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ABSTRACT

The application of microarray hybridization theory
to Affymetrix GeneChip data has been a recent
focus for data analysts. It has been shown that the
hyperbolic Langmuir isotherm captures the shape of
the signal response to concentration of Affymetrix
GeneChips. We demonstrate that existing linear
fit methods for extracting gene expression mea-
sures are not well adapted for the effect of satura-
tion resulting from surface adsorption processes.
In contrast to the most popular methods, we fit
background and concentration parameters within a
single global fitting routine instead of estimating the
background before obtaining gene expression mea-
sures. We describe a non-linear multi-chip model of
the perfect match signal that effectively allows for
the separation of specific and non-specific compo-
nents of the microarray signal and avoids satura-
tion bias in the high-intensity range. Multimodel
inference, incorporated within the fitting routine,
allows a quantitative selection of the model that best
describes the observed data. The performance of
this method is evaluated on publicly available
datasets, and comparisons to popular algorithms
are presented.

INTRODUCTION

Genome-wide expression analysis has become an increasingly
important tool for identifying gene function, disease-related
genes and transcriptional patterns related to drug treatments.
The Affymetrix GeneChip technology, introduced in 1996,
has become one of the most widely used platforms for
whole-genome expression analysis. Each gene is represented
on the GeneChip by 10–20 ‘perfect match’ (PM) probes, con-
sisting of 25 bp complementary to different coding sequence
regions of the gene in question. In addition, there is a corre-
sponding set of ‘mismatch’ (MM) probes, where the middle
base has been substituted with its complement.

Most software packages available for the calculation of
gene expression levels from fluorescence intensities rely
on algorithms of a purely statistical or empirical nature; Affy-
metrix Microarray Suite 5.0 is based on the Tukey biweight
algorithm (1) (http://www.affymetrix.com), DNA-Chip Ana-
lyzer (dChip) implements a linear model for expression
analysis of oligonucleotide arrays (2) and Bioconductor’s
RMA employs a log-additive robust multi-array analysis
(3). More recently, several algorithms based on physical
properties of the hybridization process have been introduced.
GCRMA performs a background adjustment using sequence
information (4) and Zhang et al. (5) implement a dependent
nearest-neighbor model (PDNN).

It has been shown that the hyperbolic Langmuir isotherm
describes the shape of GeneChip signal response to concen-
tration (6). Most of the developed methods rely, however,
on a linear fit, while in reality probe intensities often
span outside the linear regime region of the isotherm within
the working concentration range for commercial arrays. The
availability of calibration experiments allows for the develop-
ment and validation of statistical signal models for microar-
ray data. We use three publicly available spike-in datasets
(U95, U133 and wholly defined control spike-in datasets) to
test and validate a novel multi-chip non-linear fitting algo-
rithm (7,8) (http://www.affymetrix.com/support/technical/
sample_data/datasets.affx).

The removal of non-specific background is a key issue
in microarray data analysis. Several existing methods use
MM probes to estimate the background signal. An underlying
assumption of these approaches is that the majority of MM
signal is non-specific (1,4). However, mismatch signal con-
tains mostly specific signal in addition to a random non-
specific component that is different from the non-specific
component of PM. Hence direct subtraction of MM is
unlikely to be useful. We therefore exclude MM information
from our model.

MATERIALS AND METHODS

Langmuir isotherm

In this paper we propose to use a physical model of the
hybridization process based on Langmuir adsorption theory.
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Previous work in this field was carried out by Halperin et al.
(6), Peterson et al. (9), Vainrub and Pettitt (10) and Dai et al.
(11). Attempts to match Langmuir adsorption isotherms to
the Affymetrix spike-in experiment data include those of
Held et al. (12), Hekstra et al. (13) and Zhang et al. (5).
Langmuir adsorption theory is based on the assumption that
there are two competing processes driving hybridization:
adsorption, that is, the binding of target molecules to immo-
bilized probes to form duplexes, and desorption, that is, the
reverse process of duplexes dissociating into separate
probe and target molecules. The form of the equation results
in a non-linear concentration–intensity response, that is,
decreased probe affinity with increase in concentration. In
the absence of non-specific binding, the equation would be
of the form

PMðcÞ ¼ I ·
kc

1 þ kc
‚

where c is a concentration, I a saturation intensity and k is an
equilibrium constant.

