
Integrating Approximate Bayesian
Computation with Complex Agent-Based

Models for Cancer Research
In COMPSTAT 2010 – Proceedings in Computational Statistics, eds.

Saporta G & Lechevallier Y. Springer, Physica Verlag, pp. 57–66, 2010.

Andrea Sottoriva1 and Simon Tavaré2
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Abstract. Multi-scale agent-based models such as hybrid cellular automata and
cellular Potts models are now being used to study mechanisms involved in cancer
formation and progression, including cell proliferation, differentiation, migration,
invasion and cell signaling. Due to their complexity, statistical inference for such
models is a challenge. Here we show how approximate Bayesian computation can be
exploited to provide a useful tool for inferring posterior distributions. We illustrate
our approach in the context of a cellular Potts model for a human colon crypt, and
show how molecular markers can be used to infer aspects of stem cell dynamics in
the crypt.
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1 Introduction

1.1 Agent-based modeling in cancer research

In recent years, cancer research has become a multi-disciplinary field. As
well as biological and medical advances, mathematical and computational
modeling and advanced statistical techniques have been employed to deal
with the ever-increasing amount of data generated by experimental labs.

Recently, the concept of mathematical oncology has taken shape as an
emerging field that integrates cancer biology with computational modeling,
statistics and data analysis (Anderson and Quaranta (2008)). However, the
use of mathematical modeling in cancer research is not completely new; since
the 1960s population growth models have been developed to explain the
growth kinetics of tumours (cf. Laird (1964), Burton (1966)).
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Despite the importance of these models in explaining the basic growth
dynamics of solid malignancies, they often fail to represent the intricate un-
derlying mechanisms involved in the disease. Cancer is in fact driven by a
large number of complex interactions spanning multiple space and time scales.
All these interactions among molecules, such as transcription promoters and
repressors, and among cells, such as cell-to-cell signaling, give rise to sev-
eral emergent behaviors of tumours, most importantly tissue invasion and
metastasis (Hanahan and Weinberg (2000)).

In this scenario, multi-scale agent-based models become necessary to study
many of the mechanisms involved in cancer formation and progression. In par-
ticular, hybrid cellular automata models (Anderson et al. (2006), Sottoriva,
Verhoeff et al. (2010)) and cellular Potts models (Jiang et al. (2005), Sot-
toriva, Vermeulen and Tavaré (2010)) have proved suitable to model cancer
cell proliferation, differentiation, migration, invasion and cell signaling. These
models represent cancer as an evolutionary process (Merlo et al. (2006))
with emergent behaviour that results from the interplay of several underly-
ing mechanisms at the cellular and extra-cellular level.

1.2 Coupling biological data and models with ABC

Approximate Bayesian Computation (ABC) provides a valuable tool to infer
posterior distributions of parameters from biological data when using stochas-
tic models for which likelihoods are infeasible to calculate. Agent-based mod-
els are able to incorporate many of the processes occurring in cancer, most
of which show non-linear behavior and are therefore impossible to treat an-
alytically. The integration of ABC and agent-based models therefore seems
natural, yet there are some important issues to discuss.

In the past ABC has been extensively and successfully employed with
population genetics models (Beaumont et al. (2002), Marjoram and Tavaré
(2006)). In such applications the models are often relatively simple because
they aim to simulate a few crucial underlying processes. In contrast, in some
cancer modeling scenarios the models are complex and computationally ex-
pensive; even with large computational resources simulating the model mil-
lions of times is infeasible. In this paper we discuss how to make use of ABC
with complex agent-based models by exploiting parallelization and by reduc-
ing the complexity of the ABC algorithms to the minimum. We illustrate our
approach using the human colon crypt as an example.

2 Material and methods

2.1 Methylation data

To study the evolutionary dynamics of a human colon crypt we first need to
collect data that contain information about the basic processes occurring in
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it, such as proliferation, differentiation and migration of cells. Neutral DNA
methylation patterns at CpG sites have proved to be suitable candidates as
molecular clocks of the cells in the crypt (Yatabe et al. (2001)). By using a
population genetics model combined with Markov chain Monte Carlo, Nicolas
et al. (2007) showed that it is possible to infer the parameters regulating some
of the mechanisms occurring in the human colon crypt.

