The Poisson–Dirichlet Distribution and the Scale-Invariant Poisson Process

RICHARD ARRATIA¹[†], A. D. BARBOUR²[‡]

and SIMON TAVARÉ¹[†]

¹ Department of Mathematics, University of Southern California, Los Angeles, CA 90089-1113, USA (e-mail: rarratia@math.usc.edu stavare@gnome.usc.edu)

² Abteilung für Angewandte Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland (e-mail: adb@amath.unizh.ch)

Received 27 June 1997; revised 16 March 1998

We show that the Poisson-Dirichlet distribution is the distribution of points in a scaleinvariant Poisson process, conditioned on the event that the sum T of the locations of the points in (0,1] is 1. This extends to a similar result, rescaling the locations by T, and conditioning on the event that $T \leq 1$. Restricting both processes to $(0,\beta]$ for $0 < \beta \leq 1$, we give an explicit formula for the total variation distance between their distributions. Connections between various representations of the Poisson-Dirichlet process are discussed.

1. The Poisson-Dirichlet process

This paper gives a new characterization of the Poisson–Dirichlet distribution, showing its relation with the scale-invariant Poisson process. The Poisson–Dirichlet process $(V_1, V_2, ...)$ with parameter $\theta > 0$ (Kingman [15, 16], Watterson [25]) plays a fundamental role in combinatorics and number theory: see the exposition in [3]. The coordinates satisfy $V_1 > V_2 > \cdots > 0$ and $V_1 + V_2 + \cdots = 1$ almost surely. The distribution of this process is most directly characterized by the density functions of its finite-dimensional distributions. The joint density of (V_1, V_2, \dots, V_k) is supported by points (x_1, \dots, x_k) satisfying $x_1 > x_2 > \cdots > x_k > 0$ and $x_1 + \cdots + x_k < 1$. For the special case $\theta = 1$ the

[†] Supported in part by NSF grant DMS 96-26412.

[‡] Supported in part by Schweizerischer NF Projekt Nr 20-43453.95.

joint density is

$$\rho\left(\frac{1-x_1-x_2-\cdots-x_k}{x_k}\right) \frac{1}{x_1x_2\cdots x_k},\tag{1.1}$$

where ρ is Dickman's function [9, 21], characterized by $\rho(u) = 0$ for u < 0, $\rho(u) = 1$ for $0 \le u \le 1$, and $u\rho'(u) + \rho(u-1) = 0$ for u > 1, with ρ continuous for u > 0 and differentiable for u > 1. For general $\theta > 0$, the expression for the joint density function is (see [25])

$$g_{\theta}\left(\frac{1-x_1-\cdots-x_k}{x_k}\right) \frac{e^{\gamma\theta} \,\theta^k \,\Gamma(\theta) \,x_k^{\theta-1}}{x_1 x_2 \cdots x_k},\tag{1.2}$$

where g_{θ} is a probability density on $(0, \infty)$ characterized by (2.5).

A well-known construction of the Poisson–Dirichlet process [15, 16, 18] labels the points of the Poisson process \mathcal{N} on $(0, \infty)$ with intensity $\theta e^{-x}/x$ as $\sigma_1, \sigma_2, \ldots$ with $0 < \cdots < \sigma_3 < \sigma_2 < \sigma_1 < \infty$. Their sum

$$S = \sigma_1 + \sigma_2 + \cdots \tag{1.3}$$

has the Gamma distribution with parameter θ and is independent of the renormalized vector $S^{-1}(\sigma_1, \sigma_2, ...)$, which has the Poisson–Dirichlet distribution with parameter θ :

$$\mathscr{L}(V_1, V_2, \ldots) = \mathscr{L}(S^{-1}(\sigma_1, \sigma_2, \ldots)).$$
(1.4)

A restatement of the independence is that, for any s > 0,

$$\mathscr{L}(V_1, V_2, \ldots) = \mathscr{L}(s^{-1}(\sigma_1, \sigma_2, \ldots) | S = s).$$

$$(1.5)$$

2. Scale-invariant Poisson processes on $(0, \infty)$

Let \mathcal{M} be the Poisson process on $(0, \infty)$ with intensity θ/x . The expected number of points in any interval (a, b) with 0 < a < b is then $\theta \log(b/a)$. Since \mathcal{M} has an intensity measure that is continuous with respect to Lebesgue measure, with probability one \mathcal{M} has no double points. Thus we can identify \mathcal{M} with a random discrete subset of $(0, \infty)$ with almost surely only finitely many points in any interval (a, b) as above. In particular, the points of \mathcal{M} can be labelled X_i for $i \in \mathbb{Z}$ with

$$0 < \dots < X_2 < X_1 \le 1 < X_0 < X_{-1} < X_{-2} < \dots$$
 (2.1)

