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ABSTRACT 

Discrete functional limit theorems, which give independent process approximations for the 
joint distribution of the component structure of combinatorial objects such as permutations 
and mappings, have recently become available. In this article, we demonstrate the power 
of these theorems to provide elementary proofs of a variety of new and old limit theorems, 
including results previously proved by complicated analytical methods. Among the exam- 
ples we treat are Brownian motion limit theorems for the cycle counts of a random 
permutation or the component counts of a random mapping, a Poisson limit law for the 
core of a random mapping, a generalization of the Erdos-Turin Law for the log-order of a 
random permutation and the smallest component size of a random permutation, approxi- 
mations to the joint laws of the smallest cycle sizes of a random mapping, and a limit 
distribution for the difference between the total number of cycles and the number of 
distinct cycle sizes in a random permutation. @ 1992 John Wiley & Sons, Inc. 

Key Words: random mappings, random permutations, functional limit theorem, Erdos- 
Turan law, Poisson processes 

1. INTRODUCTION 

Many random combinatorial structures may be described in the following broad 
terms: for each natural number n, let C,(n), C,(n), . . . , C,(n) be the number of 
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components of sizes 1, 2 , .  . . , n in the structure. For large n,  these dependent 
counts Cj(n)  may be approximated by a limit process on N = (1, 2, . . .}, in the 
sense that as n + ~0 

where the Z , ,  i = 1, 2 ,  . . . are independent random variables, and 3 denotes 
convergence in distribution. In the case of a uniform random permutation, in 
which components are cycles, the Z j  are Poisson distributed with mean 

- b  

1 qz;) = T , 
1 

as shown by Goncharov [25] and Kolchin [29]. In the case of a random mapping 
function, uniformly chosen from the n" possibilities, the Zi are Poisson distributed 
with mean 

as shown by Kolchin [30]. 
Limit distributions other than the Poisson may arise, a common feature being 

the existence of a parameter 8 > 0 such that E Z i +  8 and P(Z, = 1) - 8 / i  as 
i+ 03. A description of these limits in general is given in Arratia and TavarC [5].  
For example, the case in which Z, has the negative binomial distribution with 
parameters N,(i) and q-' where q E N is fixed and 

1 
N J i )  = T c p ( i / d ) q d ,  

dl i  

arises in the study of necklaces (Metropolis and Rota [34, 35]), card shuffling 
(Diaconis, McGrath, and Pitman [42]), and in factorization of monic polynomials 
over a finite field (cf. Lid1 and Neiderreiter [33, p. 841). Further details may be 
found in Arratia, Barbour, and TavarC [7]. 

For most purposes (1) is not strong enough to imply that natural properties of 
the combinatorial object can be derived from the limiting independent process. 
This is because (1) only involves convergence of the distribution of 

jointly on all component counts, albeit only weakly on the largest ones. Estimates 
are needed in which b and n grow simultaneously. There are now explicit 
estimates on the behavior of the total variation distance d,(n)  between the law of 
(C,(n), . . . , C,(n)) and the law of ( Z l , .  . . , Z , )  as a function of b and n. Such 
estimates allow the small cycle sizes, of order up to b = o(n), to be decoupled into 
independent random variables, with an upper bound on the error involved. It is 
the purpose of this article to show how this decoupling may be used to unify and 
simplify the proofs of limit theorems for a variety of functionals of certain random 
combinatorial structures. The basic strategy is as follows. For an appropriate 
choice of b with b + m, bln + 0, the components of size greater than b make a 
negligible contribution to the functional, and this can often be shown easily by 
Chebychev-type inequalities. The components of size at most b are approximated 

(C,(n), . . . , C,(n)) for each fixed b as n - ~ .  Many natural properties depend u 
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by the limit process, the error being controlled by the bound on the total variation 
distance d,(n) .  The functional evaluated at the limit process is easily analyzed 
using independence. In this article, we illustrate this approach for the examples of 
random permutations and random mappings. 

Here is an outline of the article. Section 2 gives examples which correspond to 
linear functionals of the cycle structure of random permutations. Section 3 treats 
the Erdos-Turan law for the group-order of a permutation, and Section 4 
discusses nonlinear functions. Section 5 shows how similar results are proved for 
the component structure of random mappings. These first five sections give 
consequences of “naive” Poisson process approximations; they exploit conver- 
gence to zero of total variation distance, without using the available bounds. 
Section 6 gives an example of the additional power supplied by the uniformity of 
these bounds in studying the cycle structure of a random mapping. 

Arratia, Goldstein, and Gordon [2] treat the example of cycles in random 
graphs using a Poisson process approximation, emphasizing how the Chen-Stein 
method yields bounds on the total variation distance for processes, and giving one 
example of the application of this approximation, in the spirit of Theorem 4 
below. See also Barbour, Holst, and Janson [43] which treats many other 
combinatorial examples. Flajolet and Soria [24] discuss Gaussian limit laws for 
combinatorial structures using generating function methods. Other recent ap- 
proaches to random mappings are described in Kolchin [32], Flajolet and Odlyzko 
[23], and Aldous and Pitman [l]. 

A. Total Variation Distance 

We end the introduction by recalling some standard facts about total variation 
distance. For l a b  5 n ,  let d,(n)  be the total variation distance between the law of 
C,(n)  = (C,(n), . . . , C,(n)) and the law of Z, = (Zl, . . . , Z , ) :  

d , (n )  = I I w b ( n ) )  - =%%)ll 
= SUP IP(C,(n) E A) - P(Z, E A)(  , (4) 

AGZb, 

where Z, = (0, 1,.  . .}. An equivalent definition of d , (n )  is 

Further, 

d , (n )  = inf P(c,(n) z Z,) , 

the infimum being taken over all couplings of C,(n)  and Z, on the same 
probability space. There are maximal couplings that attain this bound. 

