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A complete physical map of the DNA of an organism, con- 
sisting of overlapping clones spanning the genome, is an 
extremely useful tool for genomic analysis. Various meth- 
ods for the construction of such physical maps are avail- 
able. One approach is to assemble the physical map by “fin- 
gerprinting” a large number of random clones and infer- 
ring overlap between clones with sufficiently similar 
fingerprints. E. S. Lander and M. S. Waterman (1988, Ge- 
nomic~ 2:231-239) have recently provided a mathemati- 
cal analysis of such physical mapping schemes, useful for 
planning such a project. Another approach is to assemble 
the physical map by “anchoring” a large number of ran- 
dom clones-that is, by taking random short regions called 
anchors and identifying the clones containing each anchor. 
Here, we provide a mathematical analysis of such a physi- 
cal mapping scheme. Q lee1 Academic Press, Ino. 

1. INTRODUCTION 

A complete physical map of the DNA of an organ- 
ism, consisting of overlapping clones spanning the ge- 
nome, is an extremely useful tool for genomic analy- 
sis. Complete or nearly complete physical maps have 
already been constructed for the genomes of Esche- 
richia coli (Kohara et al., 1987), Saccharomyces cere- 
visiae ( Olson et al., 1986 ), and Caenorhabditis eleguns 
(Coulson et al., 1986) and numerous efforts are un- 
derway to construct physical maps of considerably t 

4 nomes. 
I larger genomes, such as the human and mouse ge- 

l 

Most physical mapping projects to date have used 
the approach of linking random clones by fingerprint- 
ing. Each clone is individually analyzed to obtain a 
“fingerprint” reflecting partial information about its 
sequence. Depending on the precise nature of the 
clones and of the genome studied, various fingerprint- 
ing schemes are possible (including lengths of all re- 
striction fragment lengths, lengths of restriction frag- 
ments containing particular repeat sequences, or 

complete restriction maps). Clones with sufficiently 
similar fingerprints are likely to overlap. Overlapping 
clones are then assembled into “islands” or “contigs,” 
which cover larger regions of the genome. 

To plan a physical mapping project, it is important 
to know how the distribution of islands changes as a 
function of the fingerprinting method and of the num- 
ber of clones studied. Lander and Waterman (1988) 
have presented such a mathematical analysis for phys- 
ical mapping by fingerprinting random clones, which 
can be used to help design such projects. 

Recently, interest has focused on an alternative 
method of physical mapping: linking random clones 
by anchoring. In this approach, one has a random ge- 
nomic library of “clones” (which will contain large 
genomic inserts, as in phage, cosmids, or yeast artifi- 
cial chromosomes (YACs)) and a random genomic 
library of “anchors” (which will contain very short 
genomic inserts, as in small plasmids). An anchoring 
method involves determining which clones contain a 
given anchor. Clones containing a common anchor 
are linked into islands. 

The various laboratory methods that could be used 
for anchoring clones include the following: 

( i)  PCR screening. Anchors could consist of short 
PCR assays for unique regions of the genome, which 
have been dubbed sequence tagged sites ( STSs) . The 
clones containing an anchor could be found by PCR 
assays on appropriately nested sets of clones, as de- 
scribed by Green and Olson ( 1990). This approach is 
sometimes called STS content mapping. 

(ii) Filter hybridization. Anchors could consist of 
short unique-sequence genomic DNA probes. The 
clones containing an anchor could be found by hybrid- 
izing the probe to a filter containing a gridded array of 
the clones. 

( iii) Recombinational screening. One could even 
imagine an in vivo method. Anchors might consist of 
cells containing a plasmid with a short unique-se- 
quence genomic DNA insert. The clones containing 
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an anchor could be identified by mating an anchor to 
a gridded library of clones, under conditions where 
the progeny could grow only if the anchor and clone 
sequences underwent homologous recombination. Al- 
though this precise approach has not yet been experi- 
mentally implemented, related schemes have been de- 
veloped (Seed, 1980). 

Anchoring schemes are especially useful when the 
anchors consist of clones whose “top-down” position 
in the genome is known (such as DNA polymor- 
phisms or markers located by in situ hybridization). 
Such anchors make it possible to order islands along 
the genome. For experimental purposes, physical 
maps of ordered islands are immediately useful even 
without complete long-range continuity. 

The purpose of this paper is to provide a mathemati- 
cal analysis of physical mapping by anchoring ran- 
dom clones, analogous to that presented by Lander 
and Waterman (1988) for fingerprinting random 
clones. Specifically, we describe the distribution of is- 
lands as a function of the number of anchors and num- 
ber of clones used. 

The paper is divided into two parts in an attempt to 
serve readers with different interests. The part la- 
beled “Biological Results” ( Sections 2.1-2.5) pre- 
sents the key useful results for readers interested 
primarily in applications and omits mathematical 
technicalities and proofs. The section labeled “Math- 
matical Results” (Sections 3.1-3.3) is aimed at the 
mathematical reader and contains the more technical 
results and all proofs. 

The sections are organized as follows. Under “Bio- 
logical Results,” Section 2.1 presents the basic formu- 
las for the distribution of islands for the case of clones 
of fixed length and discusses the strategic issues in- 
volved in designing a physical mapping experiment. 
Section 2.2 generalizes the formulas to the case of 
clones of variable length, examining the effect of such 
variability. Section 2.3 addresses the problem that 
arises when physical maps must be constructed from 
a clone library containing a substantial number of 
clones with chimeric inserts. Section 2.4 introduces 
the question of expectations from the standpoint of 
randomly chosen anchors and randomly chosen 

2.5 applies the results of the previous sections to the 
practical example of constructing a physical map of a 
mammalian chromosome or genome. Under “Mathe- 
matical Results,” Section 3.1 discusses an elegant 
mathematical duality between clones and anchors, in 
the case of fixed length. Section 3.2 contains the math- 
ematical proofs for Sections 2.1,2.2, and 2.3. Section 
3.3 provides the mathematical underpinnings for the 
discussion in Section 2.4 concerning anchor-biased 
and clone-biased sampling of islands. 

After the acceptance of this paper, we became 

, 

e clones, in the case of clones of fixed length. Section 

aware of the recent papers of Barillot et al. ( 1991 ) and 
Torney ( 1991 ) , which contain some results related to 
ours below. 

2. BIOLOGICAL RESULTS 

2.1. Properties of Islands: Constant Length Clones 

An anchoring scheme refers to any method for de- 
termining which clones contain a given anchor. From 
a purely mathematical standpoint, one can abstract 
away the experimental details and imagine placing 
paper strips (clones) randomly along a line (genome) 
and then placing staples (anchors) randomly along 
the line to join the strips into larger units (islands). 

Throughout, we assume that we have a perfectly 
representative sample of genomic clones and a per- 
fectly random collection of anchors. (More precisely, 
we mean that clones and anchors are distributed ac- 
cording to a homogeneous Poisson process along the 
genome.) In practice, these assumptions are likely to 
be violated the collection of clones and anchors will 
be subject to (unknown) cloning bias; the collection 
of clones will often not be randomly distributed be- 
cause the inserts are produced by partial digestion 
rather than random shearing (and thus will have sys- 
tematic biases in regions rich or poor in the particular 
restriction site); and the collection of anchors will 
often be screened to avoid repetitive elements or, per- 
haps, to enrich for genes. Nevertheless, we employ 
these simple assumptions in this initial analysis be- 
cause we feel that they capture the essential features 
of the problem and because we lack sufficient data to 
model the inhomogeneities. 

We define the following symbols: 

G ,  haploid genome length in basepairs (bp ) ; 
L, length of clone insert in basepairs (which may 

N ,  number of clones in library; 
M ,  number of anchors studied; 
a = L N / G ,  expected number of clones covering a 

random point (also called the redundancy of cover- 
age ) ; 

b = L M / G ,  expected number of anchors contained 
in a random clone. 

(For the mathematically fastidious reader, we note 
that Nand M are actually treated as random variables 
in the proofs, with expectation equal to the number of 
clones and anchors used. See Section 3.2.) 

Clones are linked by anchors into apparent islands, 
consisting of one or more members. The islands are 
only apparent because some actual overlaps will go 
undetected; the actual islands that would result if all 
overlaps could be detected would be larger. A singleton 
clone refers to a clone anchored to no other clone. 

be a constant or variable) ; 
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Islands consisting of just a singleton clone are called 
singleton islands, while islands containing two or 
more clones are called contigs. With islands ordered 
on the genome, the apparent gaps between consecu- 
tive islands are called oceans. Oceans can be actual 
oceans if the islands do not overlap, or only apparent 
oceans if the islands overlap but the overlap has not 
been detected because it lacks an anchor. 

It is useful to distinguish between anchored islands 
and unanchored islands-that is, islands that do or do 
not contain at least one anchor. In many respects, 
only anchored islands are interesting: anchored is- 
lands can often be ordered along the genome by using 
the anchors for top-down localization (as by genetic 
mapping or in situ hybridization) and thus become 
immediately useful for experimental purposes, while 
unanchored islands contain no information about 
bottom-up linkage to other clones or top-down posi- 
tion in the genome. The fraction of the genome cov- 
ered by anchored islands is an important measure of 
the value of a physical map. 