The process \mathcal{M} is scale-invariant in that, for any c > 0, as random sets there is equality in distribution:

$$\{cX_i: i \in \mathbb{Z}\} \stackrel{d}{=} \{X_i: i \in \mathbb{Z}\},\tag{2.2}$$

or, with the identification of \mathscr{M} as a random set, simply $c\mathscr{M} \stackrel{d}{=} \mathscr{M}$. Perhaps the simplest way to handle the scale-invariant Poisson process is to start with the translation-invariant Poisson process on $(-\infty, \infty)$ having intensity θ , and apply the exponential map. It is easy to check that, if the points of the translation-invariant Poisson process are labelled T_i for $i \in \mathbb{Z}$ so that $\cdots < T_{-2} < T_{-1} < T_0 < 0 \leq T_1 < T_2 < \cdots$, then setting $X_i = \exp(-T_i)$ gives a realization of the scale-invariant Poisson process labelled to satisfy (2.1). From the familiar property that $W_1 = T_1$ and the interpoint distances $W_i := T_i - T_{i-1}$ for $i = 2, 3, \ldots$ are independent and exponentially distributed with mean $1/\theta$, so that $\mathbb{P}(\theta W_i \ge t) = e^{-t}$

408

for $t \ge 0$, it follows that $U_i := \exp(\theta W_i)$ is uniformly distributed in (0,1). Hence, for i = 1, 2, ... we have $X_i = (U_1 U_2 \cdots U_i)^{1/\theta}$, with independent factors.

With the labelling (2.1), the sum T of locations of all points of the Poisson process \mathcal{M} in (0,1) is

$$T = X_1 + X_2 + \cdots$$
 (2.3)

The Laplace transform of the distribution of T is

$$\mathbb{E}\exp(-sT) = \exp\left(-\theta \int_0^1 (1 - \exp(-sx))\frac{dx}{x}\right).$$
(2.4)

Computation with this Laplace transform (see Vervaat [24], p. 90, or Watterson [25]) shows that the density g_{θ} of T, with $g_{\theta}(x) = 0$ if x < 0, satisfies

$$xg_{\theta}(x) = \theta \int_{x-1}^{x} g_{\theta}(u) du, \quad x > 0,$$
(2.5)

so that

$$xg'_{\theta}(x) + (1-\theta)g_{\theta}(x) + \theta g_{\theta}(x-1) = 0, \quad x > 0.$$
(2.6)

Equation (2.6) shows why $\theta = 1$ is special. For the case $\theta = 1$, the density of T is $g_1(t) = e^{-\gamma}\rho(t)$, where γ is Euler's constant and ρ is Dickman's function.

The scale-invariant Poisson processes arise in another connection with the Poisson– Dirichlet process. The size-biased permutation of the Poisson–Dirichlet process has the same distribution as the vector $(1 - X_1, X_1 - X_2, ...)$ of spacings of the points of the scale-invariant Poisson process \mathcal{M} in (2.1), starting from 1 and proceeding down: see Ignatov [14] and Donnelly and Joyce [10] for further details. A related property, from [1], is that as random sets with the labelling of (2.1), $\mathcal{M} := \{X_i : i \in \mathbb{Z}\} \stackrel{d}{=} \{X_{i-1} - X_i : i \in \mathbb{Z}\}$

3. Conditioning the scale-invariant Poisson process

The following characterization of the Poisson–Dirichlet, based on conditioning the Poisson process with intensity θ/x , seems surprisingly to have been overlooked, perhaps because a 'Poisson representation', by rescaling or conditioning the process with intensity $\theta e^{-x}/x$, was already known.

Theorem 3.1. For any $\theta > 0$, let the scale-invariant Poisson process \mathcal{M} on $(0, \infty)$, with intensity θ/x , have its points falling in (0, 1] labelled so that (2.1) holds. Let $(V_1, V_2, ...)$ have the Poisson–Dirichlet distribution with parameter θ . Then

$$\mathscr{L}((V_1, V_2, \ldots)) = \mathscr{L}((X_1, X_2, \ldots) \mid T = 1).$$
(3.1)

Proof. For x > 0 let T(x) denote the sum of the locations of the points of \mathcal{M} in (0, x], so that

$$T(x) := \sum_{j \ge 1} X_j \mathbb{1}(X_j \le x).$$

Then $T \equiv T(1)$, T(x)/x has the same distribution as T, and T(x) is independent of the Poisson process restricted to (x, ∞) . Note that T(x-) is the sum of locations of points in