2. PERMUTATIONS 

We will discuss random permutations in a one-parameter setting which includes 
the usual uniform distribution as a special case. The Ewens sampling formula with 
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parameter 8 > 0  may be thought of as the measure on the permutations of 
(1, 2, . . . , n }  whose density with respect to uniform measure is proportional to 
Bk, where k is the number of cycles in the permutation. The special case 8 = 1 
corresponds to uniform measure. The set of all permutations with cycle index 
( a l ,  a 2 , .  . . , a,) (that is, having ai cycles of length j for j = 1,. . . , n)  has 
probability 

where we have denoted rising factorials by 

(7) 

.yn) = x(x  + 1) ( x  + n - 1) , = 1 . 

This formula was derived by Ewens [21] in the context of population genetics, 
where ai is the number of alleles represented by j genes in a sample of n genes 
taken from a large population; 8 is a parameter that measures the mutation rate. 

We let Cj = Cj(n)  be the number of cycles of size j in an n-permutation, so that 
Cj(n)  = O  if j >  n.  Under the Ewens sampling formula for fixed 8, (C , (n ) ,  
C2(n) ,  . . .) + ( Z , ,  Z 2 ,  . . .), where the Zi are independent Poisson random vari- 
ables with mean 

e 
EZ, = T 

1 

In fact it is possible to couple closely the cycle counting processes for all n,  
together with the limiting Poisson process, on a common probability space, as the 
following results from Arratia, Barbour, and Tavark [6] show. 

Theorem 1. Let { t i ,  j 2 l} be a sequence of independent Bernoulli random 
variables satisfying 

e 
8 + j - 1  

P( t j  = 1) = (9) 

For j I n,  define 

and for j > n define Cj (n)  = 0. Define Cj(m) = Z j  by 

Then (C, (n) ,  . . . , Cn(n))  has the distribution (7), and the Z j  are independent 
Poisson random variables with EZj = elj. Further, 
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n " 

j=1 j=l 

and for each j 

Cj(n) I Z j  + 1(J, = j )  , 

where J,, E (1, 2, . . . , n }  is defined by 

Finally, as n + 03 

n 

Using this coupling, they proved inter alia 

Theorem 2. Let (C,(n), C,(n), . . .) be the cycle counting process for the Ewens 
sampling formula, and let (Zl, Z,, . . .) be the Poisson process on N determined by 
(8) .  For 1 I b I n ,  let d,(n), defined in (4), be the total variation distance between 
(C,(n),  . . . , C,(n)) and (Z l , .  . . , Z , ) .  Then 

d,(n)+O if, and only i f ,  b = o(n) (16) 

The following result, which is useful in what follows, is an immediate con- 
sequence of (15): 

Lemma 1. There is a coupling of { Cj(n), j 21, n 2 l} and { Z j ,  j z l} such that 

j =  1 R ;  = 

converges in probability to 0 as n + w. 

Remark. In Lemma 1, the normalization by e may be replaced by any 
function of n tending to infinity with n. 

A. The Number of Cycles 

The first example sets the scene for the technique that will be employed 
throughout the article. Define 

n 

the number of cycles in a random n-permutation. From the representation (12), it 
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follows that 

It is well known that K,,, appropriately centred and scaled, has asymptotically a 
standard Normal distribution: 

Theorem 3. As n + m, 
.. 

Remark. This result has a long history. It is due originally to Goncharov [25] and 
there are now many different proofs. Feller [22] gives a representation of K,, as a 
sum of independent (but not identically distributed) Bernoulli random variables, 
Shepp and Lloyd [37] use generating functions, Kolchin [29] uses a representation 
in terms of random allocation of particles into cells. The authors above all 
considered the case 0 = 1, but their methods extend to general 8. In fact, Feller's 
proof uses the special :ase 8 = 1 of (12), and its generalization is simply the 

observation that K,, = ti is asymptotically normal, via the Lindeberg-Feller 

conditions. 
j = l  

Remark. The results of Barbour and Hall [9] may be combined with the 
representation of K,, as a sum of n independent, nonidentically distributed 
Bernoulli random variables to show that if P,, is a Poisson random variable with 
mean EK,, given by (18), then 

a result that is stronger than Theorem 3. 

Proof. The present proof is intended to serve as a model for the other proofs in 
this section. The idea is to write 

where the remainder term R ,  is given by 



LIMIT THEOREMS FOR COMBINATORIAL STRUCTURES 327 

n 

The Z j  are independent Poisson random variables satisfying (.., , so that 
a Poisson distribution with mean and variance 
ate that 

Z j  has 
8lj  - 8 log n.  It is no&hmedi- 

j s n  

n 

Since IR,I I RZ and, by Lemma 1, RZ-PO, which is constant, the result follows 
from Slutsky’s Theorem (Billingsley [ 11, p. 251). 

B. Cycle lengths Modulo r 

In this section, we give an example that shows more fully the power of Theorem 
2. Choose and fix any integer r 2 1, and define h,: R” + R‘ by 

Observe that the sum of the r components of h,(C, )  is K,,, so we are considering 
a refinement of K,,. Let p,, be a constant r-vector with elements 8 log nlr. We 
then have 

Theorem 4. As n - a, 
where Nr(O, I )  is the r-dimensional standard normal distribution with independent 
coordinates. 