Nicolas et al. (2007) collected methylation patterns from a total of 57
colon crypts from 7 male patients aged between 40 and 87 years. The dataset
is divided into two subgroups: the first contains 8 cells sampled from each
of 37 crypts obtained from 5 distinct individuals, the second has 24 cells
sampled from each of 20 crypts taken from 3 individuals; one individual is
common to both subsets. Each sampled pattern is 9 CpGs long and has
been sequenced from a 77 bp locus upstream of the BGN gene on the X
chromosome. Because BGN is not expressed in neoplastic or normal colon
tissue (Yatabe et al. (2001)) we consider it an epigenetically neutral locus.

2.2 Modeling the colon crypt

Colorectal cancer is one of the most common cancers in humans and it is
known to originate from cells in a colon crypt, the units responsible for re-
newing the colon lining (Barker et al. (2009)). These tubular structures form
the colon epithelium and continuously generate new cells that repopulate the
fast-renewing colon tissue. At the base of the colon crypt there are stem cells
that generate a compartment of transient amplifying cells that in turn give
rise to the fully differentiated colon cells. These cells migrate to the top of
the crypt and become part the colon epithelial tissue before being shed into
the colon lumen (Figure 1). Colorectal cancer is triggered by the disruption
of some of the pathways that regulate crypt homeostasis, such as Wnt and
APC (Barker et al. (2009), Reya and Clevers (2005)).

Despite the crucial role played by colon crypts in colorectal carcinogen-
esis, several mechanisms and parameters of crypt dynamics are unknown,
including the number of stem cells present in the crypt, the number of tran-
sient amplifying stages and the rate of symmetrical division of stem cells in
the crypt (Potten et al. (2009)).

Here we present a newly developed model that simulates cell proliferation,
differentiation, migration in the colon crypt. In addition to these processes
our model, which we call the VirtualCrypt, simulates the occurrence of methy-
lation mutations at each cell division. To model the colon crypt, we unfold
the crypt and represent it as a two-dimensional sheet of cells with periodic
boundary conditions on the sides and fixed at the bottom (Figure 2A). Cells
that exit the top of the lattice are shed into the colon lumen and are therefore
deleted from the simulation.

The VirtualCrypt is a Cellular Potts Model that models the colon crypt
as a two-dimensional lattice Ω with N ×M sites. Each biological cell in the
crypt has a unique identifier or spin σ, and adjacent lattice sites with the
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Fig. 1. Cartoon of a colon crypt. DC, differentiated cell; TAC, transient amplifying
cell. Stem cells at the bottom of the crypt spawn all the other crypt cells that
differentiate and migrate towards the top of the crypt to form the colon lining.

same spin define a single cell volume Vσ and its shape (Glazier and Graner
(1993)). Each cell has also a type τ(σ) that identifies a cell as a stem cell, a
transient amplifying (TA) cell or a differentiated cell (DC).

The evolution of the system is modeled using a thermodynamical ap-
proach borrowed from statistical mechanics in which all the components of
the system seek the point of lowest energy. In other words, at each step we
propose a large number of random variations to the system and we are more
likely to accept those which are more advantageous, in terms of energy, for
the cells. For example a cell will seek to expand to maintain its original vol-
ume when it is compressed, or it will tend to migrate along a chemotactic
gradient if attracted by it.

In summary, we can describe the total energy of the system with a simple
Hamiltonian:

H = Ev + Ea + Ec, (1)

where Ev is the volume elastic energy, Ea is the cell membrane contact energy
and Ec is the chemotactic energy. These values represent the energy cost of
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Fig. 2. The cellular Potts model. Panel A: stem cells are dark shade, transient
amplifying cells intermediate shade, differentiated cells are white. Panel B: Methy-
lation patterns in the cells in the crypt. Different shades correspond to different
alleles in the BGN locus.

a certain cell state. The Volume Elastic Energy Ev is defined by

Ev =
∑
σ

λτ(σ)|Vσ − VT |, (2)

In the absence of external forces the cell volume Vσ is equal to its target
volume VT and therefore the cell elastic energy Ev = 0. When a cell is
compressed or stretched its elastic energy increases proportionally to the
change in volume and its elastic coefficient λτ(σ), which depends on the cell
type. The Cell Adhesion Energy Ea is given by

Ea =
∑

(i,j),(i′,j′) neighbours

J(τ(σi,j), τ(σi′,j′))(1− δσi,jσi′,j′ ). (3)

A certain energy cost or credit J(τ1, τ2) is associated with each contact
point between cells, in a cell-type dependent manner. The δ term in (3)
ensures that only contact points between two different cells are considered
and not points within the same cell. In this way we can simulate cell adhesion
to neighboring cells or to other surfaces in an elegant and straightforward
manner. The Chemotactic and Haptotactic Energy is given by