(0, x), and $T(x-) \stackrel{d}{=} T(x)$. Let (x_1, \dots, x_k) satisfy $x_1 > x_2 > \dots > x_k > 0$. Let $f(\cdot|x_1, \dots, x_k)$ be the density of T, conditional on $X_i = x_i, 1 \le i \le k$. The joint density of (X_1, \dots, X_k, T) at (x_1, \dots, x_k, y) is

$$\exp\left(-\int_{x_1}^1\frac{\theta}{u}du\right)\,\frac{\theta}{x_1}\cdots\,\exp\left(-\int_{x_k}^{x_{k-1}}\frac{\theta}{u}du\right)\,\frac{\theta}{x_k}\,f(y|x_1,\ldots,x_k).$$

Now, for $y > x_1 + \cdots + x_k$,

$$\mathbb{P}(T \leq y \mid X_i = x_i, 1 \leq i \leq k) = \mathbb{P}(T(x_k) \leq y - x_1 - \dots - x_k)$$
$$= \mathbb{P}(T \leq (y - x_1 - \dots - x_k)/x_k),$$

the first equality following from independence, the second from scale invariance. Hence, recalling that g_{θ} is the density function of T,

$$f(y|x_1,\ldots,x_k) = \frac{1}{x_k} g_\theta \left(\frac{y-x_1-\cdots-x_k}{x_k} \right).$$

It follows that the conditional density of (X_1, \ldots, X_k) , given T = 1, is

$$\frac{\theta^k}{x_1\cdots x_k} x_k^{\theta} \frac{1}{x_k} g_{\theta} \left(\frac{1-x_1-\cdots-x_k}{x_k}\right) / g_{\theta}(1), \tag{3.2}$$

which simplifies to the expression in (1.2). The equality of the normalizing constants, the fact that $e^{\gamma\theta}\Gamma(\theta) = 1/g_{\theta}(1)$, is automatic since (1.2) and (3.2) are both probability densities, with all the variable factors in agreement.

An alternate proof of Theorem 3.1 can be extracted from Perman [17], which gives a general treatment of Poisson processes conditioned on the sum of the locations.

The following corollary about conditioning on T = t for $0 < t \le 1$ extends Theorem 3.1, and Theorem 3.1 is the special case t = 1 of Corollary 3.1.

Corollary 3.1. For any $t \in (0, 1]$, the distribution of $t^{-1}(X_1, X_2, ...)$ conditional on T = t is the Poisson–Dirichlet distribution, that is, for any $t \in (0, 1]$,

$$\mathscr{L}(V_1, V_2, \ldots) = \mathscr{L}(t^{-1}(X_1, X_2, \ldots) \mid T = t).$$
(3.3)

Hence, by mixing with respect to the distribution of T conditional on the event $T \leq 1$, we have the relation which involves elementary conditioning:

$$\mathscr{L}(V_1, V_2, \ldots) = \mathscr{L}(T^{-1}(X_1, X_2, \ldots) \mid T \leq 1).$$
(3.4)

Proof. For $0 < t \le 1$, (3.3) follows from (3.1) just by scale invariance and the independence of \mathcal{M} on disjoint intervals. In detail, the event T = t is the intersection of the events that T(t) = t and that \mathcal{M} restricted to (t, 1] has no points. By the independence of the restrictions of the Poisson process \mathcal{M} to the intervals (0, t] and (t, 1], conditioning on T = t is the same as conditioning \mathcal{M} restricted to (0, t] on having T(t) = t, together with conditioning \mathcal{M} restricted to (t, 1] on having no points. By the scale invariance of \mathcal{M} , the restriction to (0, t], conditioned on T(t) = t, and then scaled up by dividing the location of every point by t, is equal in distribution to \mathcal{M} restricted to (0, 1] and conditioned on T = 1.

Having identified what happens to the scale-invariant Poisson process restricted to (0, 1], conditional on T = t for $0 < t \le 1$, it is natural to ask what happens when t > 1. The following extends Theorem 3.1 in the opposite direction from the extension of Corollary 3.1.