Proof. As in the proof of Theorem 3, the idea is to replace C ,  in (22) by Z , ,  for 
which the stated result is elementary to prove. The error in this approximation is 

R ,  = (8 log n/r)-1’2(h,(C,) - h,(Z, ) )  . 

But from (17) and Lemma 1 we see that 

completing the proof. 

C. A Functional Central Limit Theorem 

In this section, we provide an elementary proof of Hansen’s [27] functional 
version of the central limit result (20). To this end, define a random element Y,(.)  
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Theorem 3 asserts that Yn(l) 3 N(0 ,  1) as n 4  00. The functional version is 

Theorem 5 (Hansen [27]). As n -+ CQ, - 
Y,,(.) 3 standard Brownian motion on [0,1] (23) 

Remark. The special case 8 = 1 of Theorem 5 was proved first by DeLaurentis 
and Pittel [14]. Another approach to the general case is given in Donnelly, Kurtz, 
and TavarC [17]. 

Proof. Define the process { W,,(t), 0 5 t 5 1) by 

and let 

so that 

We will show that the functionals Wn(.)  of the Poisson process converge weakly to 
Brownian motion and that R,(-)-+,O in the sup norm. 

To see that Wn(.)  converges weakly to standard Brownian motion, define 
s(0) = 0, s( j )  = e(l + 1 /2 + - + 1 / j ) ,  j 2 1, and let {s(t), t 2 0 }  be a rate one 
Poisson process with B(0) = 0. For t > 0, we have 

The functional central limit theorem for the Poisson process (cf. Ethier and Kurtz 
[20, p. 2631) shows that s(n)-"'((s(s( In'])) - s( Ln'])) converges weakly to 
Brownian motion on [0, 11 starting from 0. The corresponding result for Wn(.) 
then follows because s(n) - 8 log n and supostsl let log n - s( Ln'] )I 5 1. 
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To show that lRn(t)l+pO we may use (17) and Lemma 1 once more: 

ln'l 

SUP IR,<t)lS SUP ICj(n) - Zj(/d- 
O S E l  O S f S l  j = 1  

n 

j-1 

s R * , + , O ,  

completing the proof. 

D. linear Combinations 

The total variation estimates may be used to study the asymptotic behavior of 
other weighted averages of the cycle counting process, by comparing them to the 
same weighted average of the Poisson process Z , ,  Z , ,  . . . . For example, we have 
the following result for linear combinations: 

Theorem 6. For I l b S n ,  define S,(n)= E;=, wnjCj(n),  and let S,*(n)= 
wnjZ j .  Then 

I l ~ ( S b W )  - =w,*(n))llS d h )  

Proof. This is a consequence of the fact that 

and the definition of d,(n). 

Some examples of limiting behavior for linear combinations in the case 8 = 1 
may be found in Kolchin [32, p. 50 ff], for example. 

E. The Smallest Cycles 

In this section we analyze some aspects of the smallest cycle sizes. For any vector 
a E Z: of cycle counts, let b, be the functional that records the rth smallest cycle 
length: 

b,(a)=inf{j:a,+ + a j > r } ,  r = l , 2  , . . .  
= 00, if no such j 

and let h, be the functional that records the sizes of the m smallest cycles: 

Let C(n)=(C,(n), C,(n), . . . , Cn(n),  0, 0,. . .) be the cycle counting process. 
Then b,(C(n)) is the length of the rth smallest cycle, and h,(C(n)) is the process 
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of the m smallest cycle lengths. If Z = (Z,, Z,, . . .), then b , (Z)  and hm(Z)  are the 
corresponding functionals for the Poisson process Z of counts. 

The one-dimensional distributions are elementary to analyze, since b,(C(n))  > j 
if, and only if, C, + + Cj < r.  Hence 

IP(b,(C(n)) > j )  - P(b, (Z)  > j ) l =  IP(c Ci < r )  - P((c Zi < r )  I I d j (n )  . 
i s j  1 5 1  

Since Z, + . . . + Zj has a Poisson distribution with mean e( 1 + 1 / 2  + + 1 / j ) ,  
the distribution of b , (Z)  is readily computed. This distribution is given in the case 
8 = 1 by Shepp and Lloyd [37]. 

A process version of the result is contained in 

Theorem 7 .  The total variation distance 

tends to 0 i fm = m(n) I (1 - €)e  log n forfixed E > 0. In fact, d:+O i f ,  and only 
if, w, = (8 log n - m )  /e satisfies w, + CQ. 

Proof. For the necessity of the condition w, + CQ, note that under any coupling 

{ 2 zi < m} {hm(C(n)) + hm(Z)} 7 

so that d; 2 P(ZiS, Zi < m), which, by the central limit theorem, tends to 0 iff 
0, + 03. 

