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- 
It might be that the two fundamental distributions in probability are the 

normal and the Poisson. Making these into processes with independent incre- 
ments yields Brownian motions, Brownian sheets,. . . and Poisson processes. 
Nevertheless, graduate training in probability tends to ignore Poisson pro- 
cesses-and none of the almost 200 entries in the Probability and Statistics 
category of the 1991 Mathematics Subject Classification explicitly mentions 
Poisson, either. Brownian motion is a fascinating object in its own right, even 
without considering its relation to martingales, diffusions, stochastic differen- 
tial equations, and so on. In contrast, it is only the comparison of Poisson 
processes to various dependent processes that makes for rewarding study. Two 
recent books, Probability Approximations via the Poisson Clumping Heuristic 
(PCH) and Poisson Approximation (PA), combine to reveal the enormous 
depth and complexity of applications of the Poisson distribution and Poisson 
processes. These books are complementary. In the language of Breiman (19681, 
PCH addresses the left hand, intuition, and PA addresses the right hand, 
technique. 

Poisson approximations for a given probability model involve three ingredi- 
ents. The first, most easily overlooked, is the identification of suitable things to 
count, so that the random number W of occurrences is approximately Poisson. 
The second is an evaluation of, or approximation for, the Poisson parameter 
A = EW. The third ingredient is an analysis of the dependence structure to 
show that W is close to PdA), the Poisson distribution with parameter A. 
Informally, PCH discusses the first two ingredients, and PA is concerned with 
the third. 

. Overview of PCH. Section VI.7 of Feller (1968) is titled “Observations 
fitting the Poisson distribution” and its footnote states: 

The Poisson distribution has become known as the law of 
small numbers or of rare events. These are misnomers 
which proved detrimental to the realization of the funda- 
mental role of the Poisson distribution. The following 
examples will show how misleading the two names are. 
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The five examples are (a) radioactive disintegrations, (b) flying-bomb hits on 
London, (c) chromosome interchanges in cells, (d) connections to wrong num- 
ber, and (e) bacteria and blood counts. Contrast this to the opening paragraph 
of PCH, which includes the following problems. 

If you place a large number of points randomly in the unit 
square, what is the distribution of the radius of the largest 
circle containing no points?. . . Why do Brownian motion 
sample paths have local maxima but not points of increase, 
and how nearly do they have points of increase?. . . If an 
imaginary particle performs a simple random walk on the 
vertices of a high-dimensional cube, how long does it take to 
visit every vertex? If a particle moves under the influence of 
a potential field and random perturbations of velocity, how 
long does it take to escape from a deep potential well?. . . If 
you take a large i.i.d. sample from a 2-dimensional rotation- 
ally-invariant distribution, what is the maximum over all 
half-spaces of the deviation between the empirical and true 
distributions? 

All of these problems may be posed as questions about the distribution of 
the number of occurrences of some rare events and may be answered using a 
Poisson approximation. In many cases, including Feller’s examples, the rare 
events are close to independent, so that the count of occurrences is approxi- 
mately Poisson. In many other situations, including most of Aldous’s exam- 
ples, the rare events are far from mutually independent, tending rather to 
occur in clumps. It is the clumps, suitably defined, that are approximately 
independent of each other, so that the count of clumps is approximately 
Poisson. The great service rendered by PCH is to reveal the true breadth and 
scope of this idea. Focussing on the clumps is the crucial first step in applying 
a Poisson approximation in these situations. Every probabilist should at least 
browse PCH to absorb this point of view. 

