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We prove a joint local limit law for the distribution of the r largest components of

decomposable logarithmic combinatorial structures, including assemblies, multisets and

selections. Our method is entirely probabilistic, and requires only weak conditions that may

readily be verified in practice.

1. Introduction

The proportion of integers in the largest, second largest, . . . cycles of a random per-

mutation of n objects have, asymptotically as n → ∞, the Poisson–Dirichlet distribution

PD(θ), with parameter θ = 1. The result for the largest cycle appears in Goncharov [8],

that for the kth largest in Shepp and Lloyd [17], and the joint distributional result in

Kingman [12] and Vershik and Shmidt [19]. Related limit laws are now known for a

variety of decomposable combinatorial structures. For example, the relative sizes of the

largest, second largest, . . . components of a random mapping have asymptotically the

PD(θ) law with θ = 1/2. Convergence for the marginal distributions appears in Kolchin

[14, 15], and for the joint distribution in Aldous [1]. An analogous result holds for the

ordered degree sequence of the factors of a polynomial over GF(q); in this case θ = 1,

just as for permutations [3].
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More recently, Hansen [9] provided a unified approach to the asymptotics of the

order statistics of the component sizes of multisets and assemblies, which are families of

decomposable combinatorial structures. She establishes weak convergence to the PD(θ)

distribution, and shows how to identify the appropriate value of θ. Her arguments rely in

part on complex analysis, and involve conditions on generating functions which are not

always easy to verify.

In this paper we establish a local limit theorem for the joint distribution of the large

components, refining previous results, under very weak conditions. Our method uses

probabilistic, as opposed to complex analytic, arguments, and the conditions become

correspondingly transparent. We consider randomly chosen decomposable combinatorial

structures of total size n whose component counts (C1(n), . . . , Cn(n)), where Ci(n) denotes

the number of components of size i, have joint distribution determined by the conditioning

relation

(CR) L(C1(n), . . . , Cn(n)) =L(Z1, . . . , Zn |Tn = n), (1.1)

where (Zi, i > 1) are independent random variables over Z+, and Tn =
∑n

i=1 iZi. Such

structures include assemblies (for which the Zi are Poisson-distributed), multisets (for

which the Zi are negative binomially distributed), and selections (for which the Zi are

binomially distributed): see [5]. We require only that the Zi satisfy the logarithmic

condition LC:

(LC) lim
i→∞ iP(Zi = 1) = θ = lim

i→∞ iEZi (1.2)

for some θ > 0, together with the additional tail condition

P(Zi > 2) = O(i−2), (1.3)

conditions weaker than those in [9]. In fact, (1.3) is implied by (1.2) for the examples we

consider in Section 5. More general structures can also be analysed, under the mild extra

condition given in (5.14), since the approach also ties in with arguments using Stein’s

method, discussed in detail in [4].

The simplest example of such a construct is that in which the Zi are Poisson-distributed

with means exactly θ/i. In this case, the Ci(n) have as joint distribution the Ewens Sampling

Formula ESFn(θ) given in (2.1). In Section 2, we collect known facts about PD(θ), ESFn(θ),

and the limit distribution Pθ of n−1Tn under ESFn(θ). The local limit approximation to the

joint distribution of the sizes of the large cycles by PD(θ), when the Ci(n) are distributed

according to ESFn(θ), is then established in Section 3. The argument used is readily

generalized in Section 4 to arbitrary combinatorial structures that satisfy (LC), and for

which Tn/n admits the local limit approximation (LLA) given in (4.6). In Section 5 it is

shown that (LLA) holds for assemblies, multisets and selections satisfying (LC).

2. The Ewens Sampling Formula

Let Sn denote the set of permutations of {1, 2, . . . , n}. We write π ∈ Sn as an ordered

product of cycles. The integer 1 starts the first cycle, followed by the image of 1, the image

of that point and so on. The smallest integer not in the first cycle begins the second cycle,

followed by its images. In this way, π is decomposed into an ordered product of cycles.
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We consider random permutations with distribution determined by

P(π) =
θ|π|

θ(n)
, π ∈ Sn,

where |π| denotes the number of cycles in π, θ ∈ (0,∞), and

θ(n) = θ(θ + 1) · · · (θ + n− 1).