We begin by describing the properties of anchored 
islands. 

PROPOSITION 1 (Anchored Islands). With notation 
above, we have: 

( i)  The probability ql that a clone contains no an- 
chors is e-b. The expected number of unanchored is- 
lands is Ne-b. 

( ii) The probability p ,  that a clone is the rightmost 
clone of an anchored island is 

b(e-" - e-b) 
i f a # b  

( b  - a )  
Pl = 

and 
= ae-" if a = b. 

The expected number of anchored islands is then Np,. 
(iii) The expected number of clones in an  anchored 

island is ( 1 - qI ) /p,. 
(iv) The probability p ,  that a clone is a singleton 

anchored island is 

i f a # b  e -2" b2 
( a  - b ) ,  

+ 
and 

2a + a2 
2e2" 

if a = b. - -- 

The expected number of singleton anchored islands 
is Np,. 

(v) The expected length of an  anchored island is U, 
where 

( a  - b)2e"+b + a(ab  - b2 - a)e" 
+ b(2a - b ) e b  

A =  i f a # b  
ab(a - b)(e" - e b )  

and 
2e" + a2 - 2a - 2 

2a2 
- - i f a =  b. 

(vi) The expected proportion r, of the genome not 
covered by anchored islands is 

a(b2 - ab - a) ++b) 

(b  - a), 
r, = e-" + e 

+- * e-,' if a # b 
(b  - a), 

and 
2e" + 2a + a2 

22" 
if a = b. - - 

(vii) The expected number of anchors in an  an- 
chored island is b ( 1 - e-") lapl .  

(viii) For any x 3 0, the probability that an  an- 
chored island is followed by actual ocean of length at 
least x L  is e-"('+')( 1 - q1 ) / P I .  I n  particular, taking x 
= 0, the formulagives the probability that an  anchored 
island is followed by an actual ocean rather than an 
undetected overlap. 

(ix) As b + 00, every island is anchored and all 
overlaps are detected. The results coincide with those 
given by Lander and Waterman (1988) for finger- 
printing schemes with 8 = 0. 

Results about anchored islands can be easily con- 
verted into results about all islands by accounting for 
the effect of unanchored islands, which simply re- 
quires taking appropriate weighted averages. 

COROLLARY 2 (All Islands). With the notation above, 
we have: 

( i )  The expected number of islands is N ( p l  + q1 1. 
(ii) The expected number of clones in an  island is 

(iii) The expected number of singleton islands is 

(iv) The expected length of an  island is L(p,A 

(v)  The expected proportion of the genome not cov- 

(vi) The expected number of anchors in an  island is 

(vii) The probability that a n  actual ocean of length 
at least x L  occurs at the end of an  island is 
e -a ( z+l )  1 (p l  + q, ) . I n  particular, taking x = 0, the for- 
mula gives the probability that an  apparent ocean is 
real (as opposed to an  undetected overlap occurring). 

1 / (Pl  + (71). 

N(P2 + 91). 

+ 9,) l (P,+ 41). 

ered by islands is e-". 

b ( 1  - e-") /a(p l  + q l ) .  
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Figure 1 shows some of the results in graph form. 
Because anchoring methods usually involve screening 
a fixed clone library in parallel, the graphs show 
curves for fixed clone libraries with coverage a = 1,2, 
. . . , 10 as the coverage b in anchors increases along 
the horizontal axis. In addition, the figure shows val- 
ues of G/L for various representative situations. 

It is particularly instructive to consider the propor- 
tion of genome covered by anchored islands. If the 
anchors can be ordered in a top-down fashion (as by 
genetic mapping), then anchored islands can be posi- 
tioned in the genome. Such a physical map will be 
extremely useful as soon as the majority of the ge- 
nome is covered with anchored islands, even if the 
islands are relatively short. For many purposes (such 
as cloning genes known by genetic location), direct 
experimental access to most regions will be more im- 
portant than long-range continuity. 

Figure 1A shows that the genome is rapidly covered 
by anchored islands even for relatively small b. In- 
deed, one rapidly reaches the practical point of dimin- 
ishing returns around b = 3. For a clone library with 
three-fold coverage, the proportion of genome covered 
is 67,89, and 93% for b = 1,2,3 and 95% for b = co . 
For a clone library with five-fold coverage, the pro- 
portion of genome covered is 79,95, and 98% for b = 1, 
2,3, and 99% for b = 00.  More generally, Proposition 
1 (vi) makes clear that the proportion of genome cov- 
ered for a clone library with a-fold coverage rapidly 
approaches 1 - e-". 

While the proportion of genome covered by an- 
chored islands already begins to approach saturation 
for ( a ,  b)  = (3, 3), significant gains in long-range 
continuity are achieved for larger a and b-as re- 
flected in the decrease in expected number and in- 
crease in expected length of anchored islands shown 
in Figs. 1C and 1D. The expected number of anchored 
islands reaches a maximum in the range 1 < b 2 for 
the cases of interest and falls steadily thereafter. The 
expected length of anchored islands is only about 2 L 
for (a ,b)  = (3,3),butgrowstoexceed5Lfor(a,b) 
= (5,5). Greater coverage in clones and anchors is 
thus needed to achieve long-range continuity than to 
achieve a high degree of genomic coverage by an- 
chored islands. 

It is useful for some purposes to know about the full 
distribution of the length S of an anchored island, not 
just about the average length ES := XL given in Propo- 
sition l (v) .  Although we do not have a closed form 
expression for the length distribution of anchored is- 
lands, we can offer the following heuristic approxima- 
tion. Anchored islands fall into two classes: ( i )  single- 
ton anchored islands, comprising an expected propor- 
t i o n ~ ~  := p2/p1 of the total and having length L; and 
(ii) nonsingleton anchored islands or contigs, com- 
prising a proportion 1 - p3 of the total and having 

average length X*L, where A* = (,A - p3) /( 1 - pa). 
Reasoning that the occurrence of an ocean is a rare 
event (for a and b large), we would expect that the 
length S of nonsingleton anchored islands should be 
approximately distributed as S = L ( 1 + X ) , where X 
is an exponentially distributed random variable with 
mean A* - 1. This heuristic turns out to provide an 
excellent approximation for a and b in the range of 
interest for physical mapping, as shown by computer 
simulations (see Fig. 2). 

Finally, the properties of all islands (both anchored 
and unanchored) can be computed from Corollary 2, 
but these averages are somewhat less informative be- 
cause they are often dominated by the contribution 
from the unanchored islands. We elaborate on this 
point in Section 3.2. 

2.2. Properties of Islands: Variable Length Clones 

In the previous section, we assumed that clones 
have constant length. This assumption may not be 
too bad for phage and cosmid libraries, which have a 
fairly strict size range due to packaging constraints, 
but is considerably worse for some YAC libraries, 
which can have substantial length variation. We now 
extend the results to the case of clones of variable 
length. (Although the generalization obviously in- 
cludes the results of the previous section as a special 
case, we stated the special case first because these 
simpler results are more user friendly for most experi- 
mentalists.) 

We suppose that clone lengths L are independent 
identically distributed random variables with mean 
length EL. The probability density function of the 
normalized length L/EL is denoted by f ( 1 ) .  We de- 
fine the auxiliary functions 

3 ( x )  = Prob(L/EL > x )  = Jzm f (1)dl 

and 

which depend on a and f .  As described in Section 3.2, 
the function J (  x )  has the nice interpretation that it is 
the probability that two points separated by distance 
x are not covered by a common clone. 

It is also convenient to redefine the notion of sin- 
gleton clones and islands. A singleton clone refers to a 
clone that is anchored to no other clone extending 
beyond its boundary (but may be anchored to clones 
completely contained within i t) .  A singleton island 
refers to an island completely covered by a singleton 
clone (but may contain other clones completely con- 
tained within this clone). In the case of fixed clone 
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FIG. 1. For the situation of clones of constant length, the graphs show (A)  the expected proportion of the genome covered by anchored 
islands, (C) the expected number of anchored islands, and ( D )  the expected length of an anchored island, as a function of coverage b in 
anchors for the values a = 1,2, . . . ,lo. (Only a few of the curves are marked by the corresponding value of a,  with the others occurring in the 
expected order.) To make the graphs independent of genome and clone size, the expected number of islands is expressed in units of G / L  (the 
number of clones needed to cover the genome ) and the expected length of islands is expressed in terms of L (the length of a clone 1. The table 
(B) lists the value of G / L  for certain representative genomes and cloning vectors, including two different sizes of YACs. 

length, these definitions coincide with those given ear- 
lier. Proposition l can now be generalized as follows. 

PROPOSITION 3. With notation as above, we have: 
( i )  The probability q1 that a clone contains IU) an- 

chors is The expected number of unanchored clones is Nq,. 
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Island Length 
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FIG.2. Distributionoflengthsofanchoredislands(inunitsofL)for(A) thecase(a,b) = (3 ,3)  and(B) thecase(a,b) = (5,5).Graphs 
show the "observed" results for the cumulative distribution function for length for 1000 anchored islands in a computer simulation and the 
"expected" results based on the prediction that anchored islands consist of a proportion p ,  of singletons with length L and a proportion 1 -pa  
of nonsingletons with lengths distributed as L( 1 + X), where X i s  an exponentially distributed random variable with mean A* - 1. (See text 
for definition of ps  and A*.) Computer simulations were performed as described at the end of Section 2.4. 