A second theme of PCH is evaluation of the Poisson parameter for situa- 
tions with substantial clumping. To find the intensity h of clumps, divide the 
intensity of occurrences by the expected size of a clump: 

rate of occurrence 
mean number of occurrences per clump 

A =  (1) 

The top of the fraction is usually easy to calculate; the art is in estimating the 
bottom. (The situations without clumping are those in which the denominator 
is close to 1.) AB Aldous describes it, “This mean clump size can be estimated 
by approximating the underlying random process locally by a simpler, known 
process for which explicit calculations are possible.’’ In pursuit of these explicit 
calculations, a remarkable amount of probability theory is covered, albeit at an 
intuitive level. Regardless of the connection to Poisson approximation, which 
might be viewed as just an excuse to discuss a host of interesting processes, the 
ideas surveyed while calculating clump sizes are fascinating in their own right. 
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We suspect that this is the aspect of PCH that led Williams (1991) to state “Of 
course, intuition is much more important than knowledge of measure theory, 
and you should take every opportunity to sharpen your intuition. There is no 
better whetstone for this than Aldous (19891, though it is a very demanding 
book.’’ 

A third theme of PCH is an ideal for good probabilistic research. In the 
introduction, one finds: 

The proper business of probabilists is calculating probabili- 
ties. . . . A limit theorem is an assertion of the form: ‘the 
error in a certain approximation tends to 0 as (say N -, a). 
Call such limit theorem naive if there is no explicit error 
bound. . . 

A colleague expanded this to finish “ . . .and call people who prove such 
theorems...”. The alternative to proving naive limit theorems is to give 
approximations with bounds. The book PA shows how to do this. 

The expository style of PCH is unconventional. Although the book is very 
entertaining, and would be a good companion on a desert island, it is also 
frustrating. Many ideas are left raw, and in spite of the author’s notes on the 
literature, it is hard to tell what has been proved and what hasn’t. 

Examples of clumping. We believe that the simplest example of the 
Poisson clumping heuristic, with nontrivial clumping, is the analysis of the 
length of the longest head run in a sequence of coin tosses. Consider a p-coin 
tossed repeatedly, and ask what is the distribution of L,  the length of the 
longest consecutive run of heads within the first n tosses, for large n. For 
simplicity, we will ignore boundary effects throughout this discussion. Pick a 
positive integer test value t for L. At each epoch, the probability of t 
consecutive heads is p‘, so the expected number of occurrences of blocks of t 
consecutive heads is np‘. However, these occurrences come in clumps. A clump 
here may be defined as a maximal consecutive run of occurrences. For exam- 
ple, a tail followed by t + 2 heads followed by a tail should be viewed as one 
clump, consisting of three occurrences. To compute the mean number of 
occurrences per clump, follow a given clump back to its leftmost end. Since the 
chance that the clump contains more than K occurrences is pk, the expected 
number of occurrences in a clump is 1 + p + p2 + * . Thus, using (11, the 
number W of clumps has expectation 

and the Poisson clumping heuristic predicts that 

P ( L < t )  = P ( W = O )  =exp(-A) = e x p ( - n ( 1 - p ) ~ ~ ) .  

A treatment of this with error bounds, both with and without the declumping 
factor of (1 - p), appears in Section 8.4 of PA. 
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The appropriate definition of a clump is subject to taste. Another reasonable 
choice would be to identify clumps with renewals, so that in testing for t 
consecutive heads, a tail followed by 3t + 1 heads followed by a tail would be 
counted as three clumps rather than as one clump. 

In the previous example it is easy to label the clumps of occurrences, in 
terms of the index of the first occurrence. The event E, that there is a clump 
at i may be defined as the event that t consecutive heads occur at i, and not at 
i - 1, so that @(Ei) = Ntail followed by t heads) = (1 - p)p' ,  and W = 
X ~ U E , ) .  One could analyze long head runs without noticing the phenomenon 
of clumping, either by using the events Ei or via renewal theory, which 
provides exact formulae. 

