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We show that the Poisson–Dirichlet distribution is the distribution of points in a scale-

invariant Poisson process, conditioned on the event that the sum T of the locations of

the points in (0,1] is 1. This extends to a similar result, rescaling the locations by T , and

conditioning on the event that T 6 1. Restricting both processes to (0, β] for 0 < β 6 1,

we give an explicit formula for the total variation distance between their distributions.

Connections between various representations of the Poisson–Dirichlet process are discussed.

1. The Poisson–Dirichlet process

This paper gives a new characterization of the Poisson–Dirichlet distribution, showing its

relation with the scale-invariant Poisson process. The Poisson–Dirichlet process (V1, V2, . . .)

with parameter θ > 0 (Kingman [15, 16], Watterson [25]) plays a fundamental role in

combinatorics and number theory: see the exposition in [3]. The coordinates satisfy

V1 > V2 > · · · > 0 and V1 + V2 + · · · = 1 almost surely. The distribution of this

process is most directly characterized by the density functions of its finite-dimensional

distributions. The joint density of (V1, V2, · · · , Vk) is supported by points (x1, . . . , xk)

satisfying x1 > x2 > · · · > xk > 0 and x1 + · · · + xk < 1. For the special case θ = 1 the
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joint density is

ρ

(
1− x1 − x2 − · · · − xk

xk

)
1

x1x2 · · · xk , (1.1)

where ρ is Dickman’s function [9, 21], characterized by ρ(u) = 0 for u < 0, ρ(u) = 1

for 0 6 u 6 1, and uρ′(u) + ρ(u − 1) = 0 for u > 1, with ρ continuous for u > 0 and

differentiable for u > 1. For general θ > 0, the expression for the joint density function is

(see [25])

gθ

(
1− x1 − · · · − xk

xk

)
eγθ θk Γ(θ) xθ−1

k

x1x2 · · · xk , (1.2)

where gθ is a probability density on (0,∞) characterized by (2.5).

A well-known construction of the Poisson–Dirichlet process [15, 16, 18] labels the points

of the Poisson processN on (0,∞) with intensity θe−x/x as σ1, σ2, . . . with 0 < · · · < σ3 <

σ2 < σ1 < ∞. Their sum

S = σ1 + σ2 + · · · (1.3)

has the Gamma distribution with parameter θ and is independent of the renormalized

vector S−1(σ1, σ2, . . .), which has the Poisson–Dirichlet distribution with parameter θ:

L(V1, V2, . . .) =L(S−1(σ1, σ2, . . .)). (1.4)

A restatement of the independence is that, for any s > 0,

L(V1, V2, . . .) =L(s−1(σ1, σ2, . . .)|S = s). (1.5)

2. Scale-invariant Poisson processes on (0,∞∞∞)

Let M be the Poisson process on (0,∞) with intensity θ/x. The expected number of

points in any interval (a, b) with 0 < a < b is then θ log(b/a). Since M has an intensity

measure that is continuous with respect to Lebesgue measure, with probability one M
has no double points. Thus we can identify M with a random discrete subset of (0,∞)

with almost surely only finitely many points in any interval (a, b) as above. In particular,

the points of M can be labelled Xi for i ∈ Z with

0 < · · · < X2 < X1 6 1 < X0 < X−1 < X−2 < · · · . (2.1)

The processM is scale-invariant in that, for any c > 0, as random sets there is equality

in distribution:

{cXi : i ∈ Z} d
= {Xi : i ∈ Z}, (2.2)

or, with the identification of M as a random set, simply cM d
=M. Perhaps the simplest

way to handle the scale-invariant Poisson process is to start with the translation-invariant

Poisson process on (−∞,∞) having intensity θ, and apply the exponential map. It is easy

to check that, if the points of the translation-invariant Poisson process are labelled Ti for

i ∈ Z so that · · · < T−2 < T−1 < T0 < 0 6 T1 < T2 < · · · , then setting Xi = exp(−Ti)
gives a realization of the scale-invariant Poisson process labelled to satisfy (2.1). From the

familiar property that W1 = T1 and the interpoint distances Wi := Ti−Ti−1 for i = 2, 3, . . .

are independent and exponentially distributed with mean 1/θ, so that P(θWi > t) = e−t
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for t > 0, it follows that Ui := exp(θWi) is uniformly distributed in (0, 1). Hence, for

i = 1, 2, . . . we have Xi = (U1U2 · · ·Ui)
1/θ , with independent factors.

