and so on. An alternative splitting is obtained by 
cutting at  the points 1 - n-l L,,  1 - n-l(L, + L, ) ,  and so on, where L ,  2 L ,  2 . . . denote 
the degrees of the factors arranged in descending order. In either formulation, there 
is a natural limit in distribution as n+w,  in the former case the GEM distribution 
with parameter 1, and in the latter the Poisson-Dirichlet distribution with parameter 
1.  In the remainder of the section, the consequences of Theorem 5.8 are investigated 
in this framework. 

Any factor splitting of the unit interval can be represented as a finite decreasing 
sequence of rationals 1 > x1 > x2 > . . . > 0, or, equivalently, as the associated atomic 
measure y = xjalSx,. Let the set of such measures be denoted by A?, and define a 
metric d H  on X by 

dH(y ,  v) = inf { t  > 0 :  y { ( t ,  1 ) )  = v { ( t ,  1 ) ) )  < 1 .  (5.3) 

The space (A?, d H )  is a natural choice for the distributional approximation of factor 
splittings by cycle splittings, because of Theorem 5 8 ,  but has drawbacks as far as 
limiting procedures are concerned : it does not support the GEM or Poisson-Dirichlet 
distributions; removing the restriction of the cut points to the rationals, so as to 
include these distributions, would give a non-separable space ; and, in any case, 
because these distributions give zero probability to rational cut points, the d H  

distance between the 'limiting ' distributions and the factor distributions for finite n 
would not approach zero as n+w. So take 9 3 2 to be the set of measures of the 
form y = xjal wj.Sz,, where the wj are elements of N, and where 1 > x1 > x2 > . . . > 0 
is any possibly infinite sequence of reals which does not accumulate except, if 
infinite, at  0. Equivalently, y can be represented aa xla lSul ,  where 1 > y1 2 y, 2 
... > 0 does not accumulate except perhaps at  0, so that the w p  are replaced by the 
repeats in the y-sequence. Then define a metric d ,  on 99 'by 

(5.4) d&u, v )  = inf { t  > 0 : ly( f )  - v( f )I < t for all f E sl,} < 1, 
where 

4 = C f ~ C ( 0 , l ) :  supIf(x)I < 1 ;  sup{If(x)-f(y)l/lx-yl> < 1 ;  f(x) = 0 for 0 < x < t ) .  

(5.5) 
X X*Y 
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Clearly, when restricted to &', d, < d,. If d,(p, u )  < E ,  then p and u must be close on 
[2s,  1 )  at least in the (LBvy-Prohorov) sense that, for allA c [ Z E ,  I) ,  u(A") 2 p ( A )  and 
vice versa; if d,(p, u )  < e, then p and u must agree exactly on (E, 1 )  ; neither statement 
implies anything about p and u on (0, E). Thus d, is somewhat less sensitive than d, 
to small changes in the positions of the point masses: for example, if s < t ,  

dG(6+ CY,++) = E ,  but dH(6+ = e+;. 

An element p = xl,l&vl of 3, where 1 > y1 2 yz 2 ... > 0, can immediately be 
identified with an element ,& = (y1,y2, ...) of [0,  I]" if the y-sequence is infinite: if 
it is finite, fill out ,ii with zeros. The metric d, can then be compared with metrics 
induced by those on [0, i]", such as that given by the following metric for the product 
topology : 

Now if d,(p(l), p(2))  < E and yjl) v yjz) 2 26, then consideration of the function f E 4 
defined by 

shows that lyjl)-yjz)l < s. On the other hand, if yjl) v yjz) < 2s then clearly 
lyjl)-yjz)l < 2s. Hence dG(p('),p(')) < s puts a uniform bound of 2s on the 
component differences, and 

f(X) = A (X+s-yjl) V yj2))+ 

d(p(l),p(')) < 2dG(p(1),p(z)). (5.7) 

There can be no comparable inequality in the other direction, because d(p('), p@)) < E 

sets no limit on max,,, lyjl)-yjz)l, and thus rate estimates expressed in terms of d,, 
if obtainable, seem preferable to rates in terms of d ,  because of the extra control that 
they imply. However, d(p''n), p )  -+ 0 easily implies that d,(p("),p) + 0 ,  so that d, and 
d are topologically equivalent. The space (B,d,) is thus separable, and, in view of 
(5-7), is also complete. 