It has been shown that the saturation intensity and equilib-
rium constants depend on numerous factors and differ greatly
from probe to probe. Several attempts have been made to
predict these constants from probe sequence content (5,13).
For example, Hekstra et al. (13) used a Langmuir adsorption
model with an additive background from non-specific bind-
ing. In this approach, parameters for the Langmuir model
were first fit into the model using known concentration values
provided in a spike-in experiment. Next, the resulting
parameters were fit into linear combinations of the numbers
of each nucleotide for each probe–target pair and estimates
of concentrations were obtained for each probe by inverting
the Langmuir equation. The averages of predicted concentra-
tions across each probeset were then reported as expression
measures. Burden et al. (14) demonstrated that such
an approach returns poor estimates of concentration; up to
60% of predicted values had to be discarded according to
the suggested truncation scheme.

Statistical model

Although duplex formation in solution has been extensively
studied using a nearest-neighbor model, it has been difficult
to apply those results to microarrays (5). Binding interactions
on the microarray surface are complicated by many factors
including steric hindrance on the surface, probe–probe inter-
actions and RNA secondary structure formation. Hence, we
avoid predicting physical parameters of the model. We use
the notion of background as a probe-specific part of the signal
that is introduced by all the genes in the sample pool other
than the target gene. We propose the following statistical
model:

log ðPMpjlÞ ¼ log Ip
kpcj

1 þ kpcj
þ bgp

� �
þ epjl‚

where p is a probe index (p ¼ 1, . . . , p), j a condition (concen-
tration) index (j ¼ 1, . . . , J), c a concentration, l a replicate
(l ¼ 1, . . . ,L), I a saturation intensity, k an equilibrium con-
stant and bg the background component of the signal. The
epjl are independent error terms, with mean 0 and constant

variance. Thus, each probe is parameterized by three parame-
ters and each experimental condition is characterized by one
concentration.

The model described above allows us to utilize knowledge
about the design of the experiment. If the experiment includes
several technical replicates (i.e. hybridization was performed
with identical samples) as it was in all the three datasets used
in this study, then all observations within each condition
should be characterized by the same concentration. In bio-
logical replicates, which are usually more common, samples
from different individuals are collected and prepared sepa-
rately. Thus, each intensity is characterized by its own
RNA concentration even if they belong to the same biological
condition.

Algorithm

Before fitting, the data were normalized. For Affymetrix
spike-in datasets we used a probe-level quantile normaliza-
tion (15), implemented in Bioconductor, an open source
project for the analysis of genomic data (16). For the wholly
defined control spike-in dataset, we adopted constantsubset
invariant set normalization, proposed in the original
paper (8).

We used an iterative non-linear procedure with a Newton-
type optimization method to fit the model to the data. The
first step of this method is to obtain estimates for initial con-
centrations by fitting log intensities to a linear model using a
robust additive model that employs Tukey’s median polish
procedure:

log ðPMpjlÞ ¼ concentrationj þ probe affinityp þ epjl

The ‘medpolish()’ routine is available in R, a widely used
open source language and environment for statistical comput-
ing and graphics (17).

Next, probe parameters I, k, bg and concentration terms c
are iteratively refined according to the full non-linear model
through ‘nlm()’, a non-linear least square optimization
routine in the R statistical system. The search is carried out
iteratively by minimizing the sum of squares of the residual
matrix obtained in the previous fit. First, the estimators of
probe parameters are updated using current concentration
values. Then concentration estimates are optimized based
on these new probe parameters. The iterative scheme contin-
ues until convergence is obtained, i.e. until fitted parameters
from a current step are sufficiently close to the parameters
of the previous step. Convergence was observed after 5–
10 iterations.

Model selection

A goodness-of-fit test is an important step in any model fitting
procedure. We address the quality of fit by using a modified
F-test framework.