Corollary 3.2. For $t \ge 1$, the distribution of $t^{-1}(X_1, X_2, ...)$ conditional on T = t is the Poisson–Dirichlet distribution conditional on its first component being at most 1/t, that is, for any $t \ge 1$,

$$\mathscr{L}((V_1, V_2, \ldots) \mid V_1 \leqslant t^{-1}) = \mathscr{L}(t^{-1}(X_1, X_2, \ldots) \mid T = t).$$
(3.5)

Proof. Our proof consists of the following chain of equalities.

$$\begin{aligned} \mathscr{L}((V_1, V_2, \dots) \mid V_1 \leqslant t^{-1}) \\ &= \mathscr{L}((X_1, X_2, \dots) \mid X_1 \leqslant t^{-1}, X_1 + X_2 + \dots = 1) \\ &= \mathscr{L}(t^{-1}(tX_1, tX_2, \dots) \mid tX_1 \leqslant 1, tX_1 + tX_2 + \dots = t) \\ &= \mathscr{L}(t^{-1}(X_1, X_2, \dots) \mid T = t). \end{aligned}$$

The first equality above holds for any t > 0, by (3.1), as does the second, by simple algebra. The final equality requires $t \ge 1$, and uses scale invariance, that $t\mathcal{M} \stackrel{d}{=} \mathcal{M}$. The subtlety is in the labelling convention (2.1) needed in (2.3). We have for any t > 0 that $t\mathcal{M} \stackrel{d}{=} \mathcal{M}$, but tX_1, tX_2, \ldots is the list of points, in decreasing order, of $t\mathcal{M}$ restricted to (0, t] rather than to (0, 1]. We need $t \ge 1$ to conclude that $(0, 1] \subset (0, t]$, so that conditioning first on $tX_1 \le 1$ is just conditioning on $t\mathcal{M} \cap (1, t] = \emptyset$; it leaves the distribution of $t\mathcal{M}$ restricted to (0, 1] unchanged, and guarantees that the sum $tX_1 + tX_2 + \cdots$ of locations of points of $t\mathcal{M}$ in (0, t] equals the sum of locations of points of $t\mathcal{M}$ in (0, 1].

Note that the density of V_1 is strictly positive everywhere in (0, 1). This implies that the Poisson–Dirichlet distribution in (3.3), and the conditioned Poisson–Dirichlet distributions in (3.5) for various t > 1, are all distinct, because any two of the distributions have, for sufficiently small ϵ , different values for the probability that the first component is less than ϵ . The same reasoning shows that the conditioning $T \leq 1$ in (3.4) cannot be omitted, and in fact cannot be replaced by conditioning on $T \leq c$ for any choice $c \in (1, \infty]$.

4. Total variation distance

Can the Poisson–Dirichlet process be distinguished from the scale-invariant Poisson process if one only observes the small coordinates? As a consequence of Theorem 3.1 it is possible to give a precise answer in a relatively simple formula.

4.1. A general lemma on preserving the total variation distance

One reason that the total variation distance is a useful metric is that inequalities for the total variation distance are preserved by arbitrary functionals: if X, Y are random elements of a measurable space (S, \mathcal{S}) , and $h: (S, \mathcal{S}) \to (T, \mathcal{T})$ is any measurable map, then

$d_{TV}(h(X), h(Y)) \leq d_{TV}(X, Y).$

When can the above inequality be replaced by equality? For the discrete case, a necessary and sufficient condition [7] is that $h(a) \neq h(b)$ whenever $a, b \in S$ with $\mathbb{P}(X = a) > \mathbb{P}(Y = a)$ and $\mathbb{P}(X = b) < \mathbb{P}(Y = b)$. Lemma 4.1 gives the corresponding necessary and sufficient condition for the general measurable case, written in terms of the distributions μ, ν of the random elements X and Y discussed above.

Lemma 4.1. Let $\mu, v \in \mathcal{P}(S, \mathcal{S})$, let $h : (S, \mathcal{S}) \to (T, \mathcal{T})$, and let $\mu' = \mu h^{-1}, v' = v h^{-1}$. Let $\gamma = (\mu + v)/2$ and $\gamma' = (\mu' + v')/2$, so that μ and v are absolutely continuous with respect to γ , likewise for μ', v', γ' . Let L be any version of the Radon–Nikodym derivative $d\mu/d\gamma$, and similarly let $L' = d\mu'/d\gamma'$. Consider the hypotheses

(i) $L' \ge 1$ on $B \in \mathcal{T}$ implies $L \ge 1$ (a.e. γ) on $h^{-1}(B)$; (ii) $L' \le 1$ on $B \in \mathcal{T}$ implies $L \le 1$ (a.e. γ) on $h^{-1}(B)$.

Then $d_{TV}(\mu, \nu) = d_{TV}(\mu', \nu')$ if and only if (i) and (ii).