The analysis of coverage of the plane by randomly centered discs gives an 
example of the clumping heuristic in which it does not seem feasible to label 
clumps by the index of a particular occurrence within the clump. Consider the 
unit square with a large number 8 of points placed uniformly and indepen- 
dently, and ask what is the distribution of L, the radius of the largest circle 
containing no points. To simplify the analysis, pretend that the number of 
points is also rylndomized, to be Poisson with mean e, so that the given set of 
points is a Poisson process with intensity 8. Ignore boundary effects, by 
treating the unit square as a torus. Choose a test value r for L, so that the 
event that L I r is exactly the event that circles of radius r ,  with centers at 
our random points, completely cover the square. The uncovered part of the 
unit square is a random set 4 containing all points x such that the disc of 
radius r centered at x contains no points of the original Poisson(0) point 
process. This random set 4 consists of clumps, since given that a point x is in 
4, points very nearby are also likely to be in 4. Roughly, the clumps are the 
connected components of 4. The expected area of 4 is easy to calculate, 
being exactly P(x E 4) = @the original random set misses a given disc of 
radius r) = exp(-8.rrr2). An argument involving the Poisson line process, as 
in Solomon (1978), predicts that the expected size of a clump is approximately 
l/(w2e2). Thus in (1) the number W of clumps has expectation 

A = d 2 r 2  exp( - e r r 2 ) ,  
and the Poisson clumping heuristic predicts that 
(2) P( L I r )  = P( W = 0) = exp( - A )  = exp( - d 2 r 2  exp( - e r r 2 ) ) .  
In (21, the first = reflects errors due to ignoring boundary effects and 
replacing a deterministic number 8 of points by a random number. The second 
5: appears because W is not Poisson, and the third appears because A has 
only been approximated. The sense of approximation meant by = is deliber- 
ately vague, but implicit is the claim that for large e, and r chosen so that the 
expected number A of clumps is moderate, the overall approximation for 
NL I r )  is good, so that (2) does describe the approximate distribution of L. 

Establishing Poisson approximations: a historical view. Conver- 
gence in distribution to the Poisson has often been proved by establishing the 
appropriate limit for Laplace transforms, er by the method of moments. Let 
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W, be nonnegative random variables, and let 2 be Po(A). For Laplace trans- 
forms, recall that W, converges in distribution to 2 if and only if 
logEexp(-sW,) + - 1) for s 2 0. For the method of moments, recall 
that W, converges in distribution to 2 if for k = 1,2,. . . the kth moment of 
W,, converges to the kth moment of 2. Establishing convergence of all 
moments is equivalent to showing that the k th falling factorial moment of W, 
converges to A’ for each k. 

These methods establish “naive” limit theorems. To get a rate of conver- 
gence for P(W, = j >  to e-’AAj/j! as n + 03, for each fmed j = 0,1,2,. . . , 
inclusion-exclusion is a natural tool [Watson (1954)l that provides both upper 
bounds and asymptotics in many examples. However, for the total variation 
distance from W, to 2, which involves summing over j = 0, 1, . . . , the bounds 
obtained using inclusion-exclusion are usually intractable. 

Inclusion-exclusion for Poisson approximation is described under the head- 
ing of sieve methods by Alon and Spencer [(1992), Chapter 8.31 and Bollobbs 
[(1985), Chapter 1.41. For a random variable W = C,, , - l (E,)  that counts the 
number of events E, that occur, 

P ( W = O ) =  ( - l ) k  P( Y E , ) .  
k r O  J C T ,  IJI=k 

(3) 

This follows from the identity 

(4) 
l ( w  = 0 )  = ( -1)  k W  ( J ,  w E z+, 

k r O  

which can be applied to any nonnegative integer-valued random variable. The 
connection between (3) and (4) is that the falling factorial may be expanded as 
( w ) k  = C*l (E ,>  l (Eak) ,  where E, denotes a sum taken over ordered 
k-tuples (a1,. . . , a,) of distinct indices from r, so that 

The Bonferroni inequalities sharpen the inclusion-exclusion formula by 
noting that the partial sums provide upper and lower bounds. In terms of the 
falling factorial moments E((w)k of an arbitrary Z+-valued random variable, we 
have upper and lower bounds on P(W = 0) given by l)%(W)k/k!y with 
the direction of the bound depending only on the parity of r. Likewise, the 
partial sums - A ) k / k !  provide upper and lower bounds for exp( -A). Let 
d k  E ( w ) k  - Ak be the discrepancy between the k th  falling factorial moment 
of W and that of the Poisson distribution with parameter A. Combining the 
upper and lower bounds, for r even we have 
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In summary, to show that P( W = 0) is close to exp( - A )  via inclusion-exclu- 
sion, it suffices to pick r large enough that X / r !  is small, and then control all 
moments of order up to r .  