In the presence of a specific target gene, the model can be
rewritten as

log ðPMpjlÞ ¼ log ðSPpj þ bgpÞ þ epjl‚

where p is a probe index, j a condition (concentration) index,
SPpj the specific component of the signal and bgp the
non-specific fraction of the signal. If gene expression does
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not change from condition to condition, then the signal model
should be simplified to

log ðPMpjlÞ ¼ log ðSPp þ bgpÞ þ epjl

Hence, a simplified model with fewer parameters is more
appropriate when the target gene is not differentially
expressed. In order to address this question, for each gene
we perform a goodness-of-fit test and select the appropriate
model based on formal model selection criteria using the
statistic:

ðRSS1 � RSS0Þ/ð3Pþ J � PÞ
RSS0/ðPJL � 3P � JÞ ‚

where RSS1 denotes the residual sum of squares from fitting
the reduced model and RSS0 denotes the residual sum of
squares from fitting the full model. The nested model is con-
structed so that the simpler one-concentration model can be
obtained from the multi-concentration signal model as
described above. Thus choosing among models reduces to
determining the appropriateness of the additional concentra-
tion parameters. The significance of F-values is assessed by
permutation analysis; randomization of the probe data for
the genes that were not spiked in the test datasets was
performed to establish a fixed cutoff level for P-values. Cut-
off values were established by analysing the distribution of
F-values for non-differentially expressed genes in the Choe
dataset and non-spiked genes in the public Affymetrix data-
sets. Results were in rough agreement. We found that a cutoff
of F < 1 eliminates 99% of non-expressed or unchanged
genes in all these datasets. Further analysis such as assigning
significance to expression changes in different biological
conditions must be performed by high-level analysis routine,
e.g. with the help of packages such as limma (18) and
SAM (19).

The test datasets

Affymetrix human genome U95 dataset. In the course of
developing and validating the Affymetrix Microarray Suite
(MAS) 5.0 algorithm, Affymetrix produced data from a set
of 59 arrays (HGU95) organized in a Latin square design.
This dataset consists of 14 groups of human genes spiked
in at known cRNA concentrations, arranged in a cyclic Latin
square design, with each concentration appearing once in
each row and column. The concentrations of the 14 gene
groups in the first experiment are 0, 0.25, 0.5, 1, 2, 4, 8,
16, 32, 64, 128, 256, 512 and 1024 pM. Each experiment con-
tains three replicates. The Affymetrix Human Genome U95
spike-in dataset is available at http://www.affymetrix.com/
support/technical/sample_data/datasets.affx.

Affymetrix human genome U133 dataset. This dataset consists
of 3 technical replicates of 14 separate hybridizations of
42 spiked transcripts in a complex human background at
concentrations ranging from 0.125 to 512 pM. Thirty of the
spikes are isolated from a human cell line, four spikes are
bacterial controls and eight spikes are artificially engineered
sequences believed to be unique in the human genome.
The Affymetrix Human Genome U133 spike-in dataset is

available at http://www.affymetrix.com/support/technical/
sample_data/datasets.affx.

Wholly defined control spike-in dataset. Choe et al. (8)
generated a new control dataset for the purpose of evaluating
methods for identifying differentially expressed genes
between two sets of replicated hybridizations to Affymetrix
GeneChips. This dataset contains 1309 individual cRNAs
that differ by known relative concentrations between the
spike-in and control samples. This large number of defined
RNAs provides accurate estimates of false-negative and
false-positive rates at each fold-change level. The dataset
includes low fold changes, beginning at only a 1.2-fold con-
centration difference, up to 4-fold. The dataset uses a defined
background sample of 2551 RNA species present at identical
concentrations in both sets of microarrays, rather than a bio-
logical RNA sample of unknown composition.

RESULTS

Langmuir adsorption model

As noted earlier, the response curve is non-linear and it can
be better characterized by a Langmuir isotherm (13). The
resulting fluorescence signal versus target concentration
data are shown in Figure 1, providing a demonstration that
the Langmuir model captures the physical chemistry of
GeneChip hybridization.

Extraction of gene expression and estimates
of differential expression

We fit our non-linear model to the U133 spike-in data without
prior knowledge of the concentrations used in this experi-
ment. Figure 2 shows the reconstructed concentration range
plotted against the true mRNA concentration.

The sensitivity of the algorithm can be assessed by exam-
ining local slopes, i.e. the observed log fold-change for genes
with true fold-change of 2. Since concentration groups in
both datasets are arranged in a Latin Square design and
thus differ by a factor of 2, the ideal local slope would be
1. Figure 3 shows the predicted concentration increments
for the full concentration ranges.

