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    Chapter 3   
 Population Genetics of Neoplasms                     

     Andrea     Sottoriva      and     Simon     Tavaré   

    Abstract     Cancer is a complex disease of the genome that arises from the interplay 
of numerous underlying biological processes occurring within and between cells. 
Cancer population genetics aims at investigating malignant dynamics by studying 
the distribution of somatic alterations in cancer cell populations. Such aberrant 
DNA modifi cations lead to the development of cellular malignant traits like cancer 
invasion, metastasis and therapy resistance. The study of population genetics in 
neoplasms integrates mathematical modeling of evolving populations with molecu-
lar and epidemiological cancer data. The goal is to infer fundamental properties of 
tumors and predict the progression of the disease. With the ever-growing amount of 
data produced by genomic techniques, cancer population genetics represents a 
quantitative tool to begin making sense to this massive amount of information.  

  Keywords     Mathematical modelling   •   Population genetics   •   Cancer evolution   
•   Statistical inference  

3.1       The Importance of Modeling the Population Genetics 
of Tumors 

 Mathematical population genetics, pioneered by Sewall Wright [ 1 ,  2 ], Ronald 
Fisher [ 3 ] and Patrick Moran [ 4 ], originated from the study of gene frequencies in 
populations of individuals to address questions about the evolution of species and 
their genotypes. Neoplasms can be viewed as populations of cancer cells that 
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undergo reproduction and death, and that are subject to evolutionary forces such as 
selection and drift [ 5 – 7 ]. In the cancer scenario however, no sexual reproduction 
occurs. Instead, changes in the genetic heritage of cells depend only on errors occur-
ring during DNA replication, known as somatic mutations. Hence, due to the anal-
ogy between the evolution of species and the evolution of cancer (see Table  3.1 ), 
approaches from mathematical population genetics are also employed in the study 
of neoplasms, for instance to reconstruct the phylogenetic history of tumors [ 8 ].

   Evolutionary forces drive the accumulation of somatic mutations in cancer cells 
that lead to the transformation of normal tissue into a tumor, a highly dynamical 
process referred to as  tumorigenesis . Genetically, tumorigenesis is disseminated by 
events that change the genome of cells, such as point mutations, copy number alter-
ations, chromosomal translocations and aneuploidy [ 9 ]. The ultimate product of 
those events is the development of malignant traits, such as tissue invasion and 
metastasis [ 10 ]. Those complex cancer processes can be addressed using population 
genetics approaches with the aim of bringing order to apparent chaos. This is impor-
tant given the observed complexity of cancer mutations and their related, affected 
pathways [ 9 ]. Even more crucial, if we consider the uniqueness of each single can-
cer identifi ed by multiple large-cohort studies [ 11 – 14 ], this calls for a shift towards 
personalized cancer medicine.  

3.2     Background and Previous Work 

3.2.1     Modeling Tumorigenesis 

 Cancer initiation and progression can be represented as a branching process driven 
by cell division, cell death and mutation. Within normal tissues, a mutation can be 
introduced at cell division and can be advantageous, disadvantageous or neutral for 
the newborn cell. Mutations that yield a selective advantage tend to spread and 
become fi xated within a population. Aberrations in crucial cancer genes [ 15 ], such 
as TP53, RAS or PTEN, provide selective advantage [ 16 ] through the increase of 
the net proliferation rate of cells and therefore tend to promote the outgrowth of 

   Table 3.1    Terminology: standard population genetics vs. population genetics of neoplasms   

 Standard population genetics  Population genetics of neoplasms 

 Individual  Cancer cell 
 Species  Clone 
 Reproduction  Mitosis 
 Fertilization, recombination  Somatic mutation, mitotic recombination 
 Speciation  Appearance of a new clone 
 Species evolution  Tumor progression 
 Natural environment  Tumor microenvironment 
 Selective pressure from environment, 
predators, etc. 