Let C (n) ≡ (C1(n), C2(n), . . . , Cn(n)) be the counts of cycles of sizes 1, 2, . . . , n in such a

θ-biased random permutation of size n. The distribution of C (n) is given by the Ewens

Sampling Formula [7] ESFn(θ): for any a ∈ Zn+,

P(C (n) = a) = 1l

(
n∑
i=1

iai = n

)
n!

θ(n)

n∏
j=1

(
θ

j

)aj 1

aj!
, (2.1)

1l(A) denoting the indicator of A. Let Z1, Z2, . . . be independent Poisson random variables

with means EZi = θ/i, i = 1, 2, . . . , n, and let Z[1, n] = (Z1, . . . , Zn). It is well known [21, 2]

that

P(C (n) = a) = P(Z[1, n] = a|Tn = n), (2.2)

where

Tn = Z1 + 2Z2 + · · ·+ nZn,

so we have a combinatorial structure satisfying (1.1), with Zi having a Poisson distribution

with mean θ/i, for which the conditions (LC) and (1.3) are clearly satisfied. Understanding

the asymptotic behaviour of (2.2) requires knowledge of the asymptotic behaviour of Tn,

which we now review.

2.1. The limit T of Tn/n

The density of Tn satisfies the recursion

kP(Tn = k) = θ

n∑
j=1

P(Tn = k − j), k = 1, 2, . . . . (2.3)

It follows from this that

kP(Tn = k) = (k − 1 + θ)P(Tn = k − 1), k = 1, 2, . . . , n,

so that

P(Tn = k) =
θ(k)

k!
P(Tn = 0) = exp(−θh(n))θ(k)

k!
, k 6 n,

where h(n) =
∑n

j=1 1/j. Hence

lim
n→∞ nP(Tn = k) =

e−γθxθ−1

Γ(θ)
if k 6 n, k/n→ x ∈ (0, 1]. (2.4)

Using (2.3) and (2.4), we conclude that

lim
n→∞P(Tn/n 6 x) =

xθe−γθ

Γ(θ + 1)
(2.5)

if x ∈ (0, 1]. In fact, limn→∞P(Tn/n 6 x) exists for all x > 0.
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Theorem 2.1. As n→ ∞, the random variable Tn/n converges in distribution to a random

variable T whose distribution Pθ has Laplace transform given by

Ee−sT = exp

(
−
∫ 1

0

(1− e−sx)θ
x
dx

)
. (2.6)

Proof. Let µn be the measure that puts mass n−1 at points in−1, i = 1, 2, . . . , n and note

that µn converges weakly to Lebesgue measure. The Laplace transform of the random

variable Tn/n is

Ee−sTn/n = exp

(
−

n∑
i=1

θ

i
(1− e−si/n)

)

= exp

(
−
∫ 1

0

(1− e−sx)θ
x
µn(dx)

)

→ exp

(
−
∫ 1

0

(1− e−sx)θ
x
dx

)
,

the last step following by dominated convergence.

It follows from (2.5) that the density gθ of T satisfies

gθ(x) =
e−γθxθ−1

Γ(θ)
, 0 6 x 6 1,

so that

gθ(1) =
e−γθ

Γ(θ)
. (2.7)

An expression for gθ(x) for x > 1 is given in [20]; it satisfies the integral equation

xgθ(x) = θ

∫ x

x−1

gθ(u)du, x > 0, (2.8)

with gθ(x) = 0 if x < 0.

2.2. The Poisson–Dirichlet distribution

The Poisson–Dirichlet distribution, denoted by PD(θ), was defined by Kingman [11] to

be the distribution of the normalized points σ1 > σ2 > · · · of a Poisson process with

intensity θe−x/x, x > 0:

PD(θ) =L((σ1/σ, σ2/σ, . . .)), (2.9)

where σ = σ1 + σ2 + · · · . Other representations of the Poisson–Dirichlet distribution may

be found in [13, 4], for example.