Now let Op) and Og)  denote the random elements of X corresponding to the 
size-biassed cycle lengths and factor degrees respectively : thus, in the notation of 
Section 2, 

and 

I-1 1-1 

Then define the size-ordered cycle and factor processes by 

KO-1 1 

I-1 1-1 
(Dg) = C av,; yj = 1 --,-l A[,], 

(5.9) 

(5.10) 

where ALl1 2 AFz1 2 . . . 2 are the cycle lengths in descending order, and likewise 

where L, denotes the degree of the factor of lth largest degree. Finally, let 0 and Q, be 
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random elements of 3 corresponding to the GEM and Poisson-Dirichlet processes 
with parameter 1 : these can be constructed by setting 

i 
0 = E &,; w, = n q, 

j2l 2-1 

where (q,  1 2 1 )  are independent uniform U[O, 11 random variables, and 

( 5 1 2 )  

(5.13) 

where z2 denotes the lth largest of the differences wi-l - wj, with w,, = 1 and the other 
wjs as for 0. With these definitions, the processes of interest are expressed as elements 
of Z or ?i. We now compare their distributions, using the metrics d ,  and d ,  and 
suitable couplings. 

The first result is merely a re-formulation of Theorem 5.8. 

THEOREM 5.9. The processes OP) and OF) can be constructed on the same probability 
space in such a way that, for any 1 < r < n, 

Hence also 
P[d,(@P), 0g)) > r / n ]  < cql r-'. 

IE[~,(oP), O F ) ) ]  = O(n-1 log n). I 
The next result compares the size-ordered processes of cycles and factors. 

THEOREM 5.10. The processes @P) and 
space in such a way that, for any 1 6 r < n, 

can be constructed on the same probability 

P[d,(OP), @g)) > r / n ]  < cq2 r t ,  

where cqz = 22/cq1. Hence also 

E[dH(Og),  @$?))I = O(n-4). 

Proof. Construct 0P) and 0g) as in Theorem 5.9, and derive realizations of Op) 
and a$?) from them by the appropriate re-ordering. Then observe that, for k < r ,  if 
OF) is the same as a$?) on [n-' k, l ) ,  and if all the cycle lengths A2 used to construct 

Hence 
0P) on the interval [n-lr ,  1 )  are of length at  least k, then @P) = @(n) F on [n-' r ,  1). 

P[dH(@p) ,  a$?)) > r / n ]  < P[dH(Op) ,  0g)) > k / n ]  + P[ min At < k] .  (5.14) 

The first of these probabilities can be bounded above by cql k- l ,  using Theorem 59. 
For the second, use the Bernoulli construction at the beginning of Section 2 to bound 
it above by 

l g i g K ,  

n n 7. 1. 

Now take k = (cq1r)f. 

We now turn to approximation by the limit processes. In  view of Theorems 5.9 and 
5.10, it is enough to work either with factors or with cycles, and we choose the latter, 
because the structure is simpler. 

I 
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THEOREM 51 1. I t  i s  possible to construct 0 and 0s.") on the same probability space, in 

such a way that, for 4 log n < r < n, 

P[d,(@g),@) > n-'(r+2)] < r-'+n-'. 

IE[d,(Os."), O)]  = O(n-' log n). 

Proof. Let (q,  1 2 1 )  be independent U[O, 11 random variables, and define 
V, = rI{-' q for j 2 1 ,  and 0 as in (5.12). We use the second construction of Section 
2 as the basis for an explicit coupling of 

Hence also 

9 -  6 = n l(q+'-l), j 2 1, 

with the V,s, in such a way that 0 < V,- 6 < n-l for as long as possible. To start with, 
sample U, = V,, and set 6 = n-'[nV,], where [x] denotes the integer part of x. Then 
0 < V,-c < n-l, and V, and have the right distributions. Set J1 = 0, and, if 

= 0, set K ,  = I .  
The construction now proceeds inductively. Given {(&, c, 4), 1 < i <j}, - sample 

= 0, set V, = n-'[nV,] U, to give V, = U, V,-'. If 6-1 = 0, set 6 = 0. If fl-l > 0 and 
and J3 = 0 if 

V, E n-'(O, [n~,-,l) = (0, q-'). 
Otherwise, set 4 = 1 and sample 6 uniformly from n-l{ 1,2 , .  . . , nq-l - l}. If qPl > 0 
and 6 = 0, set KO = j. As a result of this construction, 0 < 5- 6 < n-l for as long as 
JI = 0, and the sequences (5,  j 2 1) and (6, 1 < j  < KO) have the correct distri- 
butions, generating realizations of 0 and OF) respectively. Furthermore, 

d,(@s."),O) < inf{s > 7 :  n-'N, < E}, (5.16) 

where 7 = max,:J,-l V, and NE = #{j: V, > E}. 
Now, in view of the first construction of Section 2, we have 

( 5 1 7 )  

where we define 
I, = ~ [ j ~ n { c , c ,  . . .}I; 

and NE - Po (log( l / ~ ) ) .  Thus, from (5*16), 

P[d,(@g), 0) > n-'(r + 2)] < P[7 2 n-'(r + 2)] + P[n-1Nn-l~r+2, 2 n-'(r + 2)] 

< r-'+ P[Po (log ( n l r ) )  2 r ]  < r-l+n-', 

because, for r 2 4logn, from Barbour, Holst and Janson[4], Proposition A 2.3, 

~ [ p o  (log ( n / r ) )  2 r] < ~ [ p o  (logn) 2 4 logn] < 12-1. I 
To compare @p) with @, we combine the coupling of Theorem 5.1 1 with the argument 
of Theorem 5.10. 