For the sufficiency, observe that for any m and b 

{ h,(C(n)) # h m ( Z ) }  {Cc1 9 . * * 7 c b )  # (zl 7 . . . 7 zb )> { zb 'i < m }  ' 

It follows that 

Now it is possible to choose b in such a way that 

E(Z, + + z,)= 8 

where 0 5 S, < 8. It follows that 

l / j =  8 logn - w,-/2+ 8, , 
j s b  

- b x exp( - n s) ea, , 

so that b/n+O.  Theorem 2 then shows that d,(n)+O. In addition, the central 

limit theorem shows that for such a choice of b ,  P Zi < m + 0, since 
var(Z, + * * + Z,) = O(1og n) .  This completes the proof. (ish ) 

w 

Related material appears in Kolchin [32, p. 46ffl. 
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3. THE ERDOS-TURAN LAW 
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When 8 = 1, the distribution (7) corresponds to uniform measure on the symmet- 
ric group, S,. Among the vast literature in this area is a beautiful result due to 
Erdos and Turin [19] concerning the asymptotic normality of the log of the order 
0, of a randomly chosen element of S,. Their proof is based on showing (Erdos 
and Turin [18]) that log 0, is relatively close to log P, , where P, = lI;= j c l ( n )  is 
the product of the cycle lengths, and that log P,, suitably centred and scaled, is 
asymptotically normally distributed. 

We give a relatively simple proof of the Erdos-Turin result. This proof extends 
the Erdos-Turin law to all 8. Our proof has three steps. First the coupling in 
Theorem 1 is used to show that (log P, - log On(  is readily controlled by the 
corresponding functional of the Poisson process. The second step uses a moment 
calculation for the Poisson process to show that this functional of the Poisson 
process is negligible relative to log3’* n.  The last step, which is similar to the 
method used to prove Theorems 3, 4, and 5 ,  shows that log P, is close to the 
corresponding functional of the Poisson process. 

We begin with the following deterministic lemma. Let a E Z+, and define 

Lemma 2. For a ,  b E Z:, and e j  = (aij, i = 1, . . . , n) ,  j 5 n satisfying a I b + e j ,  
we have 

(27) 1 I r(a) 5 nr(b) . 

Proof. The first inequality in (27) is immediate. To establish the second inequali- 
ty, note that r(a + e , )  lr(a) E [l, i ] ,  since if a is increased by e i ,  then the numerator 
of r(a) is multiplied by i ,  whereas the denominator of r(a) is multiplied by a 
divisor of i .  In particular, r ( . )  is an increasing function. Finally, 

r(a) I r (b  + e j )  5 jr (b)  I nr(b) , 

completing the proof. w 

The probabilistic use of the last lemma is given by 

Lemma 3. Let C ,  = (C , (n ) ,  . . . , C,(n)) have the distribution (7), let { Z j ,  j 2 l }  
be independent Poisson random variables with EZj = Olj, and set Z ,  = 
(Zl, . . . , Z , ) .  Then there is a coupling for which for every n 

0 I log r (C, )  = log P, - log 0, I log n + log r (Z, )  . (28) 

Proof. Use the result described in Theorem 1, which guarantees the existence of 
a coupling satisfying C, I Z ,  + e,n, where 1 5  J ,  I n.  Now apply Lemma 2. 

The next lemma is a calculation for the Poisson process. The analogous result 



332 ARRATIA AND TAVARE 

for uniformly distributed random permutations (that is, 8 = 1) was proved directly 
by DeLaurentis and Pittel [14]. 

Lemma 4. As n + w, 

Proof. For 1 I k 5 n, define a function d,, by 

dn,(a) = c aj 9 

j 5 n ; k l j  

and note that D,, = dnk(Zn)  has a Poisson distribution satisfying 

ED,, = 8 2 l / i  = O(l0g nlk) , 
j s n ; k l j  

and 
2 

ED,,(D,, - 1) = ( e  c i/i) = o(iog2 n / ~ )  , (31) 
j s n ; k l j  

uniformly in k I n. Note that since (Dnk - 1)+ 5 Dnk,  it follows from (30) that 

E l o g k ( D , , - l ) + S ~ l o g n  logklk 
k 4 o g  n k 5 l o g  n 

= O(l0g n(log log n)’) I 

Similarly, since (Dnk - 1)+ I Dn,(Dn, - 1)/2, it follows from (31) that 

E l o g k ( D , , - l ) + S ~ l o g * n  logklk’ 
,>log n ,>log n 

= 0 (log n log log n) . 

Combining these two estimates, we see that 

E 2 log k(Dnk - 1)’ = O(l0g n(log log n)’) . 
k z l  

Finally 

E log r(zn) = E log p(dnps(Zn) - 1)’ 
p prime ssl 

I E 2 log k(D,k - 1)’ 
k z l  

the right-hand side being O(1og n(log log n)’) by (32). This completes the 
proof. 

The generalized version of the Erdos-Turin Law for the Ewens sampling 
formula is 
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Theorem 8. As n + CO, 

8 2  log On - ;i log n 

Remark. There are several proofs of the 8 = 1 version of this result, among them 
Best [lo], Kolchin [31, 32, p. 611, Bovey [13], DeLaurentis and Pittel [14], and 
Stein [38]. We are aware of, but have not seen, the proof of Pavlov [36]. 