 Selective pressure from normal cells, other cancer 
clones, immune system, therapy, etc. 
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malignant traits and consequently drive tumor progression following patterns of 
clonal evolution [ 5 – 7 ]. These mutations are often referred to as  drivers , in contrast 
to mutations that do not alter the cell behavior, called  passengers . Driver genes are 
categorized into two subgroups: oncogenes that can become oncogenic upon muta-
tion [ 17 ], and tumor-suppressor genes that protect cells from becoming malignant 
and must be  inactivated  by a mutation to lead to a cancer phenotype [ 18 ]. A third 
category is referred to as  mutator  genes, or genes that, upon a certain genomic 
alteration, in turn alter the frequency of generation of new mutations in other genes. 
For instance, if a mutation affects a gene involved in the repair of DNA alterations, 
such as BRCA1 [ 19 ], it will not have a direct effect on the phenotype of the cell, but 
it will induce the cell to accumulate further mutations faster, thus speeding up the 
process of malignant transformation. This phenomenon is often referred to as the 
 muator  phenotype [ 20 ]. 

 The investigation of normal tissues from which the cancer originates and the dif-
ferent pre-malignant stages is extremely important in cancer research to understand 
how cancer originates and advances through the accumulation of more and more 
aberrant genes. In some cancers, such as colorectal carcinoma, tumorigenesis has 
been shown to be a step-wise process that transforms a normal colon epithelium into 
an adenoma and fi nally into a carcinoma, following the so-called model of multi-
stage carcinogenesis proposed by Vogelstein and co-workers [ 21 ]. Each stage cor-
responds to the acquisition of a mutation in a cancer gene, until the right combination 
of multiple alterations induces a fully blown colorectal carcinoma (Fig.  3.1 ). Both 
oncogenes and tumor suppressor genes take part in the step-wise process of malig-
nant transformation.

   Importantly, this sequential progression model can be matched to colon can-
cer incidence data using population genetics approaches, as demonstrated by 
Luebeck and colleagues [ 22 ]. Moreover, analyses by Nowak and co-authors 
[ 23 – 26 ] have modeled the mechanics behind the processes of fi xation of muta-
tions in tumors, with focus on the different dynamics of oncogenes and tumor 
suppressor genes. The recent advent of next-generation sequencing [ 27 ] has 
shed new light on the landscape of mutations in tumors. Based on the muta-
tional data by Sjöblom et al .  [ 14 ], Beerenwinkel and colleagues developed a 
mathematical model to explore the parameters of tumorigenesis and calculate 
the expected waiting time to cancer, reporting an average selective advantage of 
driver mutations in the order of 1 % under a normal mutation rate [ 28 ]. 
Furthermore, Bozic and co-authors [ 29 ] introduced a model of tumor progres-
sion to predict the number of passengers in relation to drivers reported by 
sequencing studies and concluded that very small selective advantages, on the 
order of 10 −3 , are suffi cient to drive tumorigenesis. 

 Once the primary malignancy is established, the cancer is believed to advance to 
later stages in which it becomes capable of metastasis by colonizing distant sites. 
Nonetheless, it is not clear if metastatic cancer cells arise early or late during cancer 
formation [ 30 ,  31 ]. Using population genetics applied to pancreatic cancer sequenc-
ing data, Yachida and co-workers [ 32 ] predicted a decade of time between the fi rst 
cancer cell and the rising of the metastatic clone, thus suggesting the need of further 
mutational steps after the seeding of the malignancy in this type of tumor. 
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APC RAS PI3K/P53

Normal crypt ACF Adenoma Carcinoma

  Fig. 3.1    The step-wise model of tumorigenesis in the colon. In the colon, the formation of cancers 
is often driven by a step-wise accumulation of multiple malignant alterations. In this case a normal 
crypt is transformed into an ACF (Aberrant Crypt Foci) through the silencing of tumor suppressor 
gene APC. In turn, an ACF becomes an adenoma via an oncogenic mutation of the RAS oncogene. 
Finally a carcinoma arises from further alterations in the P53 or PI3K pathways       

 Finally however, it is important to note that the step-wise model of carcinogen-
esis is not fully understood and, most importantly, it does not describe all the 
 scenarios in which tumors arise. As we will discuss in the next session, it should 
therefore be used with caution as it may be misleading in certain contexts [ 33 ].  