Ec =
∑
(i,j)

ντ(σi,j) C(i, j). (4)

The chemotactic or haptotactic response of cells to underlying concentra-
tion gradients is modeled by assuming that the energy cost of a certain cell
state depends on the cell taxis coefficient ν and on the underlying chemical or
extracellular matrix concentration C(i, j). The higher the gradient and the
migration coefficient, the less it would cost in terms of energy for the cell to
migrate rather than stay still.
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To evolve the system, at each time step τ we propose and eventually
accept a certain number of random local changes in a Monte Carlo fash-
ion, proceeding according to the following Metropolis algorithm (Beichl and
Sullivan (2000)):

1. Compute system energy H
2. Pick a random lattice site (i, j)
3. Set the content σ of (i, j) to that of its neighbor (i′, j′), chosen at random
4. Calculate the new energy ∆H = Hnew −H
5. If ∆H < 0 accept the new state because the total energy is lower
6. If ∆H ≥ 0 accept the new state with probability p = exp(−∆H/(κT )),

where κ is the Boltzmann constant and T is the temperature of the system
7. If the cell is growing, increase the target volume to VT = VT + δV
8. If Vσ > 2VT the cell divides (Vσ automatically tends to VT , for energetic

reasons)
9. Go to 1

In addition to the mechanisms handled by the cellular Potts algorithm,
at each cell division we simulate the occurrence of methylation mutations
with a rate µ (see Table 1). Each of the 9 CpG sites forming the methylation
pattern we collected in the data has a probability µ of being methylated or
demethylated at each cell division. If no methylation error occurs, the original
methylation pattern is passed on to the daughter cell from the mother cell.

2.3 Inferring colon crypt dynamics with ABC

With our cellular Potts model we are able to simulate the evolution of methy-
lation patterns for long periods of time, up to the age of the patient from
which the data have been collected. The two main parameters we are inter-
ested in inferring are the number of stem cells N present in the bottom of
the crypt and their symmetrical division rate ρ. The rest of the parameters
are assumed to be fixed and are reported in Table 1.

Parameter Symbol Value

TACs and DCs migration speed ν 1000 (1 cell position per day)
Cell cycle time tc 24h (Potten and Loeffler (1990))
Methylation rate µ 2× 10−5 (Yatabe et al. (2001))
Methylation pattern length γ 9 CpGs (Nicolas et al. (2007))

Table 1. Fixed parameters in the VirtualCrypt simulations.

To fit the two parameters to our methylation data we use Approximate
Bayesian Computation. The prior distributions are taken to be uniform, with

N ∼ U(2, 30), ρ ∼ U(0, 1).



Agent-Based Models for Cancer Research 7

Initially all cells in the crypts are assumed to be unmethylated (Yatabe et
al. (2001)). To compare the multi-dimensional data from the simulations and
the patients we define a summary measure S(·) by

S(d, p, w, u, g) =
√
d2 + p2 + w2 + u2 + g2, (5)

where d is the number of distinct patterns, p number of polymorphic sites,
w the average pairwise distance between the patterns, u the number of com-
pletely unmethylated patterns and g the number of singletons (patterns that
appear only once in a crypt). We note that these statistics are normalized
to have common range before use. The ABC algorithm that we applied is as
follows:

1. Sample a parameter set θ from the prior
2. Sample a random seed r for the simulation
3. Run the model until the correct patient age is reached
4. Repeat from step 2 until the number of simulated crypts is the same as

in the data
5. Compute the summary statistics X = (d, p, w, u, g) of the observed data,

with d, p, w, u, g averaged over all crypts
6. Compute the summary statistics X ′ = (d′, p′, w′, u′, g′) from the simu-

lated crypts, with d, p, w, u, g averaged over all crypts
7. If |S(X)−S(X ′)| < ε accept θ as a sample from the posterior distribution
8. Go to 1

This simple ABC approach allows for heavy parallelization due to the inde-
pendence of the simulations and the accept/reject step that can be performed
a posteriori, together with other signal extraction techniques.

