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Many random combinatorial objects have a component structure whose joint 
distribution is equal to that of a process of mutually independent random variables, 
conditioned on the value of a weighted sum of the variables. It is interesting to 
compare the combinatorial structure directly to the independent discrete process, 
without renormalizing. The quality of approximation can often be conveniently 
quantified in terms of total variation distance, for functionals which observe part, 
but not all, of the combinatorial and independent processes. Among the examples 
are combinatorial assemblies (e.g., permutations, random mapping functions, and 
partitions of a set), multisets (e.g, polynomials over a finite field, mapping patterns 
and partitions of an integer), and selections (e.g., partitions of an integer into 
distinct parts, and square-free polynomials over finite fields). We consider issues 
common to all the above examples, including equalities and upper bounds for total 
variation distances, existence of limiting processes, heuristics for good approxima- 
tions, the relation to standard generating functions, moment formulas and 
recursions for computing densities, refinement to the process which counts the 
number of parts of each possible type, the effect of further conditioning on events 
of moderate probability, large deviation theory and nonuniform measures on 
combinatorial objects, and the possibility of getting useful results by overpowering 
the conditioning. 0 1994 Amdcmic Pres, Inc. 
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1. INTRODUCTION 

We consider random combinatorial objects which can be described in 
terms of their component structure. For an object of weight n, denote the 
component structure by 

C E C ( n )  E ( c l ( n ) ,  C,(n), * * a ,  Cn(n)), 

where C i r  C , ( n )  is the number of components of size t. Since iCi is the 
total weight in components of size i, we have 

C1+2C2+ ... +nC,=n.  

For each fixed n, by choosing an object of weight n at tandom, with all 
possibilities equally likely, we view C ( n )  as a Z: -valued stochastic process, 
whose coordinates Ci(n) ,  i =  1, ..., n, are dependent, nonnegative integer- 
valued random variables. This paper considers combinatorial objects 
for which the joint distribution of C(n)  can be expressed as the joint 
distribution of independent random variables Z1 , Z2 , ..., Zn conditioned on 
the value of a particular weighted sum. 

There are at least three broad classes of combinatorial structures which 
have this description in terms of conditioning an independent process. 
The first class is assemblies of labelled structures on [ n ]  s { 1,2, ..., n }  see 
Foata [23], Joyal [38]. This class includes permutations, decomposed into 
cycles; mappings, decomposed into connected components; graphs, decom- 
posed into connected components, and partitions of a finite set. The second 
class is multisets, i.e., unordered samples taken with replacement. This class 
includes partitions of an integer; random mapping patterns; and monic 
polynomials over a finite field, decomposed into monic irreducible factors. 
The third class is selections, i.e., unordered samples ~ taken without 
replacement, including partitions of an integer into parts of distinct sizes, 
and square-free polynomials. 
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The detailed description of any of the above examples is given in terms 
of a sequence of nonnegative integers m ,  , m,,  .... For assemblies, let mi be 
the number of labelled structures on a set of size i, for i =  1,2,  ...; permuta- 
tions have m i = ( i - l ) ! ,  mappings have m , = ( i - l ) ! ( l + i + i 2 / 2 +  ..- + 
i i - ' / ( i -  l ) ! ) ,  and partitions of a set have m i =  1 .  For multisets and 
selections, let mi be the number of objects of weight i; partitions of an 
integer have m i =  1 ,  and the factorizations of monk polynomials over a 
finite field have m ,  equal to the number of monic, irreducible polynomials 
of degree i. 

For a = ( a l ,  a,, ..., a,) E Z:, consider the number N(n, a) of objects of 
total weight n, having a, components of size i, for i = 1 to n. For assemblies, 
the generalization of Cauchy's formula for permutations is the enumeration 

N(n, a) = I {assemblies on [n]: C = a}l  

For multisets, 

N(n, a) I { multisets of weight n : C = a }  I 
m i + a i - l  

1 

For selections, 

N(n, a) E I {selections of weight n : C = a}  I 

= l ( a 1 + 2 a , +  * * a  + n n , = n ) f i ( ; ; ) .  
I 

(3 )  

Let p ( n )  denote the total number of structures of weight n, to wit 

p b ) =  1 N(n, a). (4) 
. E h t  

For permutations, p ( n )  = n !; for mappings, p ( n )  = n"; for graphs, 
p ( n )  = 2(; ) ;  for partitions of a set p ( n )  = B,, the Bell number; for partitions 
of an integer, p ( n )  is the standard notation; and for monic polynomials 
over a field with q elements, p ( n )  = 4". 

A random structure is understood as follows. Fix a constant n, and 
choose one of the p ( n )  structures at random, with each possibility equally 
likely. This makes C ( n )  a stochastic process with values in Z:, whose 
distribution is determined by 
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In Section 2 below, we show that there are independent random variables 
Z , ,  Z 2 ,  ... such that the combinatorial distribution ( 5 )  is equal to the joint 
distribution of ( Z , ,  Z2, ..., 2,) conditional on the event { T,, = n } ,  where 

T n = Z 1 + 2 Z 2 +  -.. +nZ, .  

Explicitly, for all a E E: 

P(C(n) =a)  = P((Z1, Z 2 ,  ..., Z , )  = a I T,, = n). (6) 

Assemblies, multisets, and selections are not the only places where (6) 
&sa in combinatorics. For example, the distribution of the counts of the 
factor degrees of the characteristic polynomial of a uniformly chosen random 
matrix over a finite field also satisfies (6); see Hansen and Schmutz [62]. 