With the labelling (2.1), the sum T of locations of all points of the Poisson process M
in (0,1) is

T = X1 +X2 + · · · . (2.3)

The Laplace transform of the distribution of T is

E exp(−sT ) = exp

(
−θ
∫ 1

0

(1− exp(−sx))
dx

x

)
. (2.4)

Computation with this Laplace transform (see Vervaat [24], p. 90, or Watterson [25])

shows that the density gθ of T , with gθ(x) = 0 if x < 0, satisfies

xgθ(x) = θ

∫ x

x−1

gθ(u)du, x > 0, (2.5)

so that

xg′θ(x) + (1− θ)gθ(x) + θgθ(x− 1) = 0, x > 0. (2.6)

Equation (2.6) shows why θ = 1 is special. For the case θ = 1, the density of T is

g1(t) = e−γρ(t), where γ is Euler’s constant and ρ is Dickman’s function.

The scale-invariant Poisson processes arise in another connection with the Poisson–

Dirichlet process. The size-biased permutation of the Poisson–Dirichlet process has the

same distribution as the vector (1 − X1, X1 − X2, . . .) of spacings of the points of the

scale-invariant Poisson process M in (2.1), starting from 1 and proceeding down: see

Ignatov [14] and Donnelly and Joyce [10] for further details. A related property, from [1],

is that as random sets with the labelling of (2.1),M := {Xi : i ∈ Z} d
= {Xi−1−Xi : i ∈ Z}.

3. Conditioning the scale-invariant Poisson process

The following characterization of the Poisson–Dirichlet, based on conditioning the Poisson

process with intensity θ/x, seems surprisingly to have been overlooked, perhaps because

a ‘Poisson representation’, by rescaling or conditioning the process with intensity θe−x/x,

was already known.

Theorem 3.1. For any θ > 0, let the scale-invariant Poisson process M on (0,∞), with

intensity θ/x, have its points falling in (0, 1] labelled so that (2.1) holds. Let (V1, V2, . . .)

have the Poisson–Dirichlet distribution with parameter θ. Then

L((V1, V2, . . .)) =L( (X1, X2, . . .) | T = 1). (3.1)

Proof. For x > 0 let T (x) denote the sum of the locations of the points of M in (0, x],

so that

T (x) :=
∑
j>1

Xj1l(Xj 6 x).

Then T ≡ T (1), T (x)/x has the same distribution as T , and T (x) is independent of the

Poisson process restricted to (x,∞). Note that T (x−) is the sum of locations of points in
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(0, x), and T (x−)
d
= T (x). Let (x1, . . . , xk) satisfy x1 > x2 > · · · > xk > 0. Let f(·|x1, . . . , xk)

be the density of T , conditional on Xi = xi, 1 6 i 6 k. The joint density of (X1, . . . , Xk, T )

at (x1, . . . , xk, y) is

exp

(
−
∫ 1

x1

θ

u
du

)
θ

x1
· · · exp

(
−
∫ xk−1

xk

θ

u
du

)
θ

xk
f(y|x1, . . . , xk).

Now, for y > x1 + · · ·+ xk ,

P(T 6 y |Xi = xi, 1 6 i 6 k) = P(T (xk−) 6 y − x1 − · · · − xk)
= P(T 6 (y − x1 − · · · − xk)/xk),

the first equality following from independence, the second from scale invariance. Hence,

recalling that gθ is the density function of T ,

f(y|x1, . . . , xk) =
1

xk
gθ

(
y − x1 − · · · − xk

xk

)
.

It follows that the conditional density of (X1, . . . , Xk), given T = 1, is

θk

x1 · · · xk x
θ
k

1

xk
gθ

(
1− x1 − · · · − xk

xk

)
/gθ(1), (3.2)

which simplifies to the expression in (1.2). The equality of the normalizing constants,

the fact that eγθΓ(θ) = 1/gθ(1), is automatic since (1.2) and (3.2) are both probability

densities, with all the variable factors in agreement.