(ii) The probability p ,  that a clone is the rightmost 
clone of an anchored island is 

p1 = Joa b e - b u J ( u ) 3 ( u ) d u .  

The expected number of anchored islands is then Np,. 
(iii) The expected number of clones in an  anchored 

(iv) The probability p2 that a clone is a singleton 
island is ( 1  - q,)/p,. 

anchored island is 

The expected number of singleton anchored islands 
is Np,. 

(v)  The expected length of an anchored island is 
XEL, where 

X = [ 1 + Jo* (b2u - 2b)e -buJ (u )du  up,. I /  
(vi) The expected proportion r, of the genome not 

covered by anchored islands is 

(vii) The expected number of anchors in an an- 
chored island is b ( 1  - e-")/ap,. 

(viii) The probability that an  anchored island is fol- 
lowed by an actual ocean of length at least x ( E L )  is 
e -a (I+ 1 ) ( 1 - ql ) / p l  . I n  particular, taking x = 0, the 
formula gives the probability that an anchored island is 
followed by an actual ocean rather than an undetected 
overlap. 

(ix) As b + 00, every island is anchored and all 
overlaps are detected. The formulas reduce to: ( i )  0; 
(ii) e-"; (iii) e'; (iv) e-''Y; (v) EL(e"  - l ) / a ;  (vi) 
e-'; (vii) co; (viii) e-=, where 

Results about anchored islands can be converted 
into results about all islands by accounting for the 
effects of unanchored islands. The result is identical 
to Corollary 2, except for a slight modification in 
part (iv). 

COROLLARY 4 (All Islands). With notation above, 
we have : 

( i )  The expected number of islands is N ( p ,  + q, ) . 
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(ii) The expected number of clones in an island is 
lI(P1 + q1).  

(iii) The expected number of singleton islands is 
N(P2 + q1). 

(iv) The expected length of an island is EL(p,A 
+ qlA') / (pl  + q l ) ,  where A' is the normalized expected 
length of an unanchored island, 

A' = [Jam le-b'f ( l ) d l ] / q l .  

(v) The expected proportion of the genome not cou- 
ered by islands is J(0) = e-". 

(vi) The expected number of anchors in an island is 
b ( 1  - e -") /a (p l  + q l ) .  

(vii ) The probability that an actual ocean of length 
at least x ( E L )  occurs at the end of an island is 
e - a ( x + l )  / (p l  + qI ) . In particular, taking x = 0, the for- 
mula gives the probability that an apparent ocean is 
real (as opposed to an undetected overlap occurring). 

With the results above, it is possible to calculate 
expected values for any given distribution of clone 
lengths by simply using the appropriate functions 3 
and J. The case of fixed-length clones corresponds to 

J ( x )  = e - a ( l - x )  , if x < 1. 

=1, i f x > l .  

We mention two other important special cases. 

PROPOSITION 5 .  Suppose that normalized clone 
lengths L/ EL are distributed uniformly in the interval 
[ ( I  - s), ( 1  +SI]. Then 

J ( x )  
exp( -a( 1 - x ) )  Od x d  (1 - s) 

+ s - x ) ~ / ~ s )  ( I  - s) -= x 

(1 + s) < x .  

( I  + s) 

PROPOSITION 6. Suppose that normalized clone 
lengths L / E L  are exponentially distributed with mean 
1 .  Then J ( x )  = exp(-aexp(-x)). 

In the first case, the integrals in Proposition 4 can 
all be expressed in closed form in terms of the cumu- 
lative distribution function of the normal distribu- 
tion, although the precise formulas are unenlighten- 
ing and we omit them. In the second case, the inte- 
grals cannot be expressed in closed form. In any case, 
numerical results can always be easily obtained by 
straightforward numerical integration. 

For example, Fig. 3 shows the situation of normal- 
ized clone lengths L / E L  uniformly distributed in the 
interval [ ( 1 - s) , ( 1 + s) ] as in Proposition 5, for the 
case a = 3 and s = 0.0, 0.5, 1.0. As clone length be- 

comes more variable, we see that ( i )  the expected 
number of anchored islands decreases, (ii) the ex- 
pected length of anchored islands increases, and (iii) 
the expected proportion of genome covered by an- 
chored islands increases compared to the fixed length 
case. 

In fact, the first observation turns out to be true for 
any distribution of clone lengths. 

PROPOSITION 7. The expected number of anchored 
islands is always larger for the case of clones having 
constant length than for the case of clones having vari- 
able length with the same mean. 

By contrast, the second and third observations 
concerning expected length of anchored islands and 
expected proportion of genome covered are not true 
for all length distributions. (For example, one can con- 
struct counterexamples to both for the rather unin- 
teresting case of very small a.)  However, the observa- 
tions do appear to hold for all practical situations that 
we have examined-for example, for uniform length 
distribution and 2 d a ,  b < 8. Thus, we suggest them 
as reasonable heuristics in applications. 

2.3. Coping with Chimeras 
Clone libraries sometimes have the problem that 

clones may contain chimeric inserts-that is, inserts 
that consist of DNA from two or more regions of the 
genome (which have been juxtaposed by virtue of an 
artifact occurring in vitro or in vivo). This has been a 
particular problem for some first-generation YAC li- 
braries of mammalian genomes, in which the fre- 
quency of chimeric clones may approach 50% (E. 
Green, personal communication). What problems do 
chimeras pose for constructing physical maps? 

If all anchors were ordered in a top-down fashion in 
the genome (as by genetic mapping or in situ hybrid- 
ization), chimeric clones would cause no problem be- 
cause false linkages would be detected as apparently 
joining anchors known to lie in different genomic re- 
gions. 

For many physical mapping projects of mammalian 
genomes, however, it may not be practical to assign 
top-down positions to the vast majority of anchors. In 
this case, the accuracy of the map rests precariously 
on the linkages inferred from the anchors. Two is- 
lands from different regions of the genome might be 
unknowingly joined, based on a single chimera that 
appeared to link them. 

One sensible solution would be to construct islands 
by requiring that consecutive anchors be linked by at 
least two clones. A region of the genome covered in 
this fashion could be called double-linked islands. Be- 
cause chimeric junctions are thought to be (rela- 
tively) random occurrences, it is unlikely that one 
would encounter two independent clones represent- 
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FIG. 3. For the situation of clones with normalized length L / E L  uniformly distributed in the interval [ ( 1 - s ) ,  ( 1 + s)] , the graphs show 
(A)  the expected proportion of the genome covered by anchored islands, (B) the expected number of anchored islands, and (C)  the expected 
length of an anchored island, as a function of the coverage b in anchors for the cases a = 3 and s = 0.0,0.5, and 1.0. 

ing the same chimeric junction. Thus, double-linked 
islands should almost always be correct. 

Alternatively, one could construct preliminary is- 
lands by using single linkages, but then perform de- 
tailed restriction mapping of each island to determine 
overlap among clones. One could then break each pre- 
liminary island wherever it was covered by only a sin- 

gle clone (since this might be a chimeric junction). 
Thus, one would only believe contiguous regions cov- 
ered throughout their length by at least two clones, 
regions that could be called double-covered islands. 
Double-linked islands are always double-covered, but 
the converse is not true: the region between two an- 
chors may be covered at every point by multiple 
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clones without there being multiple clones connecting 
the anchors. Double-covered islands take consider- 
ably more work to assemble than double-linked is- 
lands, but they will be somewhat longer in general. 
These definitions are illustrated in Fig. 4. 

In either case, it is important to know: How would 
the progress toward the completion of such physical 
map be affected by the need to build either double- 
linked islands or double-covered islands? 

It is helpful to consider slightly more general no- 
tions because they make the mathematical results 
more transparent. An anchored k-linked island will be 
defined as a maximal interval I of the genome with 
the properties that ( i )  I contains at least one anchor; 
(ii) every pair of consecutive anchors in l i s  connected 
by at least k clones; and (iii) every point in I is con- 
nected to some anchor in I by at least k clones. An 
anchored k-covered island will be defined as a maxi- 
mal interval I of the genome with the properties that 
( i )  I contains at  least one anchor; (ii) every pair of 
consecutive anchors in I is connected by at least one 
clone; and ( iii) every point in I is covered by at least k 
clones, each connected to an anchor in I. (Note that 
both anchored 1-linked islands and anchored l-cov- 
ered islands reduce to the usual notion of anchored 
islands.) 

The following results now generalize Proposition 3 
to the case of anchored k-linked and k-covered is- 
lands. 

PROPOSITION 8. For anchored k-linked islands, the 
following results hold: 

( i )  The expected number of anchored k-linked is- 
lands is Np,. 

( ii) The expected length of an  anchored k-linked is- 
land is E L ( 1  - r, + r,)/ap,. 

( iii) The expected proportion of the genome not cov- 
ered by k-linked anchored islands is r,. 