The density f(r)
θ of the first r coordinates of PD(θ) was found by Watterson [22] in the

form

f
(r)
θ (x1, . . . , xr) =

eγθθrΓ(θ)xθ−1
r

x1x2 · · · xr gθ

(
1− x1 − · · · − xr

xr

)
, (2.10)

for r > 1, and x1, . . . , xr satisfying 0 < xr < · · · < x1 < 1 and 0 < x1 + · · ·+ xr < 1.
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The Poisson–Dirichlet distribution with parameter θ arises as the limit law of the

renormalized sizes L1(n), L2(n), . . . of the largest, second largest, . . . cycles of a θ-biased

permutation.

Theorem 2.2 ([12]). As n→∞,

n−1(L1(n), L2(n), . . .)⇒ (L1, L2, . . .),

where (L1, L2, . . .) has the PD(θ) distribution.

3. A local limit law for large cycles under ESFn(θ)

3.1. Point probabilities for Tn
Theorem 2.1 extends the convergence in (2.5) from x ∈ (0, 1] to all x > 0. This suggests

that the same extension may also be feasible for (2.4), as is shown in the following lemma.

Lemma 3.1. Suppose that m/n→ y ∈ (0,∞) as n→∞. Then

lim
n→∞ nP(Tn = m) = gθ(y). (3.1)

Proof. Equation (2.3) gives

mP(Tn = m) = θP(m− n 6 Tn < m).

Multiplying by n/m and using (2.8) and the fact that Tn/n⇒ T , which has a continuous

distribution function, shows that

lim
n→∞ nP(Tn = m) =

θ

y
P(y − 1 6 T 6 y)

= gθ(y),

completing the proof.

The next result uses elementary arguments to derive bounds for the point probabilities

P(Tbn = m), where

Tbn =

n∑
j=b+1

jZj, 0 6 b < n.

Lemma 3.2. Write θ̄ = min(1, θ). Then

max
k>0

P(Tbn = k) 6 e−θ̄(h(n)−h(b)). (3.2)

Proof. First consider the case 0 < θ 6 1. We use the fact ([5]) that the point probabilities

for Tbn satisfy

mP(Tbn = m) = θP(m− n 6 Tbn < m− b). (3.3)
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Hence, for m > 1,

P(Tbn = m) 6
1

m

m−1∑
j=0

P(Tbn = j).

Thus P(Tbn = m) is at most the average of the previous m values, and so, by induction,

maxk>0P(Tbn = k) 6 P(Tbn = 0) = e−θ(h(n)−h(b)).
For the case θ > 1, let Z̃j , j > 1 be independent Poisson random variables with

EZ̃j = 1/j, and define T̃bn =
∑n

j=b+1 jZ̃j . Define T ′bn =
∑n

j=b+1 jZ
′
j , where the Z ′j are

independent Poisson random variables with mean (θ − 1)/j, independent of the Z̃j . Then

we can write

Tbn = T̃bn + T ′bn,

with independent summands. It follows that

P(Tbn = m) =

m∑
j=0

P(T̃bn = j)P(T ′bn = m− j)

6 max
06j6m

P(T̃bn = j)

6 e−(h(n)−h(b)),

the last step following from the case proved earlier.

3.2. The local limit theorem

In this section we derive a joint local limit law for the distribution of the r largest cycle

lengths L1(n), . . . , Lr(n) under ESFn(θ).

Theorem 3.3. For r > 1, suppose that 0 < xr < xr−1 < · · · < x1 < 1 satisfy 0 <

x1 + · · ·+ xr < 1. Then

lim
n→∞ n

rP(Li(n) = bnxic, 1 6 i 6 r) = f
(r)
θ (x1, . . . , xr), (3.4)

where the density f(r)
θ is given in (2.10).