3.2.2     Cancer as a Complex System 

 Cancer is the result of billions of highly dynamical non-linear interactions between 
billions of cells and their surrounding microenvironment. It follows that a malig-
nancy is more than the mere sum of its parts; in other words, it is  a complex system  [ 34 ]. 
To study such objects it is fundamental to employ models that are able to handle the 
countless interactions occurring in tumors. With recent advances, models of tumor 
growth and development have become more and more sophisticated, incorporating 
the simulation of complex malignant processes, such as invasion [ 35 – 37 ], cancer 
stem cell dynamics [ 38 ], angiogenesis [ 39 ] and therapeutic response [ 38 ,  40 ]. The 
enormous advances in digitalizing disease information, as well as the development 
of ever more detailed models of tumor dynamics, has led to formulation of a new 
computationally oriented cancer fi eld referred to as  mathematical oncology  [ 41 ]. To 
date, the most challenging task for this fi eld is the integration of population genetics 
approaches, and more generally mathematical and computational models, with can-
cer data. 

 At the genomic level, one of the most important characteristics of cancers that 
has been recently exposed is intra-tumor heterogeneity (ITH). This feature refers to 
the fact that neoplasms are not composed of a set of uniform cells, but rather of a 
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highly diverse and dynamical population with different phenotypic and genotypic 
traits in constant competition for space and resources. This fi nding is rather unsurprising 
as it naturally follows from the clonal evolution model of malignancies [ 7 ]. Indeed, 
this property was already known at the histopathological level [ 42 ], nevertheless 
only recently has genomic data demonstrated that this is a common features of 
tumors [ 43 – 46 ] and that it predicts branching evolutionary patterns [ 47 – 49 ], in con-
trast to the sequential progression model described above. The complexity revealed 
by these studies further indicates the need for the use of modeling to tackle cancer 
evolutionary dynamics.  

3.2.3     Fitting Multi-Scale Models to Genomic Data 

 Whether drivers or passengers, mutations are the result of the underlying biologi-
cal processes that occurred in normal and malignant tissues. Therefore, muta-
tions in a cell record its past mitotic history. Moreover, different cellular 
dynamics (i.e. cellular organization, mutation rate, etc.) generate different 
mutational patterns that can be used to infer the characteristics of such cellular 
processes. The landscape of genomic alterations in cells can therefore be seen 
as a  molecular clock  that describes the history of cell lineages and can be used 
not only to reconstruct phylogenetic trees of cell populations, but also to decon-
volute tissue dynamics via the mutational signatures it contains. Within the con-
text of the normal colon crypt, which is the proliferative unit in the colon and at 
the origin of colorectal cancer, molecular clock data can be coupled with model-
ing to infer fundamental properties of human crypts, such as the number of stem 
cells responsible for the crypt cell renewal [ 50 ,  51 ]. This approach can be 
extended to populations of cancer cells to study the dynamics of growth and 
clonal expansion [ 52 ,  53 ]. 

 A new  in silico  framework to model cancer systems has been proposed that 
integrates multi-scale spatial modeling of single cells with single-molecule 
genomic data, with the aim of inferring properties of malignancies [ 54 ]. The 
computational model represents the  unknowns  of the biological system (the 
tumor) as parameters to be probed using a method called Approximate Bayesian 
Computation (ABC) [ 55 ]. ABC is a statistical inference technique that can be 
used when likelihoods are incomputable, as for agent-based models [ 51 ]. This 
framework (Fig.  3.2 ) allows computation of posterior probability distributions 
of the parameters, given the genomic data observed. This corresponds to per-
forming an  in vivo  indirect measurement of experimental parameters in human 
systems that would be otherwise impossible in wet labs. This new framework 
offers a computational-oriented method, complementary to biological and clini-
cal experimentation, to study malignant and pre-malignant systems directly in 
humans, using molecular data directly sampled from patients.
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3.3         Short-Term Open Questions 