The quantitiesp,, r, and r, are defined os follows. Let 
Vand W be independent exponential random variables 
with parameter b. Let R,  S ,  and T be random variables 
that, conditional on Vand W ,  are independent Poisson 
variables with means 

E ( R ( V ,  W )  = a J a  S ( t ) d t  

E(SI V, W )  = a s  3 ( t ) d t  

E(TI V,  W )  = a s  3 ( t ) d t  

v+w 
v+ w 

W 
v+w 

V 

and 

am am am 

= JOrnjOrn [ P( T + R = k - 1 I v = u ,  w = w )  1 

X b2e-b(u+w)dwdu, 

where 1 { X } is the indicator function for the event X 
and P (X ) denotes the probability of the event X .  

PROPOSITION 9. For anchored k-covered islands, the 
following results hold: 

( i )  The expected number of anchored k-covered is- 
lands is Np,. 

(ii) The expected length of an anchored k-covered 
island is E L ( 1  - r, + r,)/ap,. 

( iii) The expected proportion of the genome not cov- 
ered by k-covered anchored islands is r,, 
where V, W, R, S, and T a r e  defined as in the previous 
proposition and 

. .  I - - ,  
I 
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FIG. 4. Illustration of concept of double-linked and double-covered islands, useful for dealing with the problem of chimeric clones. The 
diagram shows the genome (horizontal line), anchors (circles on the genome), and clones (line segments drawn above the genome). While 
the clones lie in a single ordinary anchored island, the island is broken into five double-linked islands and three double-covered islands 
(indicated below the genome ) . 
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x [ P ( R = O , T = k - I I V = u , W = w )  

+ P ( R >  0, R + s+ T =  k - I I V =  u ,  w =  w ) ]  

x bZe-b(u+w) f (1)dwdudl 

= J , r n J , m [ P ( R = O , T = k - l / V = u , W = w )  

+ P ( R  > 0, R + s + T =  k-  I I V =  u ,  W =  w ) ]  

X b2e-b(u+w)3 ( u )  d wdu 

r, = JOrn JOm [ P ( R  = 0, s < k, T <  ~ I V =  u, W =  w )  

X b2e-b(u+w) dwdu 
+ P ( R  > 0, R + s + T <  kI v =  u ,  w =  w ) ]  

r, = JOmJorn [P(R = 0, s 3 k, T 3 kl v = u, w = w ) ]  

X b2e-b(u+w) dwdu. 

These formulas can be straightforwardly computed 
for any length distribution since the bracketed terms 
simply involve probabilities for independent Poisson 
random variables. For physical mapping, we are pri- 
marily interested in the case k = 2, corresponding to 
anchors double-linked and double-covered islands. 

Figure 5 shows the properties of anchored double- 
linked islands and anchored double-covered islands, 
for the case of fixed-length clones. Comparing these 
graphs with the results for ordinary anchored islands 
shown in Fig. 1, we can assess the consequences of 
coping with chimeras. 

We observe that the proportion of genome covered 
is considerably less than that for ordinary anchored 
islands. Indeed, it is easy to see (by considering the 
Poisson probability of a point being covered by no 
clones or by exactly one clone) that the proportion of 
genome not covered by single-covered anchored is- 
lands tends to e-“ as b + m ,  while the proportion not 
covered by anchored double-covered islands (or an- 
chored double-covered islands) tends to (1 + a)e-” as 
b + m . For both double-linked and double-covered 
islands, the proportion covered rises steeply in the 
interval 0 Q b Q 2 and is already very close to the 
asymptotic limit by b = 4. 

If we assume that it is practical to achieve 3-fold 
coverage in anchors, the following conclusions 
emerge. To cover about 95% of the genome, one needs 
a 3.5-fold clone library using ordinary anchored is- 
lands, but a 6-fold library using either anchored dou- 
ble-linked islands or anchored double-covered is- 
lands. To cover 99% of the genome, one needs a 6-fold 
library using ordinary anchored islands, but about a 
10-fold library using either anchored double-linked 

7 

islands or anchored double-covered islands. For a and 
b in the range of interest, one thus requires about 
three additional genome equivalents to achieve the 
same degree of coverage. 

Although double-linked and double-covered islands 
do not differ greatly with respect to the total propor- 
tion of genome covered, there is a striking difference 
in the expected number of islands and in their ex- 
pected length. As suggested by the illustration in Fig. 
4 and confirmed by the graphs in Fig. 5, double-linked 
islands are considerably shorter and more numerous 
than double-covered islands. It is easy to understand 
why: many double-linked islands are linked to one 
another through single clones; such islands can be 
joined into double-covered islands provided that one 
is willing to carefully inspect the putative linking re- 
gion (e.g., by restriction mapping) to confirm that 
every point is supported by information from at least 
two independent clones. 

Whether one uses double-linked islands or double- 
covered islands, substantial extra work will be re- 
quired. Moreover, the resulting physical map is not as 
useful because all that one is certain about is the order 
of the anchors. Clones that are apparently nonchi- 
meric may nevertheless actually be undetected chi- 
meras, and thus the island ends cannot be used for 
chromosome walking without confirmation that they 
map to the correct location in the genome. Clearly, it 
would be far better to construct chimera-free clone 
libraries. Several groups are currently working toward 
this goal. 

2.4. Anchor-Biased and Clone-Biased Sampling of 
Islands 

We should emphasize that there is a distinction be- 
tween a randomly chosen island and the island con- 
taining a randomly chosen clone or a randomly cho- 
sen anchor. For example, an experimentalist will of- 
ten have a particular gene in hand (which can be 
converted into an anchor) and may wish to know the 
expected size of the island that contains it. On aver- 
age, the island that contains a randomly chosen an- 
chor will be larger than a randomly chosen island- 
because randomly chosen anchors will be more likely 
to fall in large islands than in small islands. That is, 
the sampling of islands is biased (e.g., by number of 
anchors or clones). This phenomenon is related to 
the well-known “waiting time” paradox in probabil- 
ity: Although the bus company knows that the mean 
arrival time between buses is 10 min, a passenger ar- 
riving at the bus stop at a random time will experience 
a wait of more than 5 min, on average, because ran- 
dom arrivals are more likely to fall in longer interbus 
intervals than in shorter ones. 
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FIG. 5. For the situation of clones of constant length, the graphs show (A) the expected proportion of the genome covered by double- 
linked anchored islands, (B) the expected number of double-linked anchored islands, (C) the expected length of a double-linked anchored 
island, (D) the expected proportion of the genome covered by double-covered anchored islands, (E) the expected number of double-covered 
anchored islands, and (F) the expected length of a double-covered anchored island as a function of the coverage b in anchors for the values a 
= 1,2,. . . , l o .  (Note different ranges in (B) and (E).) 

The expected values under clone-biased and an- 
chor-biased sampling can be computed by defining 
particular renewal processes discussed below in Sec- 
tion 3.3. Broadly, the key results can be summarized 
as follows: The length of the island containing a ran- 
domly chosen point in the genome is approximately 

50% larger than the length of a randomly chosen is- 
land, for typical a and b in the range of interest (e.g., 3 
Q a, b Q 5). 

Finally, we should note that additional properties 
of anchoring schemes beyond those discussed in this 
paper (e.g., complete distributions rather than simple 
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means) can be obtained by computer simulation. We 
sketch a particularly efficient algorithm: ( i )  Generate 
an ordered sequence S of left-hand clone starts and 
anchors by choosing exponentially distributed arrival 
times with mean 1 / ( a  + b )  and assigning them to be 
clone starts or anchors by flipping a coin with head 
probability a /  ( a  + b )  ; (ii) generate random lengths 
for each clone; (iii) intercalate the right clone ends 
into the ordered sequence S; and (iv) for each succes- 
sive p E S, keep track of the clones that have started 
but not yet ended at p and of the anchored island to 
the left of p .  The expected running time is 0 ( abg) , 
where g = G / E L .  

2.5. Practical Implications 

Consider the problem of mapping a typical mam- 
malian chromosome of length about 150 Mb with 
YACs having a constant length of 500 kb so that G / L  
= 300. With 900 clones and 900 anchors, one expects 
to cover about 93% of the genome with about 135 is- 
lands having average length of about 1.1 Mb. With 
1500 clones and 1500 anchors, one expects to cover 
about 99% of the genome with about 50 islands having 
average length of about 3 Mb. If a randomly chosen 
gene is used as an anchor, the expected length of the 
island containing it will be about 50% bigger in both 
cases. 

Suppose, instead, that YACs have length distrib- 
uted uniformly in the range 250-750 kb. With 900 
clones and 900 anchors, one expects to cover about 
94% of the genome with about 125 islands having 

. 

average length of about 1.2 Mb. With 1500 clones and 
1500 anchors, one expects to cover about 99% of the 
genome with about 40 islands having average length 
of about 4 Mb. 

If chimeras are a problem, the situation is rather 
worse because one must achieve double linkage or dou- 
ble coverage (with the latter involving considerably 
more work). We consider only the case of clones of 
fixed length. With 900 clones (excluding those discov- 
ered to be chimeras during the mapping) and 900 an- 
chors, one expects to cover about 68% of the genome 
with about 340 anchored double-linked islands having 
average length of about 340 kb. With 1500 clones and 
1500 anchors, one expects to cover about 95% of the 
genome with about 220 anchored double-linked is- 
lands having average length of about 660 kb. With 
anchored double-covered islands, the proportion of ge- 
nome covered is about the same, but the islands are 
fewer and longer. 