3 Results

We generated a total of 80,000 single colon crypt simulations, grouped in
sets of 16 having the same parameter set but different random seeds (5,000
different θs in all). This allows us to compare the simulations with the data by
reproducing the sampling performed on the patients, where up to 14 crypts
were analyzed from a single patient. We are assuming crypts from a single
patient have similar parameters. In particular, for each single patient dataset,
we calculate the mean summary statistics for a group of simulated crypts with
the same parameter set θ. Such a group must be the same size as the number
of crypts present in the dataset. We then accept those instances according to
the ABC algorithm previously described, with a threshold value of ε = 0.01.
At the end of this step we obtain posterior distributions of the parameters
for each patient. Under the assumption that the physiological parameters
of the crypt do not vary among different individuals, we finally average all
the posterior distributions to obtain a global posterior distribution of the
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Fig. 3. Posterior histograms of the number of stem cells N and the symmetrical
division rate ρ.

parameters given the whole dataset. Such a global posterior distribution is
plotted in Figure 3.

Due to the heterogeneity of the methylation patterns present in the crypt,
our study suggests a relatively high number of stem cells (Figure 3A). These
findings confirm the results previously reported by our group using a popu-
lation genetics model on the same dataset (Nicolas et al. (2007)).

In contrast to the common assumption of a colon crypt driven by a small
number of stem cells, our model suggests a crypt controlled by quite a large
number of stem cells that are responsible for generating the observed hetero-
geneous methylation patterns. Homeostasis in the crypt appears rather more
complex than expected, in the sense that it involves a significant number of
stem cells, likely between 18 and 25.

Regarding the symmetrical division rate, our study is in agreement with
the common assumption that symmetrical division is a relatively rare event,
with a probability per cell division of ρ << 1. Our results suggest a value
smaller than 0.02 (Figure 3B). Hence, crypt homeostasis appears to be driven
by a population of stem cells at the bottom of the crypt that most of the time
divide asymmetrically, but occasionally undergo symmetrical division, either
for self-renewal or differentiation, about once in every 400 cell divisions.

4 Discussion

The role of the colon crypt as an initiator of colorectal carcinogenesis makes
it an important and interesting biological system to study. Nonetheless, char-
acterizing the types of cells in the crypt using reliable biomarkers is often a
challenging task. Using an in silico approach incorporating modeling and in-
ference, here using methylation patterns as the marker, has proved a good
complementary approach to wet lab techniques.

In this study we have shown that it is possible to infer biological features
of a structure such as the colon crypt by using agent-based models that re-
duce the number of approximations and assumptions we need to make to
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simulate a biological system. We found that the high level of methylation
pattern heterogeneity observed in human colon crypts can be induced only
by a relatively high number of stem cells, in agreement with the classical
stochastic model of proliferation in the crypt. Furthermore, we confirm the
common assumption that stem cells undergo rare (< 0.025 times per cell di-
vision) events of symmetrical division that yields either stem cell self-renewal
or the differentiation of both mother and daughter cells.

To our knowledge ABC methods have not previously been used for infer-
ence in agent-based models. This new framework needs a different approach
to modeling and the Bayesian inference itself. Agent-based models are often
complex and time consuming to simulate, and this makes them computa-
tionally slow even when extensive computational resources are available. In
the past ABC has been employed with relatively simple population genetics
models that do not contain complex inter-cellular or spatial communication.
Such models are fast and easy to simulate, and have led to the development
of adaptive ABC algorithms that allow posterior distributions to be obtained
more rapidly (cf. Beaumont et al. (2009)).

In a scenario where a single simulation takes tens of minutes instead of
mere seconds, the efficiency of the ABC technique is overwhelmed by the
bottleneck induced by the model. In our study we found that adaptive ABC
methods are not suitable for computationally expensive models, due to the
slow convergence caused by the simulation time of the model.

We found that a more convenient approach was first to run all the simu-
lations in parallel with the parameters sampled from the priors. Once a suf-
ficient number of simulations have been computed, any rejection algorithm
can be used to analyze the data, from a simple threshold method to more
advanced signal extraction techniques.

Another advantage of the simple approach is that it is embarrassingly
parallel, and can be directly implemented in a high-performance computing
environment by scheduling the simulations independently. Using an adaptive
scheme in a computer cluster may require complex job scheduling scripts that
would be able to carry information throughout the process of adaptation.

Here we have reported on the feasibility of extending the ABC framework
to inference for complex systems described by multi-scale and agent-based
models. These provide a powerful tool for investigating biological systems
that are otherwise impossible to study using wet lab techniques, especially in
humans. Although we have shown that simple yet elegant ABC techniques can
be applied successfully in this context, there still a lot of room for improve-
ment and analyses of these methods. For instance, in systems with variable
numbers of cells, such as a growing tumour, the scalability of the model may
be a crucial bottleneck that could make ABC unfeasible for realistically large
numbers of cells.
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