An alternate proof of Theorem 3.1 can be extracted from Perman [17], which gives a

general treatment of Poisson processes conditioned on the sum of the locations.

The following corollary about conditioning on T = t for 0 < t 6 1 extends Theorem 3.1,

and Theorem 3.1 is the special case t = 1 of Corollary 3.1.

Corollary 3.1. For any t ∈ (0, 1], the distribution of t−1(X1, X2, . . .) conditional on T = t is

the Poisson–Dirichlet distribution, that is, for any t ∈ (0, 1],

L(V1, V2, . . .) =L(t−1(X1, X2, . . .) |T = t). (3.3)

Hence, by mixing with respect to the distribution of T conditional on the event T 6 1, we

have the relation which involves elementary conditioning:

L(V1, V2, . . .) =L(T−1(X1, X2, . . .) |T 6 1). (3.4)

Proof. For 0 < t 6 1, (3.3) follows from (3.1) just by scale invariance and the indepen-

dence of M on disjoint intervals. In detail, the event T = t is the intersection of the

events that T (t) = t and that M restricted to (t, 1] has no points. By the independence of

the restrictions of the Poisson process M to the intervals (0, t] and (t, 1], conditioning on

T = t is the same as conditioning M restricted to (0, t] on having T (t) = t, together with

conditioning M restricted to (t, 1] on having no points. By the scale invariance of M, the

restriction to (0, t], conditioned on T (t) = t, and then scaled up by dividing the location

of every point by t, is equal in distribution to M restricted to (0, 1] and conditioned on

T = 1.
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Having identified what happens to the scale-invariant Poisson process restricted to

(0, 1], conditional on T = t for 0 < t 6 1, it is natural to ask what happens when

t > 1. The following extends Theorem 3.1 in the opposite direction from the extension of

Corollary 3.1.

Corollary 3.2. For t > 1, the distribution of t−1(X1, X2, . . .) conditional on T = t is the

Poisson–Dirichlet distribution conditional on its first component being at most 1/t, that is,

for any t > 1,

L((V1, V2, . . .) |V1 6 t
−1) =L(t−1(X1, X2, . . .) |T = t). (3.5)

Proof. Our proof consists of the following chain of equalities.

L((V1, V2, . . .) |V1 6 t
−1)

= L((X1, X2, . . .) |X1 6 t
−1, X1 +X2 + · · · = 1)

= L(t−1(tX1, tX2, . . .) | tX1 6 1, tX1 + tX2 + · · · = t)

= L(t−1(X1, X2, . . .) |T = t).

The first equality above holds for any t > 0, by (3.1), as does the second, by simple

algebra. The final equality requires t > 1, and uses scale invariance, that tM d
= M. The

subtlety is in the labelling convention (2.1) needed in (2.3). We have for any t > 0 that

tM d
=M, but tX1, tX2, . . . is the list of points, in decreasing order, of tM restricted to (0, t]

rather than to (0, 1]. We need t > 1 to conclude that (0, 1] ⊂ (0, t], so that conditioning

first on tX1 6 1 is just conditioning on tM∩ (1, t] = ∅; it leaves the distribution of tM
restricted to (0,1] unchanged, and guarantees that the sum tX1 + tX2 + · · · of locations of

points of tM in (0, t] equals the sum of locations of points of tM in (0, 1].

Note that the density of V1 is strictly positive everywhere in (0, 1). This implies that the

Poisson–Dirichlet distribution in (3.3), and the conditioned Poisson–Dirichlet distributions

in (3.5) for various t > 1, are all distinct, because any two of the distributions have, for

sufficiently small ε, different values for the probability that the first component is less than

ε. The same reasoning shows that the conditioning T 6 1 in (3.4) cannot be omitted, and

in fact cannot be replaced by conditioning on T 6 c for any choice c ∈ (1,∞].

4. Total variation distance

Can the Poisson–Dirichlet process be distinguished from the scale-invariant Poisson

process if one only observes the small coordinates? As a consequence of Theorem 3.1 it

is possible to give a precise answer in a relatively simple formula.