Finally, constructing a physical map of an entire 
mammalian genome requires multiplying the num- 
bers of clones and anchors by a factor of 20. Some 
30,000 anchors might be required when using large 
YACs, which somewhat exceeds the limits of current 
practice (in which a high throughput lab might work 
with a few hundred anchors per year) but may not be 
beyond possibility. Some 500,000 would be needed if 
cosmids were used, which is so large as to be safely 
declared impractical. In summary, some improve- 
ment in efficiency and economy is needed to make 
this approach easily applicable to entire mammalian 
genomes. 
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3. MATHEMATICAL RESULTS 

3.1. Mathematical Duality between Clones and 
Anchors 

In the case of clones of constant length L ,  there is a 
fundamental symmetry between clones and anchors. 
Aside from being elegant, the symmetry implies that 
every formula f (a, b )  for some property of contigs can 
be interpreted as the formula for a dual property with 
the roles of clones and anchors reversed. To see the 
symmetry between clones and anchors, we must repre- 
sent both elements by points: each clone should be 
labeled by the point at its center and each anchor by 
the point it occupies. A clone and an anchor are adja- 
cent (that is, overlap) if the corresponding points lie 
within distance L / 2 .  This adjacency relation defines 
a bipartite graph, whose connected components are of 
three types: 

( i )  isolated anchors, 
(ii) isolated clones, and 
(iii) islands containing at least one clone and at 

least one anchor. 
The second class corresponds to the unanchored is- 
lands, while the third class corresponds to the an- 
chored islands. 

From the standpoint of symmetry, it is best to focus 
on anchored islands because this class is closed under 
duality-i.e., interchanging the role of clones and an- 
chors. (As noted earlier, it  is straightforward to con- 
vert properties of all islands into properties of an- 
chored islands and vice versa.) 

Some asymmetry between clones and anchors 
arises because the length of islands is naturally mea- 
sured from the left end of the leftmost clone to the 
right end of the rightmost clone. To achieve sym- 
metry, one should measure distances from the center 
of the leftmost clones to the center of the rightmost 
clone-which is smaller by L than the natural dis- 
tance. 

The following examples illustrates the use of dual- 
ity. As before, let a be the intensity of clones and b be 
the intensity of anchors. 

( i )  Clearly, the expected number of clones in an 
anchored island is dual to the expected number of 
anchors in an anchored island. To confirm this, note 
that the formula for the first quantity is ( 1 - e-*) ( b  
- a ) / b ( e - "  - e-b)  by Proposition 1 (iii) and the for- 
mula for the second is ( 1  - e-") ( b  - a ) / a (  e-" - e-b)  
by Proposition 1 (vii) . These are indeed related by 
interchange of a and b.  

(ii) The expected proportion of the genome not cov- 
ered by anchored islands (Proposition 1 (v)) turns 
out to be the mathematical dual of the probability 
that a clone lies in a singleton island (Proposition 
2 (iii) ) . (Verify this by writing out both formulas ex- 
plicitly in terms of a and b .) To see why, observe that 

a random point x1 lies in an anchored island if and 
only if there exists a clone C and an anchor x2 such 
that xl overlaps C and C overlaps x2 .  Now, the dual 
situation involves adding a random clone C, and ask- 
ing whether there exist an anchor x and a clone C2 
such that C, overlaps x and x overlaps C,. This is 
exactly the condition describing whether C, lies in an 
island with at least two clones. 

( iii) If h (a, b )  represents the expected length of an 
anchored island, then h (a, b )  - L 3 0 is the expected 
distance between the leftmost and rightmost clone 
centers in an anchored island. By duality, h ( b ,  a )  - L 
is the expected distance between the leftmost and 
rightmost anchors in an anchored island (still using a 
as the intensity of clones). Thus, h ( a ,  b )  - ( h ( b ,  a )  
- L )  is the expected length of that part of an anchored 
island outside its outermost anchors. By the sym- 
metry of left and right, one-half of this distance is the 
expected distance from the left end of the anchored 
island to its leftmost anchor. 

Regrettably, the duality no longer holds in the vari- 
able length case. 

3.2. Mathematical Proofs of Main Results 

This section contains the proofs of the key results. 
We begin with Proposition 3 about variable length 
clones, since the results about fixed length clones fol- 
low as an easy special case. 

We begin by specifying the mathematical model to 
which our propositions and corollaries apply as rigor- 
ous results. This model differs from the precise situa- 
tion described in section 2.1 in three minor ways: the 
genome is modeled as continuous rather than dis- 
crete; boundary effects at the end of chromosomes are 
ignored; and N and M ,  the number of clones and an- 
chors, are modeled as random variables rather than 
observed values. (As a consequence of this last point, 
expectations should be inserted into various formulas 
to make them mathematically strictly correct. For ex- 
ample, we should properly write a = ( E L )  ( E N ) / G  
rather than a = L N / G ,  etc. In writing for a mixed 
audience, however, we have chosen to write the for- 
mulas using N rather than EN in the belief that this 
will be clearer to the biologist and that the reader 
versed in probability can insert E when needed.) It is 
easy to show that, for practical purposes, these differ- 
ences have negligible effect for G % EL and EL % 1. 

We suppose that clones have independent and 
identically distributed lengths L ,  with mean EL. Let 
Q = L /  EL denote rescaled clone length, so that clones 
have average length 1. We suppose that clones occur 
on the real line R = ( -a, a ) according to a Poisson 
process of rate a, and anchors (modeled by points) 
occur according to a Poisson process of rate b.  The 
genome corresponds to the interval (0, G I E L ) ,  and 
we write g for the normalized genome length, g = G /  
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EL. ( A  convenient reference for the techniques per- 
taining to stationary processes is Breiman, 1968.) 

We assume that the process of left clone ends is a 
homogeneous Poisson process of rate a, and that (re- 
scaled) clone lengths are independent and identically 
distributed with mean 1. It follows that the process of 
right clone ends is also a Poisson process of rate a, 
and we label these points { A i ,  i E 2 } (where 2 de- 
notes the set of integers) in such a way that 

* * < A_,  < A, 0 < A ,  

< . * < A N < g < A N + 1 <  * ' .. 
Here N is the number of clones whose right ends fall 
in the genome ( 0, g )  . We recall some basic facts about 
a Poisson process. First, N has a Poisson distribution 
with mean EN = ug and variance ug, 

, n = 0 , 1 ,  ... (ug)ne-"g P ( N  = n )  = 
n! 

and 

N / g  + a, almost surely as g + oc) . 

The interarrival times Ai - Ai-, are mutually indepen- 
dent exponentially distributed random variables with 
mean 1 / a  and probability density ue-=, for x > 0. 

It is a remarkable fact about a Poisson process that 
the distribution of the set { A i ,  i E 2, i # 0) condi- 
tioned on the event A, = 0 is the same as the distribu- 
tion of the set { A j ,  i E 2 } before conditioning. We use 
this in what follows, referring informally to a "given 
clone" when we argue by conditioning on having a 
clone at a given location. 

The process of anchors is described by a stationary 
time-homogeneous Poisson process with rate b, and 
we assume that the process of anchors and the process 
of clones are independent. 

Let Nu and N, denote, respectively, the number of 
unanchored and anchored clones whose right-hand 

be the probability that a clone is unanchored. Since 
the probability that a clone of length Q has no anchors 
is e-w,  we have 

r ends falls in (0, g )  , so that N = Nu + N,. Define q1 to 

where f ( I ) ,  1 2 0 is the density function of Q, the 
normalized clone length. It follows that the intensity 
of unanchored clones is uq,, while the intensity of 
anchored clones is a(  1 - q1 ) . In addition, 

almost surely as g + a. 
Next we form the process of right-hand ends of an- 

chored islands. Anchored islands have the property 
that one anchored island cannot be completely con- 
tained within another anchored island. Therefore we 
can label anchored islands in order, taking the order 
either from the right or the left ends. We label their 
right-hand ends in such a way that 

so that K is the number of anchored islands that have 
their right-hand ends in the genome (0, g )  . Clearly, 
{ A i ,  i E 2 } 2 { C j , j  E 2 } and the set of locations { Cj ,  
j E 2 } is stationary. 

The intensity up, of the process { Cj ,  j E 2 } , that is, 
the expected number of right-hand ends of anchored 
islands per unit length, may be calculated as 

E (number of anchored island ends in (0, g) ) 

= E Jog 1 {clone at t is right end of 

anchored island I clone at t } P(  clone at t )  

= gap,, 

since stationarity shows thatp ( t )  is independent oft, 
the common value being 

p1 = P (  clone at t is right-hand end 

of anchored island I clone at t } . 