Proof. Assume first that (i) and (ii) hold. Let $B_1 := \{t \in T : L' \ge 1\}$ and $B_2 := T \setminus B_1$ so that $B_1, B_2 \in \mathscr{T}$, and (i) applies to B_1 , and (ii) applies to B_2 . Let $A_1 = h^{-1}B_1$. Note $L \ge 1$ (a.e. γ) on A_1 using (i) and $L \le 1$ (a.e. γ) on $S \setminus A_1$ using (ii). Now $d_{TV}(\mu', \nu') = \mu'(B_1) - \nu'(B_1) = \mu(A_1) - \nu(A_1) = d_{TV}(\mu, \nu)$.

For the opposite implication, we prove the contrapositive. Assume that (i) or (ii) does not hold. Without loss of generality we assume that (i) does *not* hold. Thus for B_1, A_1 as above there exists $A_2 \subset A_1$ with $A_2 \in \mathscr{S}$ and $\gamma(A_2) > 0$ and L < 1 everywhere on A_2 . Hence for some $\epsilon, a > 0$ there exists $A_3 \subset A_2$ with $A_3 \in \mathscr{S}, \gamma(A_3) \ge a$, and $L < 1 - \epsilon$ on A_3 . Thus $\mu(A_3) - \nu(A_3) \le -2\epsilon a$ (because $L = d\mu/d\gamma$, so $2 - L = d\nu/d\gamma$ and $d(\mu - \nu)/d\gamma = -2(1 - L)$). Consider $A := A_1 \setminus A_3$. We have $d_{TV}(\mu, \nu) \ge \mu(A) - \nu(A) = \mu(A_1) - \nu(A_1) - (\mu(A_3) - \nu(A_3))$ $\ge \mu(A_1) - \nu(A_1) + 2\epsilon a = \mu'(B_1) - \nu'(B_1) + 2\epsilon a = d_{TV}(\mu', \nu') + 2\epsilon a$.

Diaconis and Pitman [8] view 'sufficiency' as the unifying concept in explaining equalities for total variation distance, and indeed, for all *natural* examples encountered so far, sufficiency is present when equality holds. Recall that h is a 'sufficient statistic' for comparing the distributions of X and Y if the likelihood ratio factors through h. (In place of the usual likelihood ratio $R = d\mu/dv$ we have used $L = 2d\mu/d(\mu + v)$ as a device to avoid dividing by zero; the relations are L = 2R/(1 + R), R = L/(2 - L).)

Corollary 4.1. Sufficiency is sufficient to preserve d_{TV} .

Proof. Assume that *h* is sufficient, so that some version of the likelihood *L* as in Lemma 4.1 factors through *h*, that is, with \mathscr{B} denoting the Borel sigma algebra on the \mathbb{R} , there is a function $f : (T, \mathscr{T}) \to (\mathbb{R}, \mathscr{B})$ such that $L = f \circ h$ is a version of $d\mu/d\gamma$. In this situation, we can take L' = f, that is, *f* is a version of $d\mu'/d\gamma'$. For this pair *L*, *L'* condition (i) simply says, 'for $B \in \mathscr{S}$, $f \ge 1$ on *B* implies $f \circ h \ge 1$ on $h^{-1}(B)$ ', which is obviously true; similarly for condition (ii).

4.2. Poisson-Dirichlet versus scale-invariant Poisson

For any $\theta > 0$, we can view the scale-invariant Poisson process \mathscr{M} with intensity θ/x as a random subset of $(0, \infty)$, and the Poisson-Dirichlet process with parameter θ as a random subset $\mathscr{PD} = \{V_1, V_2, \ldots\}$ of (0, 1]. Theorem 3.1 shows that the difference between the distributions of $\mathscr{M}_1 = \mathscr{M} \cap (0, 1]$ and \mathscr{PD} lies only in conditioning on T = 1. This suggests that, if attention is restricted to $(0, \beta]$ for $\beta \leq 1$, the distributions should be closer, and progressively so as $\beta \to 0$. Theorem 4.1 below reduces the total variation distance between the two processes to a simpler total variation distance between two random variables.