For j = 0,1,2,. . . , the difference between PfW = j )  and e-*Ahj/j! can be 
bounded by similar considerations applied to the general inclusion-exclusion 
identity: 

Stein’s method. That a random variable Z has the distribution Po(A) is 
characterized by the recursion 

A P ( Z = k -  l ) = k P ( Z = k ) ,  k = O , 1 , 2  ,... . 
The basis of Stein’s method [Stein (1972)1, as applied to Poisson approximation 
by Chen (1975), is to extend this from indicators of singletons, g ( z )  = l ( z  = k), 
to arbitrary bounded g: Z+-, R. Thus 2 has distribution Po(h) if and only if 
for all bounded g 

( 5 )  [E( hg( Z + 1) - Zg( 2)) = 0. 

Stein’s insight is that if [E(hg( W + 1) - Wg( W )) is small for enough functions 
g ,  then the random variable W is close in distribution to Po(h). 

The mechanism for carrying this out is to write (5 )  as lEf(Z) = 0, where f 
and g are related by Stein’s equation, 

(6) f ( k )  = h g ( k  + 1) - k g ( k ) ,  k = 1,2 ,... . 
Given f = ( f (O) ,  f(l), . . . ) there is a unique g = (g(l), g(2),  . . . ) which satis- 
fies (61, namely, 

E( f ( Z > l ( Z  < j ) )  
g ( ’ ) =  h P ( Z = j -  1) ’ 

where henceforth we write 2 for a random variable having the distribution 
Po(A). For subsets A c Z+, let gA denote the solution of Stein’s equation 
using f ( . )  = lA(- )  - N Z  E A),  SO that 

P( W E A )  - P(Z E A )  = E f (  W )  = E(AgA( W f I.) - WgA(W)) .  

It follows that the total variation distance from the distribution of W to Po(h) 
is given by 

d , , ( W , Z )  SUP I P ( W = A )  - P ( Z € A ) I  
A c Z +  

(7) 

We will return to a discussion of (8) in the context of PA. As a word of caution, 
we note that some authors define total variation distance as d T v ( p ,  Y) = 
~ u p , , ~ , , = ~ l / h  d p  - / h  dvl,  which has values twice as big as the d , ,  given by (7). 
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Overview of PA. PA is devoted to providing bounds for Poisson approxi- 
mations. The book features both general theory for Poisson random variables 
and processes, and concrete examples. The theory includes upper and lower 
bounds, often with explicit universal constants. The examples are given as 
chapters on the following: random permutations; random graphs; occupancy 
and urn models; spacings; and exceedances and extremes. The expository style 
of PA is rigorous but unforgiving. It satisfies an ideal for research papers in 
this journal: “Every sentence should challenge the reader.” 

The main theme of PA is the development of upper bounds for the distance 
to the Poisson distribution using Stein’s method and coupling techniques. 
Among the choices of metric are the total variation distance and the Wasser- 
stein distance. Later sections of this review discuss some of the details of this. 
For now, we quote two theorems that illustrate the typical style of the results 
of PA. Theorem l.C compares the mixed Poisson distribution POW, governed 
by a nonnegative random variable A [i.e., P(W = klA = x) = exp(-x)xk/k!1, 
and the Poisson distribution with parameter A. The proof using Stein’s 
method is elegant. The result is a pair of upper bounds on the total variation 
distance: 

(i) d,,(Po(A),Po(A)) I min(l,A-1/2)IElA - A I  

(ii) d,,(Po(A),Po(h)) I A - ’ ( l  - exp( -A))VarA, ifEA = A .  