Proof. First we combine (28) and (29) to conclude that 

from which it follows that the theorem will be proved if we establish that 
n 

As in the previous examples, we prove the result with (dependent) Cj(n)  
replaced by (independent) Z j ,  and show that the error in this approximation is 

negligible. Observe that log j EZj - 8 log2 n / 2  and log' j / j  - log3 n/3. Di- 

rect methods (or an appeal to the Lindeberg-Feller conditions) then establish that 

n n 

j = 1  j =  1 

n 8 2  
zi log j - 7 log n 

Using Lemma 1 again, we see that the absolute value of the error Rn in the 
approximation of the left side of (34) by the left side of (35) is 

n 

This completes the proof. 
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4. NONLINEAR FUNCTIONALS 

The examples in Section 2 have studied the behavior of linear functionals of the 
cycle counting process. The Erdos-Turin law in Section 3 starts with least 
common multiple, a nonlinear functional, but is proved by comparison with a 
linear functional. Other nonlinear functionals are also of interest. Motivated by a 
result of Wilf [41] for uniform random permutations, we study the behavior of the 
number of different sizes of cycles in a random permutation. Theorem 9 gives a 
limit distribution with no rescaling, in contrast to the Theorems of Section 2, 
which involve rescaling by e. We begin with a preliminary lemma that builds 
on the results of Theorem 1: 

Lemma 5. As n-m,  

In fact, 

38 e E(Z,) 5 - (1 + e + 8 log n)  + - n 8 + n  

Proof. By conditioning on the event {J, = j }  and using the definitions in (lo), 
(ll), and (14 ) ,  we see that 

8 ECj(n) = 7 I ( e + n - j ) - ( e + n - l )  
n(n - 1) . - .  ( n  - j + 1) 

From (14)  and (37) it follows that 

(37) 

so that from (19)  
n e jECj (n)  2 EZjP(Jn = j ) =  2 7 ~ 

j = l  j = 1  I n 

e 
= - EK, n 

e 
I - (1 + 8 + 8 log n)  . n 
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Using (14), (19), and (37) once more, we find that 

26 
n = - EK, 

Averaging the inequality (36) over the distribution of J , ,  and using the two 
preceeding inequalities and the fact that Etn+, = e / ( O  + n)  completes the proof of 
the Lemma. 

Our interest is in the quantity D,, the difference between the number of cycles 
and the number of distinct cycle lengths in a random permutation. By definition, 
we have 

D, = C <cj(n) - 1(cj(n) 2 1)) = C < c j ( n )  - 1)' 

Let { Zj, j 2 l} be the Poisson random variables defined by the coupling in 
Theorem 1. Our analysis of Dn is based on the observation that for any 

j s n  J s n  

IC ( 1 7 . .  . > n > ,  

Theorem 9. As n + to, we have 

D , + D = C  ( z j - l ) + ,  (40) 
j21  

and 

Proof. Define 0; = Z ( Z j  - l)+. Clearly, DA+ D as n+m. To establish (40), it 

therefore suffices to show that D, - DA-*pO. By Theorem 2, for any 1 I b I n 
we can choose a coupling of ( C l ( n ) ,  . . . , C,(n)) and (Zl, Z, ,  . . .) so that 

j s n  
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Using (39) with I =  {b + 1,. . . , n } ,  
I n  I n n 

n 

5 2  2 ( Z j  - 1)+ + 1(Z, 2 1).  

(42) 
j = b + l  

Since the Z j  are Poisson distributed, it follows that 
n n 

IE C (zj-l)+IIE C Z,(Z,-1)/2 
j = b + l  j = b + l  

= 2 6*/(2j2) 

5 6'/(2b) , 
j = b + l  

whereas from Lemma 5 ,  we have E(Z,) = O(1og nln). 
b(n)-,a in such a way that bln-,  0; this will 

guarantee that db(n)  + 0, and also that the quantity on the right of (42) converges 
to 0 in probability. This establishes (40). 

To obtain (41) from (40), we show that the sequence {Dn, n 2 l} is uniformly 
integrable. Applying (39) with I =  (1, . . . , n}, we see that 

Finally, we may choose b 

n 

0 5  D, I 2 ( Z j  - 1)+ + l(z,nz 1) 
j= l  

I 2 ( Z j  - 1)+ + 1 . 
j z  1 

(43) 

Since the random variable on the right side of (43) has finite mean, we conclude 
that indeed {Dn, n 2 l} is uniformly integrable. rn 

Remark. Wilf [41] proved (41) in the special case 6 = 1 by analytical methods. 

Remark. It follows immediately from Theorems 3 and 9 that the number of 
distinct cycle lengths in a random permutation has asymptotically a Normal 
distribution with mean and variance 6 log n. 

5. RANDOM MAPPINGS 

In this section, we study the collection of n" mappings of the set (1, . . . , n} to 
itself, under the assumption that all such mappings are equally likely. Each 
mapping partitions the set {I, . . . , n} into components (integers 1 and m being in 
the same component if some iterate of 1 is equal to some iterate of m).  In 
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particular, we study the behavior of the numbers Cl(n), C2(n) ,  . . . of components 
of sizes 1 ,2 ,  . . . . The results in Theorems 3, 4, and 5, specialized to 8 = 1/2, also 
hold in the random mapping setting. The theorem corresponding to Theorem 3 is 
the central limit theorem for the number of components of a random mapping, 
first proved by Stepanov [39]. The theorem corresponding to Theorem 5 is the 
functional central limit theorem for random mappings, due originally to Hansen 
[26]. In the random mapping versions of Theorems 6 and ,7  we also need to 
replace the Poisson process { Z i ,  j z  l ) ,  EZj = 8 / j  with a Poisson process 

{ Z j ,  j 2 l} in which EZi = e-'/j j i / i ! .  Related results for linear combinations of 

component sizes and the small~~ocomponent sizes are addressed by Kolchin [32, 
pp. 85 ff]. 