We denote this simpler distance by $H_{\theta}(\beta)$. It is defined for $\theta > 0$ and $\beta \in [0, 1]$ by

$$H_{\theta}(\beta) := d_{TV}(\mathscr{L}(T(\beta)), \mathscr{L}(T(\beta)|T=1)).$$

We review the formula for *H* and its derivation, taken from [20]. For $0 < \beta < 1$, consider the distributions of $T(\beta)$ and $T - T(\beta)$, which are independent of one another. Because $T(\beta) \stackrel{d}{=} \beta T$ by scale invariance, its density $g_{\theta,\beta}$ is given in terms of the density g_{θ} of *T* by

$$g_{\theta,\beta}(x) = \beta^{-1} g_{\theta}(x/\beta).$$

For $\beta \in (0,1]$, the distribution of $T - T(\beta)$ has an atom at zero, corresponding to no points of \mathcal{M} in $(\beta, 1]$:

$$\mathbb{P}(T - T(\beta) = 0) = \mathbb{P}(\mathcal{M} \cap (\beta, 1] = \emptyset) = \beta^{\theta}.$$

For $\beta \in [0,1)$, the distribution of $T - T(\beta)$ has a continuous part, with density $h_{\theta,\beta}$ satisfying $h_{\theta,\beta}(x) = 0$ for $x < \beta$, and, for all x > 0,

$$h_{\theta,\beta}(x) = \frac{\theta}{x} \left(\beta^{\theta} \mathbb{1}(\beta \leqslant x \leqslant 1) + \int_{x-1}^{x-\beta} h_{\theta,\beta}(u) du \right).$$
(4.1)

An analysis of differential-difference equations related to (4.1) is carried out in [12, 13].

It follows that the total variation distance between the distributions of $T(\beta)$ and the conditional distribution of $T(\beta)$ given T = 1 is given by

$$2H_{\theta}(\beta) = \int_{0}^{1} g_{\theta,\beta}(x) \left| \frac{h_{\theta,\beta}(1-x)}{g_{\theta}(1)} - 1 \right| dx + \beta^{\theta} \frac{g_{\theta,\beta}(1)}{g_{\theta}(1)} + \int_{1}^{\infty} g_{\theta,\beta}(x) dx$$

$$= \int_{0}^{1} g_{\theta,\beta}(x) \left| \frac{h_{\theta,\beta}(1-x)}{g_{\theta}(1)} - 1 \right| dx + \beta^{\theta-1} \frac{g_{\theta}(1/\beta)}{g_{\theta}(1)} + \mathbb{P}(T > 1/\beta).$$
(4.2)

Theorem 4.1. For any $\theta > 0$, view the scale-invariant Poisson process \mathcal{M} with intensity θ/x as a random subset of $(0, \infty)$ and the Poisson–Dirichlet process with parameter θ as a random subset $\mathscr{PD} := \{V_1, V_2, \dots\}$ of (0, 1]. For every $\beta \in [0, 1]$,

$$d_{TV}(\mathscr{M} \cap [0,\beta], \mathscr{P}\mathscr{D} \cap [0,\beta]) = d_{TV}(T(\beta), (T(\beta)|T=1)).$$

$$(4.3)$$

Proof. For any countable collection of points $x = \{x_1, x_2, ...\}$ satisfying $1 > x_1 > x_2 > \cdots$ and, with only finitely many in any interval (a, b) with 0 < a < b < 1, let $x^{(\beta)}$ denote x

restricted to $(0,\beta]$. Then, by Theorem 3.1 and the independence of $T(\beta)$ and $T - T(\beta)$,

$$\frac{d\mathscr{L}(\mathscr{P}\mathscr{D}\cap[0,\beta])}{d\mathscr{L}(\mathscr{M}\cap[0,\beta])}(x^{(\beta)}) = \begin{cases} h_{\theta,\beta}(1-t_{\beta}(x))/g_{\theta}(1), & \text{if } t_{\beta}(x) < 1, \\ \infty, & \text{if } t_{\beta}(x) = 1, \\ 0, & \text{if } t_{\beta}(x) > 1, \end{cases}$$

is a function of $t_{\beta}(x) = \sum_{j \ge 1} x_j \mathbb{1}(x_j \le \beta)$ alone. The theorem follows now from Corollary 4.1.

In the case $\theta = 1$, the limit $H_1(\beta)$ was specified in [6], with a heuristic argument that it would give the limit for total variation distance between the cycle structure of random permutations on *n* objects, and an initial segment of the corresponding independent limit process, observing cycles of size *i* for all $i \leq \beta n$. Stark [20] proved this limit for total variation distance for permutations, together with extensions to various random 'assemblies' attracted to the Poisson–Dirichlet with parameter θ for general $\theta > 0$, including in particular random mappings, for which $\theta = 1/2$. Convergence to a Poisson– Dirichlet distribution for the large components of such random combinatorial structures in general was proved by Hansen [11]; see also [4]. In the special case $\theta = 1$, the expression (4.2) for H_1 can be expressed entirely in terms of Dickman's function ρ and Buchstab's function ω , and indeed [5] and [22] show that the function H_1 appears in a variant of Kubilius' fundamental lemma concerning the small prime factors of a random integer chosen uniformly from 1 to *n*.