THEOREM 5-12. It  i s  possible to construct (D and (Dg) on the same probability space, in 
such a way that, i f  n and r satisfy 8 log2 n + 2 log n < r < n, then 

P[d,(@g), @) > r / n ]  < 2r++ 3r-' + n-l. 
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Hence also 
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E[~~(@P),  @)I = O(n-1). 

Proof. Construct @I.“) and @ from e$?) and 0 of the previous theorem. Then observe 
that, for 4 6 k < r < n, 

where the middle term arises because, although the matched intervals in the a$?) and 
0 processes on (7 V (kln), 1 )  differ in length by at  most n-l, the re-ordering to a$?) 
and @ can result in cumulative differences in the positions of their atoms. For 
r 2 810g2n+210gn, the middle term is less than n-l as before, and the theorem 
follows by taking k = [z/r]+4, and using (5.15) and (5.17). 

over B can be defined by 

where the infimum is taken over all couplings of random elements X - P and Y - Q 
of B: see Rachev[23], Chapters 5 and 6. We have thus shown that 

I 
Remark 5-13. The Wasserstein-Kantorovich metric pG on probability measures 

p G ( P ,  &) = inf Y), 

p G ( p ( @ g ) ) ,  2(@g))) ,  pG(p(O$?) ) ,  p (@)) ,pG(p(@g’) ,  p(0)) = O(n-’ log n) ; (5.18) 

P G ( ~ ( @ P ) ,  g(@P)), P G ( ~ ( @ $ ? ) ) ,  p(@)), p ~ ( p ( @ g ) ) ,  Y(@)) = O(n4). (5.19) 

Since d, is topologically equivalent to d as defined in ( 5 6 ) ,  these results sharpen the 
convergence theorems of Shepp and Lloyd[25] and Vershik and Shmidt[26] for 
random permutations, and of Diaconis, McGrath and Pitman [lo] for random 
polynomials, and also that of Hansen[l6] when applied to these structures. 

6. The total number of factors 
In  this section, we are concerned with the distribution of Ki, the total number of 

factors. We begin with sharp estimates of the point probabilities P[Kh = k], in the 
spirit of the estimates obtained by Car [5 ] ,  using generating functions. 

THEOREM 6 1 .  Let $(n+ 1 )  = x:=lj-l. Then 

P [ K i = k ] = P  z C , = k  ( l+ek) ,  kal, I: , 1 
where 

and c is a universal constant. 

Remark 6.2. For k 2 2, 

n(k- 1 ) .  n(k- l ) !  

for k = 1,  P[Z,”,, C, = 13 = n-l. 

IC-1 
log n 

}; 
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Proof. For k = 1, the result follows from (2.4).  For k 2 2,  Corollaries 5 2  and 5 4  

imply that 

The contribution to the sums from i = k is easily bounded by 

where 

For i = k-Z, 1 < 1 < k - 2 ,  let j denote the value of (n-C:4d8) ,  and bound the 
contribution to the sum by 

where 

$(n)k-2--" k-2-1 n 
q-' c1 c2, $(j)-"-l q-'cl < 

n(k - 2 - 1)  ! j-lj2(Z- 1) ! n( k - 2 - I )  ! 

For i = 1 ,  bound the contribution to the sum by 

(6.4) 

The theorem now follows, with c = 4c1c2. 

Theorem 6 1  and Remark 6.2 show that Y ( K h  - 1) is very close to Po (log n) in the 
lower tail factors. We now show that 9(Eo- 1) is close to Po (logn) over the whole 
range. Indeed, taking t = 1 in Theorem 4 4  is already enough to show that they are 
close, of order O((1og log n)/z/(log n)) ,  with respect to Dudley's metric 

I 

d(P? &) = f : llf ll SUP < 1, Ilf'll<1 I l f d P - / f d & I .  

However, it is also natural to ask how good total variation approximation of Kh by 
Po ($(n)) is. This is not only because of Car's sharp tail estimates, but also because 
a corresponding approximation of the total number of cycles in a random 
permutation, to order (logn)-l, can be derived using the construction from 
independent indicators. Here, we use a rather complicated argument, based on the 
Stein-Chen method and a coupling, to obtain an approximation of order (log n)-i in 
total variation. 