Figure 1. Fluorescence intensity versus nominal concentration for three genes
in the Affymetrix U133 dataset. Points represent experimental conditions and
solid lines represent Langmuir isotherm fit.
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Comparison with existing algorithms

We compared the performance of our non-linear multi-chip
fitting procedure to other popular algorithms that compute
gene expression measures using the two Affymetrix spike-
in datasets mentioned earlier. Algorithms selected for com-
parison included RMA (3), RMA’s successor GCRMA (4),
Affymetrix MAS 5.0 (1) and the latest Affymetrix algorithm,
PLIER (Probe Logarithmic Intensity Error) (1). The results
for MAS and PLIER methods were obtained using the
Bioconductor implementation (16). Surprisingly, the perfor-
mance of these algorithms varies greatly depending on the
dataset used, e.g. GCRMA shows improved performance on
the HG-U95 spike-in control dataset while performing signifi-
cantly worse on the HG-U133 dataset (Figures 4 and 5). In
contrast, MAS 5.0 shows improved reconstructed concentra-
tion curves on the U133 spike-in dataset and performs poorly
on the U95 spike-in dataset. The non-linear multi-chip fit
performs consistently on both U133 and U95 since it does
not rely on pre-fitted parameters optimized for a particular
dataset.

We used the Affycomp benchmark (20) to evaluate,
compare and display the performance of expression level esti-
mators for proposed global multi-chip non-linear fit. Using
controlled spike-in experiments and dilution series, Affy-
comp systematically assesses the performance of the methods
at different biologically relevant spike-in concentrations. The
results of the assessment have been submitted to the Affy-
comp website for comparison with other probe-level analysis
algorithms.

Owing to the structure of NLFIT results, several assess-
ment scores should not be considered for evaluation and
comparison. For example, the proposed global non-linear
multi-chip algorithm accounts for experimental design, and
fits replicated data into a single measure. Thus, assessments
that account for between-replication variation in expression
level estimators should not be considered. In addition, the
use of model selection and incorporation of experiment
design within the fitting routine has advantages and in
particular should lead to higher assessment scores. For the

Figure 3. Extracted local slopes versus nominal concentration. The average
over 42 probesets in shown in red. The identity line is also shown by the black
dashed line.

Figure 2. Gene expression measures obtained using non-linear multi-chip fit
for the 42 spike-in genes in the 14 experiments in AFFY HG-U133. Each
curve represents extracted expression measures for a gene. Red line denotes
the median and dashed line represents the identity line.

Figure 4. Reconstructed concentration range versus nominal concentrations of U133 and U95 spike-in dataset for MAS 5.0 (green), PLIER (light blue), GCRMA
(dark blue), RMA (fuchsia) and NLFIT (red), shifted to match 1 pM concentration. Averages taken over 42 probesets are shown. Reconstructed curves were
shifted vertically to meet zero at 1 pM spike-in. The identity line is dashed.
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spike-in experiment using the HG-U133A and HG-U95 chip,
our proposed global non-linear multi-chip algorithms
achieved high scores in all relevant assessments. The com-
plete assessment report is provided in Table 1. Additional
comparisons of NLFIT performance, in particular excluding
experimental design information, are provided in Supplemen-
tary Material.

We also used the dataset of Choe et al. (8) to assess the
performance of our non-linear multi-chip fitting procedure.
This dataset was prepared to evaluate statistical inference
methods. However, it has several experimental design issues
that suggest caution when interpreting the results (21). One of
the issues is that an unequal amount of RNA was hybridized
to spiked and control chips. The total amount of RNA on
spiked chips is �20% more than on control chips. This
leads to a series of problems in the analysis of the data.
Microarray modeling usually relies on several assumptions,
including the equality of background levels and identity of
signal distributions. The characteristics of this particular
experimental design lead to custom routines such as

post-normalization of summarized gene expression values
(8). At the same time, this large dataset is a useful benchmark
for the quality assessment of gene expression extraction
algorithms that involve background correction as well as
low-level summarization of probeset intensities into one
gene expression measure.

To perform a direct comparison of the popular methods to
the proposed non-linear routine we reproduced all of the anal-
ysis steps described in Choe et al. (8). We generate the results
of RMA, GCRMA, Affymetrix MAS 5.0 and PLIER, as well
as our NLFIT routine. The results obtained for GCRMA,
Affymetrix MAS 5.0 were in agreement with the ones
reported in (8). We compared the observed fold changes
with known fold changes and the resulting plots are shown
in Figures 6 and 7. These figures demonstrate the advantage
of NLFIT over other popular procedures like RMA, GCRMA,
PLIER and MAS5 in its ability to reconstruct the fold change.
The effect is more pronounced due to the increased number
of spiked-in genes available in the wholly defined control
dataset. We observe that these algorithms consistently

Figure 5. Reconstructed concentration increments versus nominal concentrations of U133 and U95 spike-in dataset for MAS 5.0 (green), PLIER
(light blue), GCRMA (dark blue), RMA (fuchsia) and NLFIT (red). Averages taken over 42 probesets are shown. An ideal, y ¼ 1, increment line is shown in
dashed black.