4.1. A general lemma on preserving the total variation distance

One reason that the total variation distance is a useful metric is that inequalities for

the total variation distance are preserved by arbitrary functionals: if X,Y are random

elements of a measurable space (S,S), and h : (S,S)→ (T ,T) is any measurable map,
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then

dTV (h(X), h(Y )) 6 dTV (X,Y ).

When can the above inequality be replaced by equality? For the discrete case, a necessary

and sufficient condition [7] is that h(a) 6= h(b) whenever a, b ∈ S with P(X = a) > P(Y =

a) and P(X = b) < P(Y = b). Lemma 4.1 gives the corresponding necessary and sufficient

condition for the general measurable case, written in terms of the distributions µ, ν of the

random elements X and Y discussed above.

Lemma 4.1. Let µ, ν ∈ P(S,S), let h : (S,S)→ (T ,T), and let µ′ = µh−1, ν ′ = νh−1. Let

γ = (µ+ ν)/2 and γ′ = (µ′+ ν ′)/2, so that µ and ν are absolutely continuous with respect to

γ, likewise for µ′, ν ′, γ′. Let L be any version of the Radon–Nikodym derivative dµ/dγ, and

similarly let L′ = dµ′/dγ′. Consider the hypotheses

(i) L′ > 1 on B ∈ T implies L > 1 (a.e. γ) on h−1(B);

(ii) L′ 6 1 on B ∈ T implies L 6 1 (a.e. γ) on h−1(B).

Then dTV (µ, ν) = dTV (µ′, ν ′) if and only if (i) and (ii).

Proof. Assume first that (i) and (ii) hold. Let B1 := {t ∈ T : L′ > 1} and B2 := T \B1 so

that B1, B2 ∈ T, and (i) applies to B1, and (ii) applies to B2. Let A1 = h−1B1. Note L > 1

(a.e. γ) on A1 using (i) and L 6 1 (a.e. γ) on S\A1 using (ii). Now dTV (µ′, ν ′) = µ′(B1)−ν ′(B1)

= µ(A1)− ν(A1) = dTV (µ, ν).

For the opposite implication, we prove the contrapositive. Assume that (i) or (ii) does

not hold. Without loss of generality we assume that (i) does not hold. Thus for B1, A1 as

above there exists A2 ⊂ A1 with A2 ∈ S and γ(A2) > 0 and L < 1 everywhere on A2. Hence

for some ε, a > 0 there exists A3 ⊂ A2 with A3 ∈ S, γ(A3) > a, and L < 1− ε on A3. Thus

µ(A3)−ν(A3) 6 −2εa (because L = dµ/dγ, so 2−L = dν/dγ and d(µ−ν)/dγ = −2(1−L)).

Consider A := A1 \A3. We have dTV (µ, ν) > µ(A)− ν(A) = µ(A1)− ν(A1)− (µ(A3)− ν(A3))

> µ(A1)− ν(A1) + 2εa = µ′(B1)− ν ′(B1) + 2εa = dTV (µ′, ν ′) + 2εa.

Diaconis and Pitman [8] view ‘sufficiency’ as the unifying concept in explaining equalities

for total variation distance, and indeed, for all natural examples encountered so far,

sufficiency is present when equality holds. Recall that h is a ‘sufficient statistic’ for

comparing the distributions of X and Y if the likelihood ratio factors through h. (In place

of the usual likelihood ratio R = dµ/dν we have used L = 2dµ/d(µ + ν) as a device to

avoid dividing by zero; the relations are L = 2R/(1 + R), R = L/(2− L).)

Corollary 4.1. Sufficiency is sufficient to preserve dTV .