The crucial ingredients for the proofs of these results are given in the following 
section. In the case of permutations, the result R:+,O followed easily from the 
coupling given in Theorem 1. For random mappings, the result R:+,O uses 
instead a combination of total variation approximations, given by Theorem 10, 
and moment estimates from Lemma 6. 

j -  1 

A. The Components of a Random Mapping 

Harris [28] showed that the probability that a random mapping has component 
index (u, ,  u2,  . . . , a,) (that is, has ai components of size j )  is 

where 

If follows immediately from (44) that 

Under the distribution (44), Kolchin [30] established that 

where the Zi are independent Poisson random variables with mean 

EZ, = A i .  (47) 

Arratia and TavarC [4] established the following analog of Theorem 2: 

Theorem 10. Let (C,(n) ,  C,(n),  . . .) be the component counting process for 
random mappings, and let ( Z ,  , Z,,  . . .) be the Poisson process on N determined by 
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(47). For 11 b 5 n let db(n) be the total variation distance between 
(C,(n), . . . , Cb(n)) and ( Z l ,  . . . , Z,) defined in (4). Then 

db(n)+O if, and only if, b = o(n) (48) 

Lemma 1 was crucial in our analysis of random permutations. The following 
two lemmas play this role in the context of random mappings. 

Lemma 6. Let Z , ,  Z,, . . . be independent Poisson random variables with E(Zi) = 
A i ,  and let (C,(n), C2(n),  . . .) be the component counting process for a random 
mapping. Then for 1 5  b 5 n and f = n / b ,  

n 

E c zj= O(l0g f), 
j=b+l 

and 

(49) 

Proof. We may write A j  = j - '  P'(Po( j )  < j ) ,  where Po( j )  is a Poisson random 
variable with mean j .  It follows from the central limit theorem that A j  - 1 l (2j)  as 
j -  03. Further (cf. Donnelly, Ewens, and Padmadisastra [16]) 

($ -Aj )=210g2 .  1 

] = I  

The inequality in (49) follows immediately, since 

2 A , =  c " 1  - +  2 ( A , - - ) = O ( l o g f ) + O ( I ) ,  1 
j=b+l  j=b+l  21 j=b+l  21 

n 

using (51) and the fact that 1 / j  5 log(n/b) =log f. 
j = b + l  

To establish (50),  note first that from (46) 

n!e" ( n  - j ) n - '  1 
nn j=b+l e ( n - j ) !  7 

nn ,$b a ~z--r * 

n - j  5- 

r r  1 n ! e n  "-6-1  
- -- 

We will require b/n+O, so we may assume that n is sufficiently large that 
( b  + 1) / n  I 2/3.  The dominant contribution to the right-hand side of the previous 
inequality comes from the terms with r L ro = [n/31 , as may be seen by applying 
Stirling's formula to get 
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1 
I- 

n - b - 1  

r=ro  err! n - r 

dY 
1 I - b l n  

I- G I,. (1-y)* 

1 

A similar analysis shows that 

ro- 1 
3 

I- 
1 c 

r = l  ( n -  r)* G ' 
Combining these estimates together with the term r = 0 shows that 

rr 1 1 n - b - 1  

r = O  c - err! - n - r = O( log(n/b)) , 

and (50) follows by another application of Stirling's Formula. 
The analog of Lemma 1 in the context of random mappings is contained in 

converges in probability to 0 as n +. w. 

Proof. Observe that for any 1 5  b I n ,  we have 

We write R*(b, n) in the form 

R*(b, n) = R, + R, + R, , 

and show that we may choose b = b(n) so that each term tends to 0 in probability 
as n + w .  

Choose a maximal coupling of C,(n)  = (Cl(n), . . . , Cb(n)) and Z, = 
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(Zl , .  . . , 2,) and apply (6): for any E > 0, 

Now extend the maximal coupling of C, and Z, to a coupling of (Cl, . . . , C, )  
with (Zl, . . . , 2,). Markov’s inequality together with the estimates in (49) and 
(50) show that i f f  = n / b  

and 

Finally, we choose b to ensure that d,(n)+ 0 and that the right side of (55) and 
(56) -0. We need 

With such a choice of b ,  we see from Theorem 10 and Equations (54), (55), and 
(56) that R*(b,  n)+,O as n + w ,  completing the proof. 

Now using Lemma 7 in place of Lemma 1, it is straightforward to modify the 
proofs of Theorems 3 through 7 to give proofs of the corresponding results for 
random mappings. We omit further details. 

6. EXPLOITING UNIFORM BOUNDS 

The previous sections have made no use of explicit bounds on total variation 
distances between the cycle or component counting processes and their respective 
Poisson limits; all that was exploited was the fact that d,(n)-  0 if b / n - 0 .  In this 
section we use the more detailed information given by upper bounds on d,(n).  
The following result of Arratia, Barbour, and Tavart [6, Theorem 51 comple- 
ments Theorem 2: 

Lemma 8. Let (C l (n ) ,  C2(n),  . . .) be the cycle counting process for the Ewens 
sampling formula with 8 2 1, and let (Zl, Z,,  . . .) be the Poisson process on N 
determined by ( 8 ) .  For 1 I b I n let d,(n) be the total variation distance between 
(C , (n ) ,  . . . , C,(n)) and (2, , . . . , 2,). Then 

A bound for d,(n) in the case 8 < 1  may be found in Arratia, Barbour, and 
TavarC [7]. For the case 8 = 1, the result d,(n) I 2 b / n  was proved by Diaconis 
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and Pitman [15] and independently by Barbour [SI. When 8 = 1, the bound in 
(58)  may be much improved. Arratia and Tavark [3] show that if bin-0, then 
d,(n)+O super-exponentially fast relative to nlb.  In the next section we use the 
bounds in (8) to provide new results about the cycle structure of a random 
mapping. 