The factor A-’( l  - exp(-A)) is less than min(1, A-’). 
The second example is Theorem 8.H, which looks at rare sets in a Markov 

chain. Suppose X is a stationary ergodic Markov chain on Z, with j-step 
transition function P c j )  and stationary measure p .  If W is the number of 
visits to the set A in the first n steps, so that A = EW = np(A) ,  then 

Section B12 of PCH discusses rare sets in Markov chains and gives a heuristic 
for computing the expected size of a clump of visits to that set. We note that 
the bound in (9) provides a useful approximation only in the situation in which 
the expected clump size is close to 1. 

To assess the adequacy of upper bounds, one tries to find lower bounds of 
comparable order. Chapter 3 provides tools for this, using both Stein’s method 
and various ad hoc techniques. To give the flavor of these bounds, we quote 
the simplest example, where the variance is less than the mean. Let 6 be the 
total variation distance between W and Po(A), where A = IEW. The authors 
observe that the upper bound given by Stein’s method is often of order E ,  

where 
var w 

E = min(1,IEW) 

Theorem 3.A(b) provides a lower bound on the total variation distance 6, for 
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the case Var W < A = E W, in the form 

for some universal constant e. Even for the reader who is daunted by such 
details, there is an important lesson to be learned: When the variance is below 
and bounded away from the mean, there is no possibility of Poisson conver- 
gence. 

The first nine chapters of PA deal with one-dimensional Poisson approxima- 
tions, and Chapter 10, which is the most technical part of the book, extends 
these ideas to process approximations. The enormous scope of this project may 
be appreciated by noting an analogy: The one-dimensional central limit theo- 
rem extends to Donsker’s invariance principle, martingale central limit theo- 
rems, and so on. Viewing W = C, E r I ,  as one particular functional, the sum, 
applied to a process ( I , ,  a E r), it is natural to consider arbitrary functionals, 
that is, to consider approximations to the distribution of the entire dependent 
process of indicators. PA develops results using coupling and a wide variety of 
metrics. The simplest form of process approximation, using total variation 
distance and the “local method,” may be found in Arratia, Goldstein and 
Gordon (1989, 1990). An appealing feature of giving total variation upper 
bounds on the process is that exactly the same bounds apply to arbitrary 
functionals. 

More on Stein’s method. Techniques for expanding and bounding (8) 
occupy most of PA. The straightforward ingredients are the bounds, valid 
uniformly in A, 

IlgAll E SUP I g A (  k) I 5 min( 1, 
k r l  

( 10) 

and 

(11) 11AgA11 sup [&?A( k + 1) - &?A( k) I 5 A - < min(1,A-’). 

[In earlier papers on Poisson approximation using Stein’s method, upper 
bounds such as min(1, 1.4A-’/’) appear, corresponding to earlier versions of 
the bound in (10); it should be a matter of taste whether to quote these 
verbatim with the original bound or simply to insert the improved bound 
expressed by (lo).] 

We express W as a sum of indicators of dependent events, indexed by an 
arbitrary set r, so that W = C u t r I a .  There are many choices of how to 
proceed in expanding and bounding (8). Henceforth we will write p ,  = P(Z, = 

1) = 1 - P(I ,  = 0) and assume that A = C p ,  < w, so that A = EW. 
An easy method, referred to in PA as the local method [proposed originally 

by Chen (197591, is to assign “neighborhoods of strong dependence” B ,  c r, 
with a E B,. (PA uses the notation r: = B,  - {a).) Using the notation of 
Arratia, Goldstein and Gordon (19891, the total variation distance from W to 
Po(A) can be bounded above in terms of three quantities, b,, b,, C3, which 

1 - e - ’  

k r l  



BOOK REVIEW 2277 

must all be small for a useful approximation. First, 

b , =  C Pa C PP 
a e T  PEB, 

reflects the size of the neighborhoods. Second, 

b2 = C C E ( I a I g )  = C Pa C E ( I p l l a  = 1) 
acT a # P E B ,  a e T  a#pEB, 

expresses the positive correlations captured within the neighborhoods. One 
can view b, as the average number of Occurrences among neighbors, given the 
Occurrence of an event. Note that both b,  and b, become smaller if the 

I neighborhoods B ,  are chosen smaller. The third term is 

which penalizes the choice of too small a neighborhood. The resulting bound is 

where the factors that depend on A come from (10) and (11). The natural 
choice of neighborhoods in many examples is the smallest one that makes each 
I, independent of a ( I g :  /3 E r - Ba), so that 

An alternative to the local method for bounding and expanding (8) is the 
“coupling method,” which is the main focus of PA. A simple version of this is 
expressed by Theorem 2.A in the form 

= 0. 