Proof. First assume that integers m1, m2, . . . , mr satisfy the conditions

1 6 mr < mr−1 < · · · < m1 < n, m ≡ m1 + · · ·+ mr 6 n,

and let An(C
(n)) = An(C

(n);m1, m2, . . . , mr−1, mr) denote the event{
Cn(n) = 0, . . . , Cm1+1(n) = 0, Cm1

(n) = 1, Cm1−1(n) = 0, . . . ,

Cm2+1(n) = 0, Cm2
(n) = 1, Cm2−1(n) = 0, . . . , Cmr−1+1(n) = 0,

Cmr−1
(n) = 1, Cmr−1−1(n) = 0, . . . , Cmr+1(n) = 0

}
.

Then

P(L1(n) = m1, . . . , Lr(n) = mr) = P(An(C
(n)), Cmr (n) > 1).
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This last probability can be written

P(An(C
(n)), Cmr (n) = 1) +

∑
l>2

P(An(C
(n)), Cmr (n) = l).

The first term is, using (2.2),

P(An(Z), Zmr = 1|Tn = n) = P(An(Z))P(Zmr = 1)
P(Tmr−1 = n− m)

P(Tn = n)
, (3.5)

which reduces to

P(Tmr−1 = n− m)

P(Tn = n)

θre−θ(h(n)−h(mr−1))

m1 · · ·mr (3.6)

Applying the result of Lemma 3.1 and simplifying shows that

lim
n→∞ n

rP(An(C
(n)), Cmr (n) = 1) = f

(r)
θ (x1, . . . , xr).

It remains to show that
∑

l>2P(An(C
(n)), Cmr (n) = l) = o(n−r). But this probability is

just

P(An(Z))
∑
l>2

P(Zmr = l)
P(Tmr−1 = n− m− (l − 1)mr)

P(Tn = n)

6 P(An(Z))
e−θ̄h(mr−1)

P(Tn = n)
P(Zmr > 2),

using Lemma 3.2. Since P(Tn = n) ∼ n−1gθ(1), P(An(Z)) 6 θr−1/(m1 · · ·mr−1), and

P(Zmr > 2) 6 θ2/(2m2
r ), we see that this term is of order O(n−r−1 · n · n−θ̄) = O(n−rn−θ̄) =

o(n−r), as required.

Remarks.

(1) Theorem 2.2 follows from Theorem 3.3 using Scheffé’s Theorem [16].

(2) It is crucial in the hypothesis x1 + · · ·+ xr < 1 to have strict inequality. To see this,

take r = 1 and x1 = 1, and note that

nP(L1(n) = n) ∼ Γ(θ + 1)n1−θ.

4. Combinatorial structures

In this section, we show that a joint local limit law like that in Theorem 3.3 is true for a

large class of decomposable combinatorial structures. Ci(n) now denotes the number of

components of size i, i = 1, 2, . . . , n, and we consider structures that satisfy the relation

(2.2) for independent random variables Zi taking values in Z+. However, the Zi no longer

satisfy Zi ∼ Po(θ/i); instead, we merely require the ‘logarithmic condition’ (LC), repeated

here for convenience:

lim
i→∞ iP(Zi = 1) = θ = lim

i→∞ iEZi (LC)

for some θ ∈ (0,∞), and the tail condition (1.3). Note that (LC) implies that

θ̃ ≡ sup
i>1

iEZi < ∞. (4.1)
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We begin with some preliminaries, the first of which requires no proof.

Lemma 4.1. Suppose the Zi satisfy (LC). Then as i→∞,

P(Zi > 2) = o(i−1), (4.2)

and

P(Zi = 0) = 1− θi−1 + o(i−1). (4.3)

We see from this that, for large i, the distribution of Zi is indeed close to Poisson with

mean θ/i.

Corollary 4.2. Let Z∗i be independent Poisson random variables with EZ∗i = θ/i, i > 1.

There is a sequence ε(i) ↓ 0 as i→∞ such that

dTV (Zi, Z
∗
i ) 6 ε(i)i−1.

Proof.