A. The Cycles of a Random Mapping 

Here we study some aspects of the structure of the cycles of a random mapping of 
(1, . . . , n }  to itself. The core of a random mapping is the set of elements that are 
in cycles. In particular, the number Nn of elements in the core has distribution 
given by 

1 r-1  

P(N, = r ) =  1: (I - -) n , r =  1 , .  . . , n . 
n I = 1  

(59)  

It follows directly from (59) that N n / G  converges in distribution to a random 
variable with density function xe-x2’2, x > 0 .  We let CT = C f ( n )  be the number of 
cycles of size j in the core of a random mapping, and let Ci(r) be the number of 
cycles of size j in a uniform random permutation of r objects. The law Lf(C7) of 
CT is given by 

since, conditional on Nn = r the random mapping restricted to its core is a 
uniformly distributed permutation on those r elements. It follows that 

For fixed j ,  ECT(n)-* l / j ,  and 

where Zi are independent Poisson random variables with mean EZi = 1 /j. Results 
(59) through (62) are classical; see, for example, Bollobis [12, p. 3661. 

Define C:(n) = ( C l ( n ) ,  . . . , C:(n)) ,  z, = (Zl,  . . . , Z,), and let dE(n) be the 
total variation distance between C;(n)  and zb. Further, let db(r)  be the total 
variation distance between Zb and the cycle counting process C,(r )  = 
(Cl(r), . . . , C,(r)) for uniform random permutations of r objects. 

Theorem 11. Let { Zi, j 2 1) be independent Poisson random variables with means 
EZi = l / j .  Then 

d:(n)+Oif,andonlyif, b = o ( G i ) .  (63) 

Proof. The joint law version of (60) is 
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dz (n)  5 2 P(N, = r)db(r)  . 
r = l  

The estimate (58) with 8 = 1 shows that db(r)  I 2blr so that 

the last estimate coming from Bollobis [12, p. 1141. From (65) ,  we see that 
dz (n)+  0 if b = o(v5). 

To prove the converse, note first that for any 1 5  L 5 M 5 b, 

Assume that b l f i  
Define X,, = ZL + . 
able satisfying 

2 6 > O  for all n ,  and define M = [SvZ], L = 16v%/2] 1 
* + Z M ,  Y, = Ci + * + C;. Xn is a Poisson random vari- 

M 

EXn = l l j + l o g 2 ,  
j =L  

so that X, 3 X which is a Poisson random variable with finite mean. Since 

for L 5 j 5 M, we see that 

E X - E Y n + ~ = l o g 2 -  

Now choose t such that E min(X, t) > EX - €14. Since 

it follows that 

lim inf Ild;P(X,) - =Y(y,)ll = lim inf II=Y(X) - =Y(Yn))ll 
n+m n-m 

2 El(4t) > 0 , 
completing the proof. 
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Remark. The above proof of the necessity of the condition b = o(viz) relies on 
the discrepancy in the first moment of C;(n)  and Z j .  Even if the Zj  were replaced 
by Zj(n) ,  defined to be Poisson with EZj(n) = ECj(n), the condition b = o ( f i )  
would still be necessary for d,*(n)+O. To see this, observe that X , + X ,  
EX - EY,, ---* 0 and EX2 - EY; 4 E *  > 0. We thank Andrew Barbour for pointing 
this out. 

Since the total number of components of a random mapping equals the total 
number of cycles, this result may be used to give another proof of Stepanov’s [39] 
central limit theorem for the number of components of a random mapping. 
Theorems 3 through 9 of the previous sections have analogs for the core. One of 
these, the analog of Theorem 7, is tricky to state, so we give it explicitly as: 

Theorem 12. The joint distribution of the m smallest cycles of a random mapping 
may be approximated in terms of { Z j ,  j 2 l} , the Pokson process with means given 
by EZj = l l j ,  in the sense that the total variation distance d z  defined in ( 2 5 )  tends 
to 0 if, and only if, w, = ( 5  log n - m )  I- satisfies w, + w. 

Proof. Similar to the proof of Theorem 7, but now to get d,(n)+O we need 
b = O ( v i z ) ,  which explains the factor 1 in the condition m = log n - w,+. 

REFERENCES 

[l] D. J. Aldous and J. W. Pitman, Brownian bridge asymptotics for random mappings. 

[2] R. Arratia, L. Goldstein, and L. Gordon, Poisson approximation and the Chen-Stein 

[3] R. Arratia and S. Tavart, The cycle structure of random permutations. Ann. Probab., 

[4] R. Arratia and S. Tavart, Functional discrete limit theorems for random mappings. In 

[5] R. Arratia and S. TavarC, Independent process approximations for random combina- 

[6] R. Arratia, A. D. Barbour, and S. Tavart, Poisson process approximations for the 

[7] R. Arratia, A. D. Barbour, and S. TavarC, On random polynomials over finite fields. 

[8] A. D. Barbour, Comment on a paper of Arratia, Goldstein and Gordon. Stat. Sci. 5 ,  

[9] A. D. Barbour and P. G. Hall, On the rate of Poisson convergence. Math. Proc. 

[lo] M. R. Best, The distribution of some variables on a symmetric group. Ned. Akad. 