Proof. Assume that h is sufficient, so that some version of the likelihood L as in

Lemma 4.1 factors through h, that is, with B denoting the Borel sigma algebra on the

R, there is a function f : (T ,T)→ (R,B) such that L = f ◦ h is a version of dµ/dγ. In

this situation, we can take L′ = f, that is, f is a version of dµ′/dγ′. For this pair L, L′
condition (i) simply says, ‘for B ∈ S , f > 1 on B implies f ◦ h > 1 on h−1(B)’, which is

obviously true; similarly for condition (ii).
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4.2. Poisson–Dirichlet versus scale-invariant Poisson

For any θ > 0, we can view the scale-invariant Poisson processM with intensity θ/x as a

random subset of (0,∞), and the Poisson–Dirichlet process with parameter θ as a random

subset PD = {V1, V2, . . .} of (0, 1]. Theorem 3.1 shows that the difference between the

distributions ofM1 =M∩(0, 1] and PD lies only in conditioning on T = 1. This suggests

that, if attention is restricted to (0, β] for β 6 1, the distributions should be closer, and

progressively so as β → 0. Theorem 4.1 below reduces the total variation distance between

the two processes to a simpler total variation distance between two random variables.

We denote this simpler distance by Hθ(β). It is defined for θ > 0 and β ∈ [0, 1] by

Hθ(β) := dTV (L(T (β)), L(T (β)|T = 1) ).

We review the formula for H and its derivation, taken from [20]. For 0 < β < 1, consider

the distributions of T (β) and T − T (β), which are independent of one another. Because

T (β)
d
= βT by scale invariance, its density gθ,β is given in terms of the density gθ of T by

gθ,β(x) = β−1gθ(x/β).

For β ∈ (0, 1], the distribution of T − T (β) has an atom at zero, corresponding to no

points of M in (β, 1]:

P(T − T (β) = 0) = P( M∩ (β, 1] = ∅ ) = βθ.

For β ∈ [0, 1), the distribution of T − T (β) has a continuous part, with density hθ,β
satisfying hθ,β(x) = 0 for x < β, and, for all x > 0,

hθ,β(x) =
θ

x

(
βθ1l(β 6 x 6 1) +

∫ x−β

x−1

hθ,β(u)du

)
. (4.1)

An analysis of differential-difference equations related to (4.1) is carried out in [12, 13].

It follows that the total variation distance between the distributions of T (β) and the

conditional distribution of T (β) given T = 1 is given by

2Hθ(β) =

∫ 1

0

gθ,β(x)

∣∣∣∣hθ,β(1− x)

gθ(1)
− 1

∣∣∣∣ dx+ βθ
gθ,β(1)

gθ(1)
+

∫ ∞
1

gθ,β(x)dx

=

∫ 1

0

gθ,β(x)

∣∣∣∣hθ,β(1− x)

gθ(1)
− 1

∣∣∣∣ dx+ βθ−1 gθ(1/β)

gθ(1)
+ P(T > 1/β). (4.2)

Theorem 4.1. For any θ > 0, view the scale-invariant Poisson process M with intensity

θ/x as a random subset of (0,∞) and the Poisson–Dirichlet process with parameter θ as a

random subset PD := {V1, V2, . . . } of (0, 1]. For every β ∈ [0, 1],

dTV (M∩ [0, β], PD∩ [0, β] ) = dTV (T (β), (T (β)|T = 1) ). (4.3)

Proof. For any countable collection of points x = {x1, x2, . . .} satisfying 1 > x1 > x2 > · · ·
and, with only finitely many in any interval (a, b) with 0 < a < b < 1, let x(β) denote x
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restricted to (0, β]. Then, by Theorem 3.1 and the independence of T (β) and T − T (β),

dL(PD∩ [0, β])

dL(M∩ [0, β])
(x(β)) =


hθ,β(1− tβ(x))/gθ(1), if tβ(x) < 1,

∞, if tβ(x) = 1,

0, if tβ(x) > 1,

is a function of tβ(x) =
∑

j>1 xj1l(xj 6 β) alone. The theorem follows now from

Corollary 4.1.

In the case θ = 1, the limit H1(β) was specified in [6], with a heuristic argument that

it would give the limit for total variation distance between the cycle structure of random

permutations on n objects, and an initial segment of the corresponding independent

limit process, observing cycles of size i for all i 6 βn. Stark [20] proved this limit for

total variation distance for permutations, together with extensions to various random

‘assemblies’ attracted to the Poisson–Dirichlet with parameter θ for general θ > 0,

including in particular random mappings, for which θ = 1/2. Convergence to a Poisson–

Dirichlet distribution for the large components of such random combinatorial structures

in general was proved by Hansen [11]; see also [4]. In the special case θ = 1, the expression

(4.2) for H1 can be expressed entirely in terms of Dickman’s function ρ and Buchstab’s

function ω, and indeed [5] and [22] show that the function H1 appears in a variant of

Kubilius’ fundamental lemma concerning the small prime factors of a random integer

chosen uniformly from 1 to n.