Table 1. The results from the Affycomp assessment of HG-U133A and HG-U95 spike-in data, processed with NLFIT (submitted August 19, 2005)

Statistics HG_U95 HG_U133A

1. [26] Median SD—median SD across replicates — —
2. [18] Null log-fc IQR—Inter-quartile range of the log-fold-changes from genes that should not change — —
3. [20] Null log-fc 99.9%—99.9% percentile of the log-fold-changes if from the genes that should not change — —
4. [2] Signal detect R2—R-squared obtained from regressing expression values on nominal concentrations in the

spike-in data
0.89 0.85

5. [1] Signal detect slope–slope obtained from regressing expression values on nominal concentrations in the
spike-in data

0.65 0.7

6. [29] Low.slope–Slope from regression of observed log concentration versus nominal log concentraion for
genes with low intensities

0.25 0.22

7. [30] Med.slope—As above but for genes with medium intensities 0.68 0.69
8. [31] High.slope—As above but for genes with high intensities 0.68 1.07
9. [10] Obs-intended-fc slope–slope obtained from regressing observed log-fold-changes against nominal

log-fold-changes
0.64 0.7

10. [11] Obs-(low)int-fc slope–slope obtained from regressing observed log-fold-changes against nominal
log-fold-changes for genes with nominal concentrations less than or equal to 2

0.34 0.29

11. [21] Low AUC—Area under the ROC curve (up to 100 false positives) for genes with low-intensity
standardized so that optimum is 1

0.74 0.76

12. [22] Med AUC—As above but for genes with medium intensities 0.92 0.95
13. [23] High AUC—As above but for genes with high intensities 0.95 0.97
14. [24] Weighted avg AUC—A weighted average of the previous three ROC curves with weights related to

amount of data in each class (low, medium, high)
0.79 0.81
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underestimate fold changes by a factor of �2. In contrast,
NLFIT reconstructs fold changes without significant
distortion.

DISCUSSION

Examining fluorescence intensity versus nominal concen-
tration plots shows that the assumption of linearity between

measured intensity and concentration is inaccurate in the
case of Affymetrix GeneChips and results in curves saturat-
ing according to a hyperbolic Langmuir isotherm. By
employing a physical model that accounts for chemical sat-
uration we improve the accuracy in differential gene expres-
sion estimates, especially in high concentration ranges.

In addition, by implementing background and gene expres-
sions estimation within the same fitting procedure, we are
able to provide estimates of differential expression with a sig-
nificant reduction in bias, without a concomitant decrease in
the signal-to-noise ratio. This allows us to estimate back-
ground on each probe in the context of all experimental
conditions. Other algorithms (RMA, GCRMA) subtract back-
ground estimates based on theoretical predictions before fit-
ting expression measures. The suggested model is relatively
complex in comparison to other popular algorithms. It
requires a significant number of arrays to perform. However,
performance of the algorithm on Choe’s dataset (two experi-
mental condition and three replicates per condition) shows
satisfying performance and shows superior concentration
reconstruction compared to GCRMA, RMA, MAS5 and
PLIER.

Comparisons of the various algorithms are limited by
the small number of available control datasets. The two
Affymetrix spike-in datasets used in this study are among
the few available for benchmarking Affymetrix GeneChip
expression measures. Certain algorithms were trained on
these datasets and, hence, a direct comparison of such results
must be excluded.

Examination of Figures 4 and 5 reveals that both PLIER
and GCRMA are fairly insensitive to low concentrations of
less than 1 pM, whereas NL-FIT and MAS 5.0 are able to
detect concentration changes at a level of 0.1 pm. Methods
that use MM as a background predictor, i.e. MAS 5.0 and
GCRMA, tend to overestimate concentration changes
(Figure 5). It is also apparent that methods that rely on linear
models (MAS 5.0, PLIER and GCRMA) become less sensi-
tive in the high target concentration range, while NLFIT cor-
rectly estimates concentration changes across the entire range
of values.
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