5. Connecting the two Poisson representations

In this paper we have given a representation of the Poisson–Dirichlet process based on the scale-invariant Poisson process \mathcal{M} with intensity θ/x . The earlier Gamma representation uses the Poisson process \mathcal{N} with intensity $\theta e^{-x}/x$. The relation between these two representations has its root in combinatorics.

Shepp and Lloyd [19] analysed random permutations of *n* objects by applying Tauberian analysis to the following setup. Consider independent Poisson random variables Z_i with $\mathbb{E}Z_i = \theta z^i/i$ for any $z \in (0,1)$ and $\theta > 0$, and let $T_{\infty} := \sum_{i \ge 1} iZ_i$. It requires z < 1 to conclude that $\mathbb{E}T_{\infty} < \infty$ and T_{∞} is almost surely finite; if $z \ge 1$ then $T_{\infty} = \infty$ almost surely. For $\theta = 1$, conditional on the event $T_{\infty} = n$, the joint distribution of $(Z_1, Z_2, ...)$ is the distribution of counts of cycles of lengths 1, 2, ... in a random permutation of *n* objects. Vershik and Shmidt [23] show that the process listing the longest, second longest, ... cycle lengths, rescaled by *n*, converges in distribution to the Poisson–Dirichlet (with parameter $\theta = 1$). It is easy to show that, for any fixed $\theta, c > 0$, using $z = z(n) = e^{-c/n}$, the point processes having mass Z_i at i/n converge to the Poisson process with intensity $\theta e^{-cx}/x$. Thus, with c = 1, we see that the Shepp and Lloyd method corresponds to the Gamma representation (1.5), using s = 1. Note that the sum of locations of all points, which is T_{∞}/n for the discrete processes, converges to the Gamma-distributed limit S in (1.3).

Arratia and Tavaré [6, 7] modified this by considering $T_n := \sum_{1 \le i \le n} iZ_i$ in place of T_{∞} . The cycle structure of a random permutation is given by the joint distribution of $(Z_1, Z_2, ..., Z_n)$ conditional on $T_n = n$ for $\theta = 1$ and any z > 0, including z = 1, in

 $\mathbb{E}Z_i := \theta z^i/i$. This allows one to take the limit directly: $\mathbb{E}Z_i = 1/i$, setting z = 1 in place of using $z(n) \nearrow 1$. The point processes with mass Z_i at i/n, using $\mathbb{E}Z_i = \theta/i$, converge to the scale-invariant Poisson process of Section 2, and the sum of the locations of the points in (0, 1], which is T_n/n for the discrete processes, converges to the limit random variable T in (2.3).

Now the continuum analogue of replacing T_{∞} by T_n and replacing $z(n) = e^{-c/n}$ for c = 1 by z = 1 is exactly replacing S, the sum of locations of points in the Poisson process on $(0, \infty)$ with intensity $\theta e^{-cx}/x$, by T, the sum of locations of points in (0, 1] in the Poisson process on $(0, \infty)$ with intensity θ/x . This analogy suggests the following alternative proof of Theorem 3.1 and Corollary 3.1.

Proof. Compare *S*, the sum of locations of all points of \mathcal{N} defined in (1.3), with $S_1 := \sum_{i \ge 1} \sigma_i \mathbb{1}(\sigma_i \le 1)$, the sum of locations of points in the Poisson process \mathcal{N}_1 with intensity $\theta e^{-cx}/x$ restricted to (0, 1]. Write \mathcal{M}_1 for the Poisson process with intensity θ/x restricted to (0, 1], and recall that *T* is the sum of the locations of the points of \mathcal{M}_1 . For a configuration $(x_1, x_2, ...)$ with $1 \ge x_1 > x_2 > \cdots > x_k \ge \beta > x_{k+1} > 0$ and $x_1 + x_2 + \cdots + x_k = s$, the likelihood ratio for the restrictions of \mathcal{N} and \mathcal{M} to $[\beta, 1]$ is $e^{-cs} \exp(\theta \int_{\beta}^{1} (1 - e^{-cx})/x \, dx)$, where the second factor corresponds to the requirement of no points in $[\beta, 1]$ other than x_1, \ldots, x_k . Thus, for an infinite configuration of points at $1 \ge x_1 > x_2 > \cdots > 0$ with $s = x_1 + x_2 + \cdots$, the likelihood ratio for \mathcal{N}_1 versus \mathcal{M}_1 is $e^{-cs} \exp(\theta \int_{0}^{1} (1 - e^{-cx})/x \, dx)$. It follows that for any s > 0, \mathcal{N}_1 conditional on $S_1 = s$ has the same distribution as \mathcal{M}_1 conditional on T = s. We need $0 < s \le 1$ so that S = s implies $S = S_1$ and $\mathcal{N} = \mathcal{N}_1$.