 The overwhelming amount of genomic data has shed new light on our understanding 
of malignant processes. At the same time this fl ow of information is revealing an ever 
more striking complexity of tumors and of biological systems in general. With the 
increase in effi ciency, throughput and precision, we will soon start to routinely sequence 
single cells, thousands of times for each tumor. So far, the more we have descended 
into smaller and more precise scales, the more the results have been diffi cult to inter-
pret. Just by observing and analyzing the data it has becomes almost impossible to 
make sense of the underlying biology, simply because of the complexity of the pro-
cesses that generate such data. Often validation of model parameters and predictions in 
cancer has relied on qualitative estimates and approximate prediction from experimen-
tal observations. Improving this approach by coupling and validating models to cancer 
molecular information is a necessary step, yet it can be extremely challenging. 

 The most important task is for the modeling to keep up with the scale of these data. 
This is not always done by incorporating more complexity, but rather by designing 
models to be integrated with data in the fi rst place. Hence a data-driven modeling 
perspective is necessary to solve the open questions in cancer dynamics and most 
importantly, to shift the fi eld towards more quantitative methods. One of the major 
challenges in this task is that genomic data derive from sampling of neoplasms often 
made up of several billion cells. On top of that, due to intra-tumor heterogeneity, 

Spatial Agent-based 
Modeling

Patient Molecular Data

Tumor Parameters

Statistical Inference:
Approximate Bayesian Computation

X

M

  Fig. 3.2    Statistical inference framework on cancer genomic data. It is possible to integrate spatial 
agent-based computational models with cancer molecular data from a patient using a type of 
Bayesian statistical inference names Approximate Bayesian Computation (ABC). This allows esti-
mating patient-specifi c tumor parameters, corresponding to an indirect measurement of cancer 
characteristics directly from the patient molecular profi le       

 

A. Sottoriva and S. Tavaré

maley@asu.edu



37

genomic data can contain detailed information about sub-populations of cells, or even 
single cells. Hence there is the need to model the system in a multi- scale fashion, from 
the very small to the very large scale, in order to mirror the information embedded in 
genomic data. To date, computational models have simulated a relatively small num-
ber, on the order of 100,000 s, of cells and their interactions. This is orders of magni-
tude less than the number of cells in a 7 cm-diameter tumor, containing >100 billion 
cells. Moreover, to investigate the parameter space of malignant processes it is neces-
sary to run a single 100-billion cell simulation for tens of millions of times, thus yield-
ing an apparently unmanageable 10 11  × 10 7  = 10 18  computational problem. To tackle 
this, besides effi cient coding, there are two crucial principles to take into consider-
ation. The fi rst is to identify the most important driving processes that will need to be 
simulated, at the same time approximating those processes that are believed to be 
secondary or for which no information is contained in the data. For instance, if the 
position of multiple samples from a tumor is recorded, that information must be mod-
eled. However, when single cell positions within a sample are unknown, it can be 
neglected in the simulation as well. Thus it is important to tightly couple the level of 
detail of the simulation to the specifi c experimental settings and the type of data. As it 
is impossible to simulate every known malignant process, it important to identify the 
central mechanisms we want to investigate. Here we will illustrate a few examples of 
fundamental processes that need to be taken into the account:

    1.    Cell division. The most important process in cancer, uncontrolled proliferation 
ultimately leads this disease to be fatal and therefore must be modeled 
accurately.   

   2.    Mutations. Cell division is accompanied by genomic alterations that are also the 
primary source of molecular data we currently collect on the behavior of cancer 
cells. The mutation process therefore needs to be simulated with high precision.   