We define the function 3 by 

and define the function J by 

We can interpret J ( x )  as the probability that two 
points at distance x apart are not covered by a com- 
mon clone. Observe that J(0) = e-", since rescaled 
clones have average length 1. 
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To calculate p l ,  we proceed as follows. Let E be the 
event that the right-hand end of a given clone is the 
end of its anchored island, and suppose that this clone 
has length Q, with the right-hand end of the clone 
being located at 0. Let V be the distance back from 0 
to the previous anchor. The conditional probability 
that this clone is the rightmost member of an an- 
chored island is the probability that any clone that 
starts before - V ends before 0 if V d Q and is 0 if V 
> Q. The number of clones that start to the left of - V 
and end to the right of 0 has a Poisson distribution 
with mean a J-r 3 ( t )  dt ,  so that the probability that 
there are no such events is J (  V) . Hence given Q and 
V, the probability that a given clone is rightmost in its 
anchored island is J (  V )  1 { V d Q} . Averaging over 
the distribution of Q and V gives 

p ,  = E J ( V ) l { V d  Q} 

Since the intensity of clones to which this argument 
applies is a, the intensity of anchored islands is up,. 
With this background, we now turn to the proof of 
Proposition 3. 

To establish part ( i )  , we 
observe that the number Nu of unanchored clones in 
the genome (0, g )  has expectation EN, = gaq,. The 
ergodic theorem implies that N , / g  * uq, almost 
surely as g * 00.  Since N / g  + a almost surely, the 
number of unanchored islands is Nu - gaq, - Nq, for 
large g .  

To establish part (ii) , argue similarly concerning 
the number K of right-hand ends of anchored islands 
in the genome (0, g ) ,  which has expectation EK 
= gap,. Since K / g  * up, and N / g  + a almost surely 
as g * 00,  the number of anchored islands is K - gap, - Np, for large g .  

To establish part (iii) , we introduce the process of 
anchored island masses. Let Mi be the number of 
clones in the j t h  anchored island. Ml , . . . , MK are the 
masses of the K anchored islands whose right-hand 
ends fall in the genome (0, g )  . The labeling of the 
points of the process destroys the stationarity of the 
property, in that none of M , ,  . . . , MK is “typical.” In 
particular, the island of mass M I  tends to straddle 0 
and to be larger than typical. (What is stationary is 
the random measure Z Miaci with masses Mi at the 

random locations Ci , i E 2.) To define the average 
mass EM of a typical anchored island, we proceed by a 
limiting argument. 

Among anchored islands that have right-hand ends 
in (0, g )  , the average number of clones per island is 

Proof of Proposition 3. 

i 

i K  
Mg = Mj.  

K 

Consider M i ,  the difference between 2 Mi and N,, 

the number of anchored clones whose right-hand ends 
fall in (0, g )  . Observe that the absolute value of M i  is 
at most M”, the number of clones in the anchored 
islands that cover 0 or g ,  so that M” has finite mean, 
and ML/g * 0 almost surely as g + 00 . Hence 

1 

As g + a, K / g  + up,, N J g  + a ( l  - q,) and 
M i / g  + 0 almost surely, so that 

Hence we see that Ug - (1 - ql )  / p l ,  establishing 
part (iv). 

We remark that the function F (  t )  , t b 0 defined by 

l K  
8-03 K j - 1  

F ( t )  = lim - 1 { M j d  t }  

(the limit being almost sure and nonrandom) can be 
thought of as the distribution function of a random 
variable, which we denote by M .  We will think of A4 as 
the “mass of a typical island.” It can be shown that 
E M ,  computed from this distribution, agrees with the 
value above. In what follows, we implicitly use analo- 
gous constructions of typical quantities of interest. 

To establish (iv), let E be the event that a given 
clone is a singleton anchored island. Suppose that the 
given clone has length Q and is located between -Q 
and 0. Define V to be the distance forward from -Q to 
the first anchor. Define W to be the distance back 
from 0 to the previous anchor (so that W = Q - Vif V 
< Q and there are no other anchors in (-Q, 0)) .  
Given (V, W ) and V + W < Q, the conditional proba- 
bility of E is the probability that no clones that start 
to the left of -Q cover the anchor at -Q + V and no 
clones that start in (-Q, -W)  cover 0. This probabil- 
ityis J (V)J (W) / J (Q) . I f  V +  W =  Q,theprobabil- 
ity is J ( V ) J ( Q  - V ) / J ( Q ) .  One way to realize the 
random variable (V, W )  is to construct (Vf, W’) as 
independent and identically distributed exponential 
random variables with parameter b and define 
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(V,  W )  = (V',  W ' )  if V' + W' < Q 

= ( V r ,  1 - V r )  if V ' <  Q, V ' +  W ' >  Q .  

With this notation, the probability p ,  that a given 
clone is a singleton anchored island is 

1 { V' < Q } J (  V ' ) J (  min W', Q - V ' )  
J (  8 )  P2 = E 9 

which can be evaluated as in (iv) . 
Next we define the process of anchored island 

lengths. Suppose that the j t h  anchored island has 
length Si. We define the average ES of the length S of 
a typical island as an ergodic limit. Define 

I 

the average length of the anchored islands that have 
their right ends in the genome (0, g )  . Since a point 
can fall at most in two anchored islands, it follows 
that 

l K  
g j -1 
- 2 Sj * rl + 2r2, [21 

almost surely as g * co, where ri is the probability 
that a point is covered by precisely i anchored islands. 
Since r, + r, + r, = 1, we need only calculate r,, and r2 
to calculate [ 21. 

To calculate r, and r,, let t be a point in the genome 
(0, g ) , let W be the distance forward from t to the first 
anchor to the right, and let V be the distance back 
from t to the previous anchor to the left. 

To calculate r,, let E be the event that t is not cov- 
ered by an anchored island, so that r, = P (  E ) .  The 
event E occurs as long as any clones that start to the 
left oft - Vend before t and any clones that start in ( t 
- V,  t) end before t + W. Given (V,  W )  , the condi- 
tional probability of this is 

= exp( -u( J: 3(r)cir + Jrw 3(r )c i r ) )  

= J ( V ) J ( W ) / J ( V +  W ) .  

Averaging over the distribution of V and W gives 

which proves part (vi). 

131 

To calculate r,, let E be the event that t is covered 
by precisely two anchored islands so that r, = P (  E ) .  
The event E occurs if at least one clone that starts to 
the left of t - Vends in ( t , t + W ), no clones that start 
to the left of t - V end after t + W, and at least one 
clone that starts in ( t  - V ,  t )  ends after t + W. Ele- 
mentary manipulations with Poisson processes then 
show that 

- - ( J ( V )  - J ( V +  W ) ) ( J ( W )  - J ( V +  W ) )  
J ( V +  W )  

Averaging over the distribution of V and W shows 
that 

( J ( V )  - J ( V +  W ) ) ( J ( W )  
r, = E - J ( v +  W ) ) .  [ 4 ]  

J ( V +  W )  
It now follows from [ 21 that 

- rl + 2r2 
S, * ES I - 

UP1 
[51 

almost surely as g * co . Since rl + 2r, = 1 - r, + r,, it 
follows from [ 31 and [ 41 that 

up1ES = 1 - E ( J ( V )  + J ( W )  - J ( V +  W ) )  

= 1 + E J ( V +  W )  - 2 E J ( V ) ,  

which establishes (v)  . 
To establish (vii) , let Hi denote the number of an- 

chors in the j t h  anchored island and let R denote the 
number of anchors that fall in anchored islands whose 
right-hand ends fall in (0, g )  . We define the average 
EH of the number H of anchors in a typical anchored 
island as an ergodic limit: 

l K  g R  E H =  lim - c Hi= lim --. 
g--m K j - 1  8-m g 

Since the probability that an anchor is not covered by 
an island is J(0) = e-", the intensity of anchors 
involved in islands is b(1 - e-"). Thus R / g  -P 

b ( 1 - e-"), so that EH = b ( 1 - e-") /up l .  This estab- 
lishes (vii) . 

Finally, we prove (viii) . Suppose that we are given 
an island of length Q, whose right-hand end is located 
at 0. Let V be the distance back from 0 to the first 
anchor. The conditional probability that this island is 
( a )  anchored, (b)  the end of its island, and (c)  fol- 
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lowed by an actual ocean of length at least k is the 
probability that all clones that start to the left of 0 end 
to the left of 0 as long as V < Q, and is zero otherwise. 
This conditional probability is J (  0)  1 { V < Q} e-ko, 
so that the probability we seek is e-"(k+"P(V < Q) 
- - e-a(k+l )  ( 1 - q, ) , and the proof is completed by di- 
viding by the probability p ,  that a given clone is the 
end of an anchored island. This completes the proof of 
Proposition 3.0 

Corollary 4 follows by accounting for the effect of 
unanchored islands on the various average quantities 
in Proposition 3. Proposition 1 and Corollary 2 are 
the special case in which the rescaled clone length Q is 
identically 1. In this case, 3(Z) = 1 if 1 < 1 and 3(1) 
= 0 if 12 1. It follows that 

J ( x )  = e-"('-*), 

= 1, 

if x < 1 

if x > 1. 

Similarly, Corollaries 5 and 6 represent special cases 
of particular probability density functions. 

We should note that the expected values for all is- 
lands (Corollaries 2 and 4 )  may be less informative 
because they can be dominated by the effects of the 
unanchored islands. For a -+ co and any b fixed, the 
proportion of unanchored islands exhibits somewhat 
troublesome behavior: the expected proportion of un- 
anchored islands tends to 1, even if b is so large that 
there is a high probability that there are no unan- 
chored islands in the genome! It is not hard to see 
why. As a 3 co , the anchored islands become few in 
number and large in size. However, there is a chance 
that there are some regions of the genome devoid of 
anchors and large enough to contain a clone. If so, the 
clones falling in such regions will contribute an infi- 
nite number of unanchored islands as a 3 co . If not, 
there will be no unanchored islands whatsoever. In 
such cases, averages can be deceptive. In general, it is 
more helpful to focus attention on anchored islands. 