The first step is again to compare certain pairs of distributions. The results of the 
comparisons are then used to show that a particular coupling is exact with high 
probability. Let u, j  2 1 be such that j + u < n, and let w = j + u. The symbol 7 is used 
to denote any quantity of order q-'+q-u, the implied constants being universal. 
Thus, for instance, the inequalities 
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can be used to infer the statement 
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E(& x, ) = q-a(Q-a(r) ( 1 + 7) , 
whenever (S(i) A S(1)) 2 (j A u). Let ma,ma and my be 
degrees v, j, u respectively. 

SIMON TAVARE 

(68) 

irreducible polynomials of 

LEMMA 6 3 .  If {m,, .. . , mk} n {ma, ms, my> = 0 and E:-, ~ ( m , )  + w = n, then 

P [ M 2 = m 2 ,  ..., M k = m k I M 1 = m a ]  
log { P[Ma = m,, . . . ,Mk+l = mk lMl = ma,M, = my] } = 7 .  

Note that the constants implied by 7, being universal, are the same for all mi etc. 

E(Xm#Xm)/EXma, from which the assertion follows. I 
Proof. Direct computation shows that under the given conditions, the ratio is just 

LEMMA 6.4. 

P[Xma 2 2 IMl = ma] = 7; 

Proof. The former probability does not exceed lE{Xma(Xma- l)}/(Exm=, and the 
latter is no greater than lE{(Xma+Xmy)Xm")/m,. 

Remark 6 5 .  Because of Lemmas 6 3  and 6.4, the total variation distance between 
the distributions of the residual factorization ( a )  given Ml = ma, and (b) given 
Ml = ma and M ,  = my, is of order 7. 

P[Xma+Xm 2 1 IM, = m,] = 7. 

I 

LEMMA 6.6. 

P[S(M,) = u I Ml = ma] = (n -j)-' ( 1  + O(q-j + q-"")) ; 

P[S(M,) = w] = n-1(1+ O(q-"'"). 

Proof. Direct computation yields 

if S(m) = u, and that 

PIMl = m'] = vn-l EX,, = n-l wq-"( 1 + O ( q - O ) )  

if S(m') = w. Adding over the possible choices of m and m', and using (2*6), concludes 
the proof. I 

Remark 6-7. As a result of the three lemmas, it is possible to realize degree 
processes (S(Mi))i21 with the unconditional distribution and (S(Ml))ial with the 
distribution conditional on Ml = ms, in such a way that a(%) = €J(ML+~) for all i 2 2 
holds, except on a set of probability of order at  most 

O(n-l j+ (n-j)-l+q+). (6.9) 

THEOREM 68. The distribution of the total number Kh of factors satisjes 

dTV(=Y(K& Po ($(n+ 1 ) ) )  < c(log n1-k. 

Proof. Take a random monic polynomial IT of degree n over F,, and split it into 
linear factors over a splitting field. For each irreducible (over the original field) factor 
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of m, assign a mark to just one of the linear factors which make it up. Label the linear 
factors 1,2 , .  . . , n at random. Set lJ = 1 if the ith factor carries a mark, and set 4 = 0 
otherwise. Then Kh = z:,"pl U, is the number of irreducible factors in m, and 

n 

i-1 
IEq = P [ q  = I] = ~j-'PIS(M1) = j ]  = n-l($k(n+l)+O(l)), (6.10) 

because of Lemma 6.6. Set A = EK;. From Barbour, Holst and Janson[4], Remark 
1.1.7, and by symmetry, 

d T V ( 9 ( K ; ) ,  Po ( A ) )  d 2Afd,,(9(Kh+ I), 9 ( K ;  I u, = 1))  
n 

i-1 
d 2At PIS(Ml) = j I u, = 11 dTV(9(Kh + I), 9 ( K ;  I u, = 1, 6(Ml) = j ) )  

= l,S(Ml) =j)) 

Using Remark 6.7 and (6.9), it thus follows that 

d T V ( Y ( K ; ) ,  Po ( A ) )  = O((l0g n)-i{l +n-1 log n+ I}) = O((l0g n)-i). 

Finally, note that IA-$k(n+ 1)l = O(1) as n+m, in view of (2.6). 1 
Note that, because of the precision of the coupling, the argument could be used to 

prove Poisson approximation for other quantities, such as the number of factors of 
even degree. 

This work was supported in part by Schweiz. Nationalfonds Grants Nos 21- 
25579.88 and 20-31262.91, and by NSF Grant DMS 90-05833. 
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