   3.    Cell hierarchical structure. Accumulating evidence indicate that tumors are orga-
nized into a hierarchy of cells, similarly to normal tissues, in which small groups 
of so-called cancer stem cells have stem-like abilities, such as the capacity of 
self-renew and giving rise to differentiated progeny. The bulk of the tumor is 
instead composed of cells with limited replicative potential [ 56 ]. The hierarchi-
cal cellular structure of malignancies is therefore another fundamental mecha-
nism that needs to be taken into consideration -- it has remarkable effects on the 
evolutionary dynamics of the tumor [ 38 ,  57 ].   

   4.    Intra-tumor heterogeneity. Tumors are not a homogeneous population of cells 
but rather a mixture of sub-clones with different phenotypic and genotypic char-
acteristics. Such variation is an important feature of tumors and it is responsible 
for the failure of therapy and the development of treatment resistance [ 7 ]. This 
variation is complex and involves the acquisition of different traits from different 
groups of cancer cells, their interaction with one other and with the microenvi-
ronment. Due to the large number of variables involved in this mechanism, this 
remains one of the most complex to model.    

  Although we may have multiple samples from the same malignancy, the genomic 
material in most cases refers to a small sub-population of sampled cells in the origi-
nal neoplasm, for instance a section or a core-punch. This means that, although a 
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sample should be representative of the neoplasm, only a small part of the tumor is 
actually examined. Thus it is not useful to simulate in full detail the behavior of bil-
lions of cells that may never be sampled [ 54 ]. 

 Furthermore, achieving the right level of detail of a simulation must be comple-
mented with the development of new algorithms for statistical inference to integrate 
with the raising complexity of mathematical models. This introduces problems 
related to parallelization of inference methods and the use of adaptive approaches to 
more effi ciently explore the parameter space [ 58 ].  

3.4     Long-Term Open Questions 

 We are in need of comprehensive computational frameworks in which we can make 
predictions and test hypotheses. Evolutionary cancer biology provides the underly-
ing theoretical paradigm within which to develop the models and the mathematical 
tools that will allow tackling the apparent chaos reported by genomic data. As we 
have previously discussed, the fi eld of population genetics of neoplasms incorpo-
rates a broad spectrum of mathematical models and statistical techniques for infer-
ence from molecular data. All these concepts have existed in separate disciplines for 
a long time; only recently have they been assembled together and applied to cancer 
research. This paradigm has already shown the potential to become an important 
instrument in cancer investigation. Nevertheless it needs substantial further devel-
opment to be fruitfully integrated with modern genomic data produced by next gen-
eration sequencing. 

 It appears that in the fi eld of cancer genomics, theory does not keep up with 
data. In general models of biological processes exist, but they are fragmented 
into compartmental boxes describing different phenomena. For example pro-
tein-protein interactions, RNA transcription and cellular signaling are all events 
for which a substantial amount of information is known. However, although in 
reality these processes are highly interconnected, a theoretical framework that 
links them all does not yet exist. Thus new fi ndings do not refer to a general 
model of reference in which results could be easily tested, as it is for the stan-
dard model in physics. Thus, a paradigm founded on computation and mathe-
matical representation of biological processes is a long-term goal in the fi eld of 
evolutionary cancer biology.  

3.5     Current Obstacles to Progress 

 To predict and understand the behavior of a complex disease like cancer we need to 
model the interaction among its many underlying mechanisms. This implies a sub-
stantial increase in the complexity of the models we design. In this scenario we 
encounter the risk of the models becoming overly complicated and unmanageable 
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both from a computational and experimental point of view. One of the chief chal-
lenges in any model is to defi ne a large body of reliable parameters, and eventually 
infer a few unknown ones. However, quantitative measurements in biological systems 
are often hard to obtain due to the variability of the conditions and the limitation of the 
technologies. Cancer cells show also a remarkably different behavior for different 
patients, different stages of a single lesion and even within the same tumor at a given 
time. On top of these issues, the measurement of parameters  in vivo  can be particularly 
diffi cult if not impossible in humans. Relying on animal models or cell cultures may 
represent a solution in some cases, but it is still necessary to bear in mind that those 
models do not necessarily reproduce the behaviors of the malignancy in humans. 