2dTV (Zi, Z
∗
i ) =

∑
j>0

|P(Zi = j)− P(Z∗i = j)|

6 |P(Zi = 0)− P(Z∗i = 0)|+ |P(Zi = 1)− P(Z∗i = 1)|
+P(Zi > 2) + P(Z∗i > 2).

The result now follows from Lemma 4.1.

In order to prove a local limit theorem for the r largest component sizes L1(n), . . . , Lr(n),

analogous to Theorem 3.3, we use the same recipe. The first ingredient is the counterpart

of Theorem 2.1; an alternative proof may be found in [5].

Theorem 4.3. For i = 1, 2, . . ., let Zi be independent random variables taking values in Z+

and satisfying (LC). Then, as n→∞,

n−1Tn ⇒ T . (4.4)

Proof. Let Z∗i be independent Poisson random variables with EZ∗i = θ/i, and write

T ∗bn =
∑n

j=b+1 jZ
∗
j , Z∗(b, n] = (Z∗b+1, . . . , Z

∗
n ). Corollary 4.2 shows that dTV (Zi, Z

∗
i ) 6

ε(i)i−1. Choose any sequence bn = o(n) such that ε(bn) log(n/bn)→ 0 as n→ ∞. Then we

immediately find that

dTV (Tbnn, T
∗
bnn

) 6 dTV (Z(bn, n], Z
∗(bn, n])

6
n∑

j=bn+1

ε(j)j−1 6 ε(bn) log(n/bn). (4.5)

Since En−1T ∗bn = n−1θbn → 0, it follows that n−1T ∗bn ⇒ 0. Hence, since n−1T ∗n = n−1T ∗bn +

n−1T ∗bnn, n−1T ∗bnn ⇒ T by Theorem 2.1, and it then follows from (4.5) that n−1Tbnn ⇒ T .
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Finally,

n−1ETbn = n−1

bn∑
j=1

jEZj 6 θ̃n
−1bn → 0,

so that n−1Tn ⇒ T also.

The second ingredient is a bound on point probabilities, echoing Lemma 3.2.

Theorem 4.4. As n→∞, maxk>0P(Tn = k)→ 0.

Proof. As in the proof of Theorem 4.3, let Z∗i be independent Poisson random variables

with EZ∗i = θ/i, and choose any sequence bn = o(n) such that (4.5) holds. Since Tn =

Tbn + Tbnn and the two summands are independent,

max
k>0

P(Tn = k) 6 max
k>0

P(Tbnn = k).

Now, from (4.5),

P(Tbnn = k) 6 P(T ∗bnn = k) + ε(bn) log(n/bn),

and by Lemma 3.2, defining θ̄ = min(1, θ),

max
k>0

P(T ∗bnn = k) 6 e−θ̄(h(n)−h(bn)) = O((bn/n)
θ̄).

Hence maxk>0P(Tbnn = k)→ 0 as n→∞.

The final ingredient is that Tn should satisfy a local limit approximation:

(LLA) nP(Tn = m) ∼ gθ(y), as n→∞, m/n→ y ∈ (0,∞). (4.6)

The proofs of (LLA) are somewhat different for the various classes of combinatorial

structure we consider, and a detailed treatment is given in the next section. Whenever

(LC) and (LLA) hold, we have the following joint local limit law.

Theorem 4.5. Suppose that a combinatorial structure C (n) has distribution given by (CR),

and satisfies (LC), (LLA), and the tail condition (1.3). For r > 1, suppose that 0 < xr <

xr−1 < · · · < x1 < 1 satisfy 0 < x1 + · · ·+ xr < 1. Then

lim
n→∞ n

rP(Li(n) = bnxic, 1 6 i 6 r) = f
(r)
θ (x1, . . . , xr),

where the density f(r)
θ is given in (2.10); hence also, as n→∞,

n−1(L1(n), L2(n), . . .)⇒ PD(θ).