Let Q = L/EL denote the 
normalized length of a random clone, so that EQ = 1. 
The function J (  u )  can be expressed as 

Proof of Proposition 7. 

J (  u )  = e - d E ( ~ ( Q - u , O ) )  

and, because max(x, 0) is concave up, Jensen's in- 
equality implies that 

where J,( u )  is the corresponding function for the 
case of constant normalized clone length Q = 1. We 
next note that Proposition 3 (ii) can be written as 

where J' is the derivative of J with respect to u. Inte- 
grating by parts and using the fact that J ( 0 )  = e-", 
we have 

The results now follow from [ 61 and [ 71 .O 

We only sketch the proof, 
since it closely follows the arguments for Proposition 
3 (ii) , (v)  , and (vi). Let P be a point, V the distance 
from P to the closest anchor A, to the left, and W the 
distance to the closest anchor A, to the right. Let the 
random variables R, S, and T represent, respectively, 
the number of clones that cover A,, P ,  and A,; the 
number of clones that cover A, and P but not A,; and 
the number of clones that do not cover A, but do cover 
A, and P .  Conditional on V and W, the variables R ,  
S, and T are independent Poisson variables with 
means: 

Proof of Proposition 8. 

a 

E(RI V, W )  = a s  

E(SI V, W )  = a s  

3 ( t ) d t  = -log[J(V+ W)],  

S ( t ) d t  

v+ w 
v+ w 

W 

= -log[J(W)/J(V+ W)], 
and 

E(TIV, W )  = a s  3 ( t ) d t  
v+ w 

V 

= - log[J(V)/J(V+ W)]. 

In part ( i )  , the point P is taken to be the right end 
of a clone C. The first term is the probability that A, 
lies within C. The bracketed term in the integrand 
represents the probability that C is the rightmost 
clone of an anchored k-linked island conditional on A, 
lying within C. The integral averages over the distri- 
bution V, W, and clone length. In parts (ii) and (iii) , 
the point P is taken to be a random point in the ge- 
nome. The bracketed term in the integrand is the 
probability that P lies in no (respectively, 2 )  an- 
chored k-linked islands. The integrals average over 
the distribution of V and W.0 

The proof is analogous to 
that of Proposition 8, with the definitions of p , ,  ro, 
and r, modified to reflect the notion of k-covered as 
opposed to k-linked islands.O 

Proof of Proposition 9. 
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3.3. Mathematical Treatment of Anchor-Biased and 
Clone-Biased Sampling 

In this section, we provide a mathematical discus- 
sion of the question of anchor-biased or clone-biased 
sampling. Such sampling turns out to be interesting 
not only from an experimental standpoint but also 
from a mathematical standpoint because it allows one 
to calculate variances and covariances associated 
with quantities of interest. The following proposition 
explains this. 

tively, the length, number of clones, and number of an- 
chors contained in a randomly chosen island (which 
may be anchored or unanchored). The expectation of 
these quantities is given in Corollary 4. 

( i )  Let S, and M ,  be, respectively, the length and 
number of clones in the island containing a randomly 
chosen clone. Then EM'S '  = EM'ES,  and E M t 2  
= EM'EM,. 

(ii) Let S, and Mu be the analogous quantities for 
the island containing a randomly chosen anchor 
(which may be an empty island if the anchor does not 
fall in an island). Then EH'S'  = EH'ES, and EH'M' 
= EH'EM,. 

To establish ( i ) ,  let K' be the number of 
islands with right-hand ends in (0, g )  (so that K' = K 
+ Nu), let S; be the length of thejth such island, and 
let M; be its mass (i.e., number of clones). Note that 

I PROPOSITION 10. Let S', M', and H denote, respec- 

Proof. 

1 K' I N  

t 

where Ji is the label of the island containing the ith 
clone, SJi is its length, and e8 is an end-effects term. 
Methods analogous to those used to calculate E S  in 
[ 51 show that e8/g * 0 almost surely as g --* 00. Since 
{SLi, i E Z} is a stationary process, the ergodic 
theorem guarantees that 

as g + 00. Since N/K' --* EM', we see that 

i K' 

almost surely as g + co . Hence EM'S' = EM'ES,. 
Similarly, we observe that 

K' K' N 

C M;2= 2 (c  1{Ji  = j } ) 2  + e:, 
j - 1  j - 1  i-1 

where once more the end-effects, term d/g  --* 0 almost 
surely as g + 00. Therefore 

1 K' 

8-00 K j -1  
E M J 2  = lim 7 2 Mj'2 = EM'EMc 

almost surely. This establishes part ( i )  . Analogous 
arguments establish part (ii) .O 

These results may be converted into re- 
sults about anchored islands in the following way. An 
unanchored island is a clone containing no anchors, 
with expected length A' given in Proposition 4 ( iv) , 
and mass identically 1. The proportion of anchored 
islands among all islands is p l /  (p l  + q l ) .  Write S, M ,  
and H ,  without primes, to refer to randomly chosen 
anchored islands. Then 

Remark. 

gives the relation between Proposition 3 (iv) and Cor- 
ollary 4 (iv) , while 

gives the relation between Proposition 3 (ii) and Cor- 
ollary 4 (ii) . The relations 

( pl+ q1 )EM'S'  = p1 E M S  + qlX' 

and 

( p l  + q l )  E M r 2  = p1 E M 2  + qll  

are needed to convert Proposition 10 into a statement 
about anchored islands. 

The expected values under clone-biased and an- 
chor-biased sampling can be computed by defining 
particular renewal processes. As it happens, the re- 
sults cannot be expressed in closed form but rather in 
terms of functions defined on the set A = { ( x ,  y )  : x 
2 0, y 2 0, x + y d l} that are the solution to certain 
inteeal equations. Although they may look daunting, 
they can be computed by numerical methods. For sim- 
plicity, we state the results only for the case of fixed- 
length clones. 

PROPOSITION 11. With notation as above, we have: 
( i )  Given a randomly chosen clone, the expected 

length of the island containing it is ES,  = 1 + 2 f l  (0, 
0) , where f l  ( x ,  y )  is the function defined on A satisfy- 
ing the integral equation 
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where%(x,  y )  = { ( u ,  u )  : u,  u 2 0, u +  u t  1 - x ,  u t  1 
- x - y } .  Note that this expectation includes unan- 
chored clones. 

(ii) Given a randomly chosen clone, the expected 
number of clones in the island containing it is EM,  = 1 
+ 2 f 2 (  0, O), where f ,  ( x ,  y )  is the function defined on A 
satisfying the integral equation 

[ I  + a(1  - u - u - x )  

+ f 2 ( u ,  ~)]ae-"be-~"dudu.  

Note that this expectation includes unanchored clones. 
(iii) Given a randomly chosen anchor, the expected 

length of the island containing it is 

+ f3(0,  min(x, ~ ) ) ] a e - " b e - ~ d x d y ,  

where f 3 ( x ,  y )  is the function defined on A satisfying 
the integral equation 

where 

S ( x ,  y )  = { ( u ,  u )  : u, u 2 0, 
1 - u -  u 2  y ,  u <  1 - x -  y } ,  

S ' ( x ,  y )  = { ( u ,  u )  : u,  u 2 0, 

1 - u > x +  y ,  1 - u -  u t  y } ,  

S " ( x ,  y )  = { ( u ,  u ) :  u 2  0, u >  1 - x - y } .  

Note that the length of the island containing a random 
anchor is zero if that anchor is not covered by any 
clones. 

(iv) Given a random anchor, the expected number 
of clones in the island containing it is 

X ae-"be-6ydxdy, 

where f 4  ( x ,  y ) is the function defined on A satisfying 
the integral equation 

Note that the number of clones in the island containing 
a random anchor is zero if that anchor is not covered by 
any clones. 

( v )  Given a random anchor that is contained within 
at least one clone, the expected length of the island con- 
taining it is ES,/ ( 1 - e-,) and the expected number of 
clones in the island containing it is EM,/( 1 - e-,), 
where ES, and EM,  are defined in (iii) and (iv) , re- 
spectiuely. 

Let C, be a random clone, 
which will be arbitrarily taken to correspond to the 
interval [ 0, 1 1. Let ( x ,  y )  E A. Suppose that we are 
given the additional information that there are no left 
clone ends in (0, XI, that there is an anchor at x ,  that 
there are no anchors in ( x ,  x + y ]  , and that there is a 
right clone end at x + y . ( See Fig. 6.) Define L ( x ,  y ) to 
be the distance from the right end of the clone C ,  to 
the end of its island. We derive a renewal equation 
satisfied by f , ( x ,  y ) ,  the mean of L ( x ,  y ) .  

Define V to be the (random) distance back from the 
right end of C, to the rightmost anchor in C, , and let 
U be the distance back from this anchor to the right- 
most clone end occurring to the left of the anchor. 
Define the region % ( x ,  y )  as in part ( i )  above and 
suppose that ( U ,  V ) = ( u ,  u ) E % ( x ,  y ) . From Fig. 6, 
we see that the clone C, that starts at 1 - u - u ex- 
tends the island containing C, , and that given ( U ,  V )  

Proof of Proposition 11. 