5. Connecting the two Poisson representations

In this paper we have given a representation of the Poisson–Dirichlet process based on the

scale-invariant Poisson process M with intensity θ/x. The earlier Gamma representation

uses the Poisson process N with intensity θe−x/x. The relation between these two

representations has its root in combinatorics.

Shepp and Lloyd [19] analysed random permutations of n objects by applying Tauberian

analysis to the following setup. Consider independent Poisson random variables Zi with

EZi = θzi/i for any z ∈ (0, 1) and θ > 0, and let T∞ :=
∑

i>1 iZi. It requires z < 1 to

conclude that ET∞ < ∞ and T∞ is almost surely finite; if z > 1 then T∞ = ∞ almost

surely. For θ = 1, conditional on the event T∞ = n, the joint distribution of (Z1, Z2, . . .) is

the distribution of counts of cycles of lengths 1, 2, . . . in a random permutation of n objects.

Vershik and Shmidt [23] show that the process listing the longest, second longest, . . . cycle

lengths, rescaled by n, converges in distribution to the Poisson–Dirichlet (with parameter

θ = 1). It is easy to show that, for any fixed θ, c > 0, using z = z(n) = e−c/n, the point

processes having mass Zi at i/n converge to the Poisson process with intensity θe−cx/x.

Thus, with c = 1, we see that the Shepp and Lloyd method corresponds to the Gamma

representation (1.5), using s = 1. Note that the sum of locations of all points, which is

T∞/n for the discrete processes, converges to the Gamma-distributed limit S in (1.3).

Arratia and Tavaré [6, 7] modified this by considering Tn :=
∑

16i6n iZi in place of

T∞. The cycle structure of a random permutation is given by the joint distribution of

(Z1, Z2, . . . , Zn) conditional on Tn = n for θ = 1 and any z > 0, including z = 1, in
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EZi := θzi/i. This allows one to take the limit directly: EZi = 1/i, setting z = 1 in place

of using z(n) ↗ 1. The point processes with mass Zi at i/n, using EZi = θ/i, converge

to the scale-invariant Poisson process of Section 2, and the sum of the locations of the

points in (0, 1], which is Tn/n for the discrete processes, converges to the limit random

variable T in (2.3).

Now the continuum analogue of replacing T∞ by Tn and replacing z(n) = e−c/n for

c = 1 by z = 1 is exactly replacing S , the sum of locations of points in the Poisson

process on (0,∞) with intensity θe−cx/x, by T , the sum of locations of points in (0, 1]

in the Poisson process on (0,∞) with intensity θ/x. This analogy suggests the following

alternative proof of Theorem 3.1 and Corollary 3.1.

Proof. Compare S , the sum of locations of all points of N defined in (1.3), with

S1 :=
∑

i>1 σi1l(σi 6 1), the sum of locations of points in the Poisson process N1 with

intensity θe−cx/x restricted to (0, 1]. Write M1 for the Poisson process with intensity

θ/x restricted to (0, 1], and recall that T is the sum of the locations of the points of

M1. For a configuration (x1, x2, . . .) with 1 > x1 > x2 > · · · > xk > β > xk+1 > 0 and

x1 + x2 + · · · + xk = s, the likelihood ratio for the restrictions of N and M to [β, 1] is

e−cs exp(θ
∫ 1

β
(1 − e−cx)/x dx), where the second factor corresponds to the requirement of

no points in [β, 1] other than x1, . . . , xk . Thus, for an infinite configuration of points at

1 > x1 > x2 > · · · > 0 with s = x1 + x2 + · · · , the likelihood ratio for N1 versus M1 is

e−cs exp(θ
∫ 1

0 (1 − e−cx)/x dx). It follows that for any s > 0, N1 conditional on S1 = s

has the same distribution as M1 conditional on T = s. We need 0 < s 6 1 so that S = s

implies S = S1 and N =N1.
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