References

- Arratia, R. (1996) Independence of small prime factors: total variation and Wasserstein metrics, insertions and deletions, and the Poisson-Dirichlet process. Draft, available from rarratia@math.usc.edu
- [2] Arratia, R., Barbour, A. D. and Tavaré, S. (1999) Logarithmic Combinatorial Structures. Monograph, in preparation.
- [3] Arratia, R., Barbour, A. D. and Tavaré, S. (1997) Random combinatorial structures and prime factorizations. *Notices of the AMS* 44 903–910.
- [4] Arratia, R., Barbour, A. D. and Tavaré, S. (1999) On Poisson-Dirichlet limits for random decomposable combinatorial structures. *Combinatorics, Probability and Computing* 8 193–208.
- [5] Arratia, R. and Stark, D. (1999) A total variation distance invariance principle for primes, permutations, and the Poisson–Dirichlet process. In preparation.
- [6] Arratia, R. and Tavaré, S. (1992) The cycle structure of random permutations. Ann. Probab. 20 1567–1591.
- [7] Arratia, R. and Tavaré, S. (1994) Independent process approximations for random combinatorial structures. *Adv. Math.* **104** 90–154.
- [8] Diaconis, P. and Pitman, J. W. (1986) Permutations, record values and random measures. Unpublished lecture notes, Statistics Department, University of California, Berkeley.
- [9] Dickman, K. (1930) On the frequency of numbers containing prime factors of a certain relative magnitude. Ark. Math. Astr. Fys. 22 1–14.
- [10] Donnelly, P. and Joyce, P. (1989) Continuity and weak convergence of ranked and size-biased permutations on the infinite simplex. *Stoch. Proc. Appl.* 31 89–103.

- [11] Hansen, J. C. (1994) Order statistics for decomposable combinatorial structures. Rand. Struct. Alg. 5 517–533.
- [12] Hildebrand, A. (1990) The asymptotic behavior of the solutions of a class of differentialdifference equations. J. London Math. Soc. 42 11–31.
- [13] Hildebrand, A. and Tenenbaum, G. (1993) On a class of differential-difference equations arising in number theory. J. d'Analyse **61** 145–179.
- [14] Ignatov, T. (1982) On a constant arising in the asymptotic theory of symmetric groups, and on Poisson-Dirichlet measures. *Theory Probab. Appl.* 27 136–147.
- [15] Kingman, J. F. C. (1975) Random discrete distributions. J. Royal Statist. Soc. B 37 1-22.
- [16] Kingman, J. F. C. (1993) Poisson Processes, Oxford University Press, Oxford.
- [17] Perman, M. (1993) Order statistics for jumps of normalized subordinators. Stoch. Proc. Appl. 46 267–281.
- [18] Pitman, J. and Yor, M. (1997) The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 855–900.
- [19] Shepp, L. and Lloyd, S. P. (1966) Ordered cycle lengths in a random permutation. Trans. Amer. Math. Soc. 121 340–357.
- [20] Stark, D. (1997) Explicit non-zero limits of total variation distance in independent Poisson approximations of logarithmic combinatorial assemblies. *Combinatorics, Probability and Computing* 6 87–106.
- [21] Tenenbaum, G. (1995) Introduction to Analytic and Probabilistic Number Theory, Vol. 46 of Cambridge Studies in Advanced Mathematics, Cambridge University Press.
- [22] Tenenbaum, G. (1999) Crible d'Ératosthène et modèle de Kubilius. In Proceedings of the International Meeting in Honor of A. Schinzel, Zakopane 1997, de Gruyter. To appear.
- [23] Vershik, A. M. and Shmidt, A. A. (1977) Limit measures arising in the theory of groups, I. Theory Probab. Appl. 22 79–85.
- [24] Vervaat, W. (1972) Success epochs in Bernoulli trials with applications in number theory. Mathematical Center Tracts No. 42, Mathematisch Centrum, Amsterdam.
- [25] Watterson, G. A. (1976) The stationary distribution of the infinitely-many-alleles diffusion model. J. Appl. Probab. 13 639–651.