NO left 
clone ends No anchors 

c* 
0 1-u-v-x I 

\Region not searched 
fo r  left clone ends 

FIG. 6. Diagram illustrating renewal process used in the Proof 
of Proposition 11 ( i )  and ( i i )  . 

, 
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= (u, u) we have L ( x , y )  = 1 - u - u + L’(u, u), where 
L’( u, u )  has the same probability law as L(  u, u) . If, 
on the other hand, (U, V) E 3 ( x ,  y)  , then clone C, is 
the rightmost clone in its island, and so L ( x ,  y )  = 0. 
Restricted to the set 3 ( x ,  y) , U and V have the same 
distribution as independent exponential random vari- 
ables with parameters a and b, respectively. Averag- 
ing over the distribution of ( U ,  V)  shows that 

[l - u - u +f , (u ,  u)]ae-”be-“dudu 
= SJR(z.,, 

as required. Note that a typical clone contains no ad- 
ditional information of the sort described above for 
C,-that is, we should take x = y = 0 to obtain the 
expected additional length from the right end of the 
typical clone to the right end of its island. Since the 
process is symmetrical, this is also the expected addi- 
tional length from the left end of the clone to the left 
end of its contig. This establishes part ( i )  of the propo- 
sition. 

The same renewal argument may be used to calcu- 
latef2(x,y), themeanofthe numberN(x,y) ofaddi- 
tional clones in the island containing C, that end to 
the right of C1 . Once again, we condition on the event 
U = u, V = u , and suppose first that ( u, u ) E Y3 ( x ,  y 1. 
Conditional on this, we see from Fig. 6 that N (  x ,  y )  
= 1 + P ( u , u )  +N’(u,x),whereP(u,u)isthenum- 
ber of clones that start in the interval ( x ,  1 - u - u) 
(and so has a Poisson distribution with mean a ( 1 - u 
- u - x) ) and N’(  u, u) has the same probability law 
asN(u,u).Ontheotherhand,if(U, V ) E % ( x , y ) ,  
then clone C ,  is the rightmost in its island, and so 
N ( x ,  y )  = 0. Averaging the conditional expectations 
over the distribution of ( U ,  V )  shows that 

f2(x, Y )  

[l + a( 1 - u - u - x )  + f2(u, u)] 
= ss,,,,, 

X ae -” bepb” dudu . 

The results (ii) now follow from the same argument 
that verified (i  ) . 

To establish (iii) and (iv), a different renewal ar- 
gument is needed as depicted in Fig. 7. Let A be a 
random anchor, which will be arbitrarily assumed to 
lie at 0. For ( x ,  y)  E A, suppose that there is a right 
clone end at y , that there are no anchors in (0, y ) , and 
that no further right clone ends occur in (y, y + x ) .  
Let C, denote the clone that ends at y (see Fig. 7).  
Define L ( x ,  y)  to be the distance from A to the right 
end of the island containing C, . 

r 

No anchors No rlght 
Rtght end o f  Island 
coverlng anchor a t  0 

O-\/- ‘ 
Not examined f o r  
rlght clone ends 

FIG. 7. Diagram illustrating renewal process used in the Proof 
of Proposition 10 (iii) and (iv) . 

Starting from 1, we look back a distance U to the 
first right clone end, and a further distance V back to 
the first anchor. Define the sets S ( x , y ) ,  S ’ ( x , y ) ,  and 
S”( x,  y)  as in part (iii) above. Let U’ and V’be inde- 
pendent exponential random variables with parame- 
ters a and b, respectively. Using Fig. 7, we see that the 
random variables U and V may be defined in terms of 
U’ and V’ as follows: 

( U ,  V )  = (U’, V ’ )  
(U, V )  = (U’, 1 - U‘) 

U = 1 - y 

if(U‘, V ’ ) E S ( x , y )  
if (U’, V’) E S ’ ( x ,  y )  

if U’ E S ” ( x ,  y )  

Observe, from Fig. 7, that if ( U’, V ’ )  = (u, u )  E S ( x ,  
y), then U = u and V = u and L ( x ,  y )  = 1 - u - u 
+ L’(u,  u), where L‘( u, u) has the same probability 
law as L ( u ,  u). If, however, (U’, V’) = (u, u) E 8 ’ ( x ,  
y ) , then U = u and the island containing the anchor A 
ends at 1 - u, so that L ( x ,  y )  = 1 - u. Finally, if U’ 
= u E S ” ( x ,  y) ,  then U = 1 - y and the island con- 
taining the anchor A ends at y. Hence L ( x ,  y)  = y. 
Averaging over the distribution of ( U ,  V )  shows that 
f 3 ( x ,  y) ,  the mean of L ( x ,  y) ,  satisfies the integral 
equation 

To complete the proof of (iii) , observe that the situa- 
tion of a given anchor can be described by x = 0. The 
condition involving y says that there is a clone cover- 
ing the anchor A such that A is the rightmost anchor 
in the clone (see Fig. 7). For a random anchor, y is the 
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value of a random variable Y’ with the following 
structure. Start looking for right clone ends starting 
from an anchor at A, say. Let X’be the distance to the 
first such clone end. Let Y’ be the distance back from 
this right clone end to the first anchor (which may be 
A ) .  One way to realize the pair (X‘, Y’) is to take X, 
Y as independent exponential random variables with 
parameters a and b ,  respeqtively, and then set (X’, 
Y’) = (X,  min(X, Y ) ) .  The length to the right of A 
of the island containing A is then X’ - Y’ + f3 (0, Y’) 
if X‘  d 1 (in which case there is a clone covering A) .  
In the event that X’ =- 1, there is no clone covering A 
and we define the length of the “island” containing A 
to be zero. Written in terms of (X,  Y )  , we see that the 
expected length of the island containing a randomly 
chosen anchor is given by E ( (max (X, Y, 0) + f 3  (0, 
min (X,  Y )  1 { X < 1) ) . By symmetry, the expected 
length of the portion of the island to the left of A is the 
same. Writing this expectation as an integral gives 
the result in (iii) . 

Next, we prove (iv). We use the same renewal 
structure as that for (iii) . Define L ( x ,  y )  to be the 
number of clones that belong to the island containing 
C, and that lie (in whole or in part) to the right of A. 
From Fig. 7, observe that if (U’,  V’) = (u, u )  E S ( x ,  
y )  , then U = u and V = u and L( x ,  y ) = 1 + P(  u, u )  + L‘( u, u )  , where L’( u, u )  has the same probability 
distribution as L ( u , u ) , and P ( u , u ) is the number of 
clones that have right ends in the intervals (0, y )  and 
( x + y , l - u )  (sothatP(u,u)hasaPoissondistribu- 
tion with mean a( 1 - u - x ) ) .  If, however, ( U’, V’) 
= ( u , u ) E S ’ ( x , y ) , t h e n U =  uandtheislandcon- 
taining the anchorA ends at 1 - u, so that L( x ,  y) = 2 
+ P ( u, u ) . Finally, if U’ = u E S”( x ,  y ) , then U = 1 
- y and the island containing the anchor A ends at y. 
Hence,L(x,y) = 1 +P’(u,u),whereP’(u,u)isthe 
number of clones with right ends in (0, y ) ,  which is 
Poisson distributed with mean ay. Averaging over the 
distribution of ( U ,  V)  shows that f4 ( x ,  y)  satisfies the 
integral equation 

To show the results in (iv), observe that a typical 
anchor has x = 0 and variable Y‘ with the following 
structure. As in the previous part, take X,  Y as inde- 

pendent exponential random variables with parame- 
ters a and b ,  respectively, and set (X’, Y’) = (X,  
min (X,  Y )  ) . The number of clones ending to the 
right of 0 in the island containing the staple at 0 is 
then f4 (0 ,  Y’) if X‘  < 1 and 0 otherwise. Written in 
terms of (X,  Y ) , we see that the expected number of 
clones that end to the right of 0 in the island contain- 
ing an anchor at 0 is given by E( f 4 (  0, min(X, Y )  1 { X 
< l }  ) . By symmetry, the mean number of clones to 
the left of 0 is the same. We then need to subtract the 
expected number of clones that cover 0 (as these will 
be overcounted otherwise). This is just a. Combining 
these results and writing the expectation as an inte- 
gral give the result in (iv) . Finally, part (v) follows 
by conditioning. This completes the proof of Proposi- 
tion 11.0 

The implicit definitions in Proposition 11 are less 
convenient than explicit closed-form formulas, but 
the results can be calculated using standard methods 
for solving integral equations (Delves and Mohamed, 
1985). 

4. CONCLUSION 

Considerable effort is already being focused on the 
construction of complete physical maps of the human 
and mouse genomes and further projects are being 
considered for various plant and animal species. Al- 
though many nonmathematical factors bear on the 
design of such projects (including the relative merits 
of different cloning vectors and anchoring techniques, 
uneven representation of clone and anchor libraries, 
etc.) , a detailed mathematical analysis must also be a 
prerequisite. The results above should be of some 
value in designing and monitoring the progress of 
physical mapping projects. 
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