Proof. The proof mimics that of Theorem 3.3 down to (3.5). Expression (3.6) is now

replaced by

P(Tmr−1 = n− m)

P(Tn = n)

n∏
i=mr

P(Zi = 0)

r∏
s=1

P(Zms = 1)

P(Zms = 0)
.
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Under (LLA), the first term is asymptotic to x−1
r gθ((1−x1−· · ·−xr)/xr)/gθ(1). Using (4.3),

the first product is asymptotic to x−θr , while from (LC) the second product is asymptotic

to n−rθrx−1
1 · · · x−1

r . Combining these terms and using (2.10) shows that

lim
n→∞ n

rP(An(C
(n)), Cmr (n) = 1) = f

(r)
θ (x1, . . . , xr).

To show that
∑

l>2P(An(C
(n)), Cmr (n) = l) = o(n−r), note that the left side is just

P(An(Z))
∑
l>2

P(Zmr = l)
P(Tmr−1 = n− m− (l − 1)mr)

P(Tn = n)

6
P(An(Z))P(Zmr > 2)

P(Tn = n)
max
k>0

P(Tmr−1 = k).

Since

P(An(Z)) 6 P(Zm1
= 1) · · ·P(Zmr−1

= 1) = O(n−(r−1)),

and P(Zmr > 2) = O(n−2), we see from (LLA) that the first factor is of order n−r , whereas

the second term tends to 0 by Theorem 4.4.

5. Verifying the local limit approximation

This section is devoted to establishing (LLA) for a wide variety of combinatorial models.

Once done, Theorem 4.5 can then be applied.

5.1. Assemblies

Random assemblies are decomposable combinatorial structures for which the counts Cj(n)

of components of size j satisfy the conditioning relation (2.2) for Poisson-distributed Zj
with means

EZj ≡ λj =
mjx

j

j!
, for some x > 0.

In these models, the integers mj are prescribed in advance, and, for a satisfying a1 + 2a2 +

· · ·+ nan = n, the probabilities

P(C (n) = a) = P(Z[1, n] = a|Tn = n)

= P(Z[1, n] = a)/P(Tn = n)

=

∏n
i=1(mix

i/i!)ai/ai!∑
{d1+2d2+···+ndn=n}

∏n
i=1(mixi/i!)di/di!

are the same for any arbitrary value of x. Hence, to be in the logarithmic class, it is

enough that mj ∼ θ(j − 1)!yj for some y > 0, since we can take x = y−1. Condition (LC)

then reduces to the requirement that jλj → θ, in which case

P(Zj > 2) = [1− e−λj (1 + λj)] 6
1

2
λ2
j = O(j−2),

so that the tail condition (1.3) is satisfied. Among the examples are permutations for which

mj = (j − 1)!, x = 1, θ = 1, and random mappings for which mj = (j − 1)!
∑i−1

l=0 i
l/l!, x =

e−1, θ = 1/2. Many other examples are described in [5]. We note in passing that the
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following proofs make no use of the mj being integers; an application in the more general

setting appears in Section 5.4.

Most of the results depend on the analogue of equation (2.3) for the density of Tn.

Using [5], it takes the form

kP(Tn = k) =

n∑
j=1

P(Tn = k − j)jλj , k = 0, 1, . . . (5.1)

with jλj in the place of θ. Intuitively, this should make little difference for large n, because

jλj → θ.

To verify (LLA), note that, according to equation (5.1),

kP(Tn = k) =

n∑
j=1

P(Tn = k − j)jλj
= θP(k − n 6 Tn < k) + rn(k),

where

rn(k) =

n∑
j=1

P(Tn = k − j)(jλj − θ).

The remainder of the proof follows just as for Lemma 3.1, but now using Theorem 4.3

instead of Theorem 2.1, if we can show that |rn(k)| → 0 as n→∞ when k/n→ y > 0. To

do this, let ε > 0 be arbitrary, and choose j0 = j0(ε) such that |jλj − θ| < ε for all j > j0.

Then, for n > j0,

|rn(k)| 6
j0∑
j=1

P(Tn = k − j)|jλj − θ|+ ε
∑
j>j0

P(Tn = k − j)

6 max
j>1
|jλj − θ|P(k − j0 6 Tn < k − 1) + ε.