Comparing the local method and the coupling method. We can 
compare the bounds achievable by the local method and the coupling method, 
as follows. Consider the local method used with the smallest possible neighbor- 
hoods, that is, B ,  = (a}, so that b, = 0. The term b, simplifies to b, = Cap:. 
The mutual dependence of the I, is measured entirely by bh. Write W, = W - 
I,, so that bk = E&, with 

SL = ~ l ‘ ( I a  -palWa)l 
= Cqw, = k ) l P ( I a  = llW, = k) -pal 

= c (P( I, = 1, w, = k) -pap( w, = k) 1 

= Cp,IP( w, = kll, = 1) - P( w, = k) I 
= 2pad,,(Wa, (WalIa = 1)). 

k 

k 

k 
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In the notation of the coupling method, V, =d ( W - 111, = 1) =d ( W,lIa = 11, so 
that 

&3 = C p a d  T V (  wa va ) * 
a 

The net result of the local method, using B ,  = {a), is 

1 - e-A 
(14) dTV(W,Z) I A CPH + 2 m i n ( l , ~ - ' / ~ )  CPadTV(Wa,Va). 

a a 

Next consider the Wasserstein distance d,(X, Y ) ,  defined as the minimum 
of EJX - yl over all couplings. For integer-valued random variables, dTV I d,, 
since 

dTv(X,Y) = min P(X # Y) = min El (X# Y) 
couplings couplings 

I min FIX-YI =dd,(X,Y). 
couplings 

The minimal value of the expression EIU, - Val in (13) is precisely dw(W, V,). 
The bound from the coupling method in (13) can therefore be rewritten as 

1 - e-A 
(15) dTV(W,Z) I C pad w ( W, Va) * 

a 

One of the differences between (14) and (15) is the appearance of W, in 
place of W. To bound the effect of this change, observe that W = W, + I, 2 W,, 
so that stochastic monotonicity implies d ,( W, W,) = p a .  Hence, by the trian- 
gle inequality, 

Idw(W,Va) - dw(Wa,V,)I -<pa. 
Thus, to within + A - ' ( l  - e-* )Cap:, which is usually negligible, the local 

method has the upper bound 

and the coupling method has the upper bound 

Roughly speaking, the coupling method increases dTv(W,, V,) to d ,(Wa, V,), 
and saves a factor max(2,2fi) in the coefficient of U3. 

Discussion. The books reviewed here provide a coherent overview of 
areas of research that are sure to flourish for many years. Each could make a 
rewarding basis for a semester or more of graduate-level study. PA does an 
admirable job of presenting a cohesive toolkit for assessing Poisson approxima- 
tions, and sets the standard for results and proofs in this area. These methods, 
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together with the idea of clumping from PCH, deserve to be a part of any 
applied probabilist’s arsenal. 

Two frontiers for further research stand out. One is process approximation. 
The other is the development of new techniques to analyze the myriad 
examples in PCH where clumping plays a crucial role. The techniques in PA 
seem applicable only in cases where the clumps are readily identifiable. 

An ideal for the style of such research is expressed in the postscript of PCH: 
A mathematical area develops best when it faces hard 
concrete problems which are not in the ‘domain of attrac- 
tion’ of existing proof techniques. An area develops worst 
along the ‘lines of least resistance’ in which existing results 
are slightly generalized or abstracted. I hope this book will 
discourage theoreticians from the pursuit of minor varia- 
tions of the known and the formalization of the heuristically 
obvious, and encourage instead the pursuit of the unknown 
and the unobvious. 
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