 Besides parameterization, the growing complexity of models could introduce 
important computational limitations. To quantitatively infer unknown biological 
parameters it is necessary to use statistical inference techniques that in turn neces-
sitate of a large number of simulation instances to produce reliable posterior distri-
butions. For multi-scale models for which it may take hours to run a simulation this 
may signify the impossibility of doing any inference with them. Another obstacle to 
addressing questions in cancer research is that often, molecular data have not been 
collected for the purpose of performing modeling. The whole research plan may 
assume modeling as an auxiliary tool to extract sensible information out of large- 
scale genomic data. This limits the modeling with additional assumptions that must 
be made in the design of the mathematical model and often the diffi culty of collect-
ing further information about the biological system that may be useful for modeling 
purposes only. 

 On top of these issues there is the  fragmentation  of our understanding of differ-
ent biological processes. This refl ects the long-standing molecular reductionist 
approach to biology which, although tremendously successful in tackling some 
complex problems, shows frustrating limitations [ 41 ]. At the same time, the models 
are also fragmented, as a common collaborative effort to model cancer as a whole is 
not yet present.  

3.6     Overcoming the Obstacles to Progress 

 To prevent overly complex models it is necessary to integrate the large set of known 
mechanisms occurring in the disease, but in doing so, to simplify each single mecha-
nism to model their global emergent behavior while neglecting unnecessary complex-
ity. This is a general principle of any complex system model and it has begun to be 
applied also in mathematical oncology [ 31 ]. Pursuing the simulation of several simple 
interlinked processes while paying attention to maintain the dependencies among 
them also reduces the problems of parameterization. Integrating the simulation of 
multiple biological processes (e.g. different genomic alterations, cancer stem cell 
hierarchy, intra-tumor heterogeneity) within one coherent mathematical framework is 
not a simple task, yet it appears now to be a necessary step to position population 
genetics of neoplasms as a valid complementary research approach in cancer. 
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 In order to overcome the issues related to the design of data collection, we pro-
pose that molecular data acquisition should be more model-oriented and hence per-
formed while keeping an eye on the modeling requirements and limitations. So the 
paradigm  inverts  a modeling-aided data analysis of molecular information to 
experiment- aided modeling and simulation of cancer processes. This implies the 
need to defi ne experiments and data acquisition in a manner that is sensible both in 
terms of modeling and in terms of biological and clinical signifi cance. 

 Giving shape to a theoretical reference framework is of great importance. This 
will require a joint effort from different fi elds such as evolutionary biology, mathe-
matics, computer science, genetics and oncology.  

3.7     Conclusion 

 Population genetics applied to neoplasms is a broad research fi eld that integrates 
many radically different techniques such as cancer biology, evolutionary theory, 
mathematical modeling and statistical inference methods. In the coming years, all 
these subjects should be assembled to defi ne a coherent and powerful set of tools to 
investigate the progression and development of cancer. Cancer population genetics 
is a new yet very promising approach for the analysis of cancer data and for the 
understanding of cancer as a complex system. This paradigm is also heavily quan-
titative and focused on extracting measurements from cancer data in order to reveal 
the dynamics of malignant processes that are today largely unknown. Placing all 
these concepts, originating from different fi elds of science, within one coherent 
mathematical framework is no easy task, however the potential of this technique is 
large and there is huge space for improvement and for the development of new 
methods to perform  in silico  cancer research. 

 Another very strong asset of cancer population genetics, integrated with statisti-
cal inference, is the ability to infer biological parameters indirectly via a 
computational- based analysis. These results are extremely important in cancer 
research because they allow the investigation of cancer in humans, a task that is 
often diffi cult for wet labs for ethical reasons. We predict important new develop-
ments in this fi eld driven by the design of new models and the huge amount of 
cheap, genomic and phenotypic single-cell data that will be produced within the 
next few years in cancer research.     
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