[ l l ]  P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. 
[12] B. Bollobbs, Random Graphs. Academic Press, New York, 1985. 
[13] J. D. Bovey, An approximate probability distribution for the order of elements of the 

In preparation. 

method. Stat. Sci., 5 ,  403-423 (1990). 

in press (1992a). 

preparation (1992b). 

torial structures. In preparation (1992~). 

Ewens Sampling Formula. Ann. Appl. Probab., in press (1992a). 

In preparation (1992b). 

425-427 (1990). 

Cambridge Philos. SOC. 95, 473-480 (1984). 

Wetensch. Zndag. Math. Proc. Ser. A ,  73, 385-402 (1970). 

symmetric group. Bull. London Math. SOC., 12, 41-46 (1980). 



344 ARRATIA AND TAVARE 

[14] J. M. DeLaurentis and B. Pittel, Random permutations and Brownian motion. Pac. J. 

[15] P. Diaconis and J. W. Pitman, Unpublished lecture notes, Statistics Department, 

[16] P. Donnelly, W. J. Ewens, and S. Padmadisastra, Random functions: exact and 

[17] P. Donnelly, T. G. Kurtz, and S. Tavark, On the functional central limit theorem for 

[18] P. Erdos and P. Turan, On some problems of statistical group theory. I. Z. 

[19] P. Erdos and P. Turan, On some problems of statistical group theory. 111. Acta. Math. 

[20] S .  N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, 

[21] W. J. Ewens, The sampling theory of selectively neutral alleles. Theor. Popul. Biol., 

[22] W. Feller, The fundamental limit theorems in probability. Bull. Am.  Math. SOC., 51, 

[23] P. Flajolet and A. M. Odlyzko, Random mapping statistics, in Proc. Eurocrypt ‘89, 
J.-J. Quisquater, Ed. Lecture Notes in Computer Science, 434, Springer-Verlag, New 
York, 1990, pp. 3292354. 

[24] P. Flajolet and M. Soria, Gaussian limiting distributions for the number of compo- 
nents in combinatorial structures. J. Combinat. Th. ser. A ,  53, 165-182 (1990). 

[25] V. L. Goncharov, Some facts from combinatorics. Izv. Akad. Nauk. SSSR, Ser. Mat., 
8, 3-48 (1944). See also: On the field of combinatory analysis. Transl. Am.  Math. 

[26] J. C. Hansen, A functional central limit theorem for random mappings. Ann. Probab. 

[27] J. C. Hansen, A functional central limit theorem for the Ewens Sampling Formula. J. 

[28] B. Harris, Probability distributions related to random mappings. Ann. Math. Stat., 31, 

[29] V. F. Kolchin, A problem of the allocation of particles in cells and cycles of random 
permutations. Theory Probab. Its Appl., 16, 74-90 (1971). 

[30] V. F. Kolchin, A problem of the allocation of particles in cells and random mappings. 
Theory Probab. Its Appl., 21, 48-63 (1976). 

[31] V. F. Kolchin A new proof of asymptotic lognormality of the order of a random 
substitution. Proceedings Combinatorial and Asymptotical Analysis, Krasnoyarsk 
State University Press, 1977, pp. 82-93. (In Russian) 

[32] V. F. Kolchin, Random Mappings, Optimization Software, Inc., New York, 1986. 
[33] R. Lid1 and H. Niederreiter, Introduction to Finite Fields and their Applications, 

[34] N. Metropolis and G.-C. Rota, Witt vectors and the algebra of necklaces. A h .  

[35] N. Metropolis and G.-C. Rota, The cyclotomic identity. Conremp. Math., 34, 19-27 

[36] A. I. Pavlov, On a theorem by Erdos and Turhn. Probl. Cybern., 64, 57-66 (1980). 

Math., 119, 287-301 (1985). 

University of Califorina, Berkeley, 1986. 

asymptotic results. Adv.  Appl. Probab. 23, 437-455 (1991). 

the Ewens Sampling Formula. Ann. Appl. Probab., 1, 539-545 (1991). 

Wahrscheinlichkeitstheorie 4, 175-186 (1965). 

Acad. Sci. Hungar., 18, 309-320 (1967). 

Wiley, New York, 1986. 

3, 87-112 (1972). 

800-832 (1945). 

SOC., 19, 1-46 (1944). 

17, 317-332 (1989). 

Appl. Probab. 27, 28-43 (1990). 

1045-1062 (1960). 

Cambridge University Press, Cambridge, England, 1986. 

Math., 50, 95-125 (1983). 

( 1984). 

(In Russian) 



h 

LIMIT THEOREMS FOR COMBINATORIAL STRUCTURES 345 

[37] L. A. Shepp and S. P. Lloyd, Ordered cycle lengths in a random permutation. Trans. 

[38] C. Stein, The order of a random permutation. Unpublished manuscript. 
[39] V. E. Stepanov, Limit distributions for certain charactrstics of random mappings. 

[40] G. A. Watterson, Models for the logarithmic species abundance distributions. Theor. 

[41] H. Wilf, Three problems in combinatorial asymptotics. J .  Combinat. Th. Ser. A ,  35, 

[42] P. Diaconis, M. McGrath and J. W. Pitman, Cycles and descents of random 

[43] A. D. Barbour, L. Holst and S. Janson, Poisson Approximation, Oxford University 

Am.  Math. SOC., 121, 340-357 (1966). 

Theory Probab. Its Appl., 14, 612-626 (1969). 

Popul. Biol., 6, 217-250 (1974). 

199-207 (1983). 

permutations, preprint (1992). 

Press, Oxford, England, 1992. 

Received July 22, 1991 