Hence

lim sup
n→∞

|rn(k)| 6 max
j>1
|jλj − θ| lim sup

n→∞
sup
x>0
P(x− j0/n 6 n−1Tn < x) + ε = ε,

because Tn/n converges in distribution to T , which has continuous distribution function.

5.2. Multisets

For combinatorial multisets, the Zi have negative binomial distributions NB(mi, x
i), with

P(Zi = k) =

(
mi + k − 1

k

)
(1− xi)mixik, k = 0, 1, . . . ,

for any x ∈ (0, 1); once again, the integers mi are prescribed in the structure, and the joint

distribution of the component sizes is the same for any choice of x. We have

EZi =
mix

i

1− xi , VarZi =
mix

i

(1− xi)2
;

in the logarithmic class are those structures for which

mi ∼ θyi

i
, for some y > 1, θ ∈ (0,∞),
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when we take x = y−1, and record that then

lim
i→∞ iEZi = lim

i→∞ imix
i = θ. (5.2)

Furthermore, the tail condition (1.3) is also satisfied, since

P(Zi > 2) = 1− (1− xi)mi[1 + mix
i] 6

mi(mi + 1)x2i

2(1− xi)2
= O(i−2).

We note once more that, in the proofs below, the mi need not be integers: see the examples

in Section 5.4.

The recursion analogous to (5.1) for the distribution of Tn is (see [5])

kP(Tn = k) =

k∑
j=1

gn(j)P(Tn = k − j), (5.3)

where

gn(j) = xj
n∑

l=1; l|j
lml . (5.4)

This is already substantially more complicated than (5.1). However, we note that, for

j 6 n,

gn(j) = g(j) ≡ xj
j∑

l=1; l|j
lml ,

and that
lim
i→∞ g(i) = θ. (5.5)

On the other hand, for j > n we have

gn(j) = xj
n∑

l=1;l|j
lml 6 x

j

n∑
l=1

lml

= xj−n
n∑
l=1

(lmlx
l)xn−l 6 θ̃xj−n

n−1∑
l=0

xl 6
θ̃xj−n

1− x , (5.6)

where
θ̃ = sup

j>1
jmjx

j < ∞
under assumption (5.2).

Applying Theorem 4.4 when k > n and using (5.6) shows that

k∑
i=n+1

gn(i)P(Tn = k − i) 6
k∑

i=n+1

θ̃xi−n

1− xP(Tn = k − i)

=
θ̃

1− x max
l>0

P(Tn = l)

k−n−1∑
l=0

xk−n−l

6 max
l>0

P(Tn = l)
θ̃x

(1− x)2

= o(1), (5.7)

uniformly in k > n.
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This can be exploited to verify (LLA) as follows. The bound (5.7) shows that, for

k = 0, 1, . . . ,

kP(Tn = k) =

n∑
i=1

g(i)P(Tn = k − i) + o(1), (5.8)

uniformly in k > 0. The method of proof in the previous section, together with (5.5), then

shows that

kP(Tn = k) = θP(k − n 6 Tn < k) + rn(k),

where rn(k)→ 0 as n→∞, uniformly in k. The result follows from Theorem 4.3.

5.3. Selections

The next case we consider is the case of combinatorial selections, for which the Zj are

binomially distributed with

P(Zi = k) =

(
mi

k

)(
xi

1 + xi

)k (
1

1 + xi

)mi−k
, k = 0, 1, . . . , mi,

for any 0 < x < 1. Once more, the assumption that

mi ∼ θyi

i

is necessary. In this case, we take x = y−1 ∈ (0, 1), and (LC) and the tail condition hold.

To verify (LLA), the method of the previous section can be used, but this time based

on the recurrence (see [5]) in (5.3), where

gn(j) = xj
n∑

l=1; l|j
(−1)j/l−1lml . (5.9)

The steps that lead to (5.6) and (5.7) follow immediately, with appropriate modification

for the alternating nature of the gn(j).

5.4. Biased combinatorial structures

The preceding results are applicable to combinatorial structures that are not chosen

uniformly from the set of possible structures of weight n, but rather with probability

proportional to κ#components, for some κ > 0. According to the results in Section 8 of [5],

these models also satisfy the identity (2.2); for assemblies the Zj are Poisson with mean

κmjx
j/j!, for multisets they are negative binomial with parameters mj and κxj , and for

selections, binomial with parameters mj and κxj/(1 + κxj). It follows that if the uniform

structure satisfies the conditions in (LC), then so do the biased structures, with θ replaced

by κθ. Theorem 4.5 then follows from the earlier results from this section. For further

examples of biasing, see [5].

5.5. General combinatorial structures

Now suppose the Zi are arbitrary Z+-valued random variables, with means EZi satisfying

(LC). In combinatorial settings we are aware of (for example, [10]), Zj can be decomposed
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into the sum of mj i.i.d. random variables Yj1, . . . , Yjmj , each with p.g.f. φj(s) and means

EYj1 = yj ,

with the yj eventually decreasing, and such that

jEZj = jmjyj → θ ∈ (0,∞).

Theorems 4.3 and 4.4 continue to hold, and

P(Zj > 2) 6 E


mj∑
i=1

1l(Yji > 2) +
∑

16i<l6mj

1l(Yji > 1)1l(Yjl > 1)


6 mjP(Yj1 > 2) +

1

2
m2
j y

2
j

is of order O(j−2) under (LC) if also

mjP(Yj1 > 2) = O(j−2);

this is typically the case. However, to get further we need a recursion for the point

probabilities P(Tn = k). Since

EsTn =

n∏
j=1

(
φj(s

j)
)mj

,

logarithmic differentiation leads to

kP(Tn = k) =

k∑
l=1

gn(l)P(Tn = k − l),

where

gn(l) =

n∑
j=1

jmj[s
l−j]

φ′j(sj)
φj(sj)

, (5.10)

[xl]f(x) denoting the coefficient of xl in f(x). The following example shows that this

recursion need not be easy to use.

Example 5.1. Suppose that a combinatorial structure is conditioned to have at most one

component of each size [18]. If the original structure C̃ (n) satisfies a conditioning relation

like (2.2), then

P(C̃ (n) = a|C̃ (n) 6 1) = P(Z̃[1, n] = a|Z̃[1, n] 6 1, T̃n = n)

= P(Z[1, n] = a|Tn = n),

where 1 = (1, . . . , 1) and Z = (Z1, . . .) is a vector of independent Bernoulli random

variables satisfying

P(Zj = a) = P(Z̃j = a|Z̃j 6 1), a = 0, 1. (5.11)

If the original Z̃j satisfy the (LC), then so too do the Zj; that is,

πj ≡ P(Zj = 1) ∼ θ

j
, θ ∈ (0,∞), (5.12)
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and then jEZj = jP(Zj = 1)→ θ automatically, and the tail condition is trivially satisfied.

The point probabilities P(Tn = k) satisfy an equation of the form (5.3). Adapting (5.10)

to the present setting with mj = 1, yj = πj and φj(s) = 1 − πj + πjs leads, after some

simplification, to the fact that

gn(l) = −
n∑

j=1,j|l
(−1)l/jjh

l/j
j , hj ≡ πj

1− πj . (5.13)

It seems difficult to make progress with this approach in general, although in special

cases verification of (LLA) should be possible. In [4], we have developed an alternative

approach based on Stein’s method for compound Poisson approximation (cf. [6]). This

leads to recursions for point probabilities that are easier to handle. If, for example, the Zi
satisfy (LC), together with the mild additional condition that∑

i>1

iE(Zi1l[Zi > r]) < ∞, for some r, (5.14)

then (LLA) follows. Note that (5.14) clearly holds with r = 2 for Example 5.1. The

alternative approach also provides bounds on the accuracy of the approximations in this

paper.
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