It is fruitful to compare the combinatorial structure directly to the 
independent discrete process, without renormalizing. The quality of 
approximation can be usefully quantified in terms of total variation distance 
between the restrictions of the dependent and independent processes to a 
subset of the possible coordinates. We carry this out in Section 3. Bounds 
and limit theorems for natural functionals which depend on the coordinates, 
albeit weakly on those outside a subset, are then easily obtained as 
corollaries. For examples of this in the context of random polynomials over 
finite fields, and random permutations and random mappings, see Arratia, 
Barbour, and TavarC [5] and Arratia and TavarC [3]. 

The comparison of combinatorial structures to independent processes, 
with and without further conditioning, has a long history. Perhaps the best 
known example is the representation of the multinomial distribution with 
parameters n and p l ,  ..., Pk as the joint law of independent Poisson random 
variables with means Apl, ..., Apk, conditional on their sum being equal to n. 

Holst [34] provides an approach to urn models that unifies multinomial, 
hypergeometric, and Polya sampling. The joint laws of the dependent counts 
of the different types sampled are represented, respectively, as the joint dis- 
tribution of independent Poisson, negative binomial, and binomial random 
variables, conditioned on their sum. See also Holst [35, 361. The quality of 
such approximations is assessed using metria, including the total variation 
distance, by Stam [53] and Diaconis and Freedman [ 131. 

The books by Kolchin, Sevast'yanov, and Chistyakov [40] and Kolchin 
[39] use the representation of combinatorial structures, including random 
permutations and random mappings, in terms of independently distributed 
random variables, conditioned on the value of their sum. However, the 
Kolchin technique requires that the independent variables be identically 
distributed. The number of components Ci of size i is the number of 
random variables which take on the value i. 
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Shepp and Lloyd [52] study random permutations using a conditional 
relation almost identical to (6) ,  with EZ,=x'/i  and x = x ( n ) ,  except that 
they condition on n being the value of an infinite sum Z ,  + 2Z2 + . , 
which of course entails that Z ,  + , = Z ,  + = . . . = 0, and requires x < 1. 
Variants on the Shepp and Lloyd technique are discussed by Diaconis and 
Pitman [ 141, are effectively exploited to prove functional central limit 
theorems for two combinatorial assemblies by Hansen [29, 301, and are 
used as a convenient tool for moment calculations by Watterson [SS] and 
Hansen [31]. A related technique, coupled with an observation of Levin 
[41], is used by Fristedt [24,25] to study random partitions of a set and 
random partitions of an integer. 

d.1. Notation 
There are several types of asymptotic relations used in this paper. For 

sequences { a , }  and { b , } ,  we write a, - - , ,  for the asymptotic relation 
a,/b,  + 1 as n + 00. We write a,, x b, if there arc consiants 0 4 co < c1 < a3 
such that cob,, <a, < c ,  b, for all sufficiently large n. We write a, x b,  to 
denote that log a,, -log b,. Finally, we say that a,, Gb, if an 4 b, are 
approximately equal in wane heuristic sense deliberately left vague. 

For r E Z+ E 10, 1,2, ...I, we denote the rising factorial y(,) by 1, 
~ ( ~ , = y ( y +  l ) - . . [ y + r -  1 )  and the falling factorial yIr3  by ycol = 1, 
yI- , ,=y(y-  l ) . . . ( y - r +  I). We also write N 5 {1,2 ,... }, W, = [0, 00). 

X if X ,  
converges to X in distribution, and X 9 Y if X and Y have the same 
distribution. We use 1 to denote indicator functions, so that 1(A)  = 1 if A 
is true and 1(A) = 0 otherwise. 

We write X, + p  X if X, converges to X in probability, X ,  

2. INDEPENDENT RANDOM VARIABLES CONDITIONED ON A WEIGHTED SUM 

2.1. The Combinatorial Setup 
Common to the enumerations ( 1 )  through (3)  is the form 

n 

N(n ,a )=  I{C=a}l = l ( a , + 2 a 2 +  ... + n a , = n ) f ( n ) n g i ( a i ) ,  (7) 

with f(n) = n ! for assemblies, and f(n) = 1 for multisets and selections. To 
see that (7) involves independent random variables conditioned on a 
weighted sum, view the right hand side as a product of three factors. First, 
the indicator function, which depends on both n and a, corresponds to 
conditioning on the value of a weighted sum. Second, the factorf(n) does 
not depend on a, and hence disappears from conditional probabilities. The 
product form of the third factor corresponds to n mutually independent, 
but not identically distributed, random variables. 

1 
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The distribution of a random assembly, multiset, or selection C ( n )  given 
in ( 5 )  can now be expressed in the following form. For a E Z:, 

(8) P(C(n)=a)=l(u,  +2a ,+  + n a , = n ) - n g , ( a , ) .  f ( n )  
P(n) 1 

Given functions g , ,  g , ,  ... from Z, to R,, and a constant x > 0, let 
Z , ,  Z , ,  ... be independent nonnegative integer valued random variables 
with distributions given by 

P ( Z , = k ) = c , g , ( k ) x t k ,  k=0, 1 ,2  ,.... (9) 

The above definition, in which c, 
sense if and only if the value of x and the functions g ,  are such that 

c , ( x )  is the normalizing constant, makes 

c,=( k > O  1 g , ( k ) x ' k ) - l E ( O ,  a). (10) 

For assemblies, g , ( k ) =  ( m , / i ! ) k / k ! ,  so that (10 )  is satisfied for all x>O. 
m,x'/i! ,  we see that c, = exp( -i,) and Z, is Poisson with Defining 1, 

mean and variance 

mix i  -. 
i !  

EZ, = var(Zi) = li 

For multisets, g i ( k )  = ("8+L-1), so the summability condition (10) is 
satisfied if and only if x c 1 .  For x E (0, l ) ,  we have c, = ( 1  - x')"~ and 2, 
has the negative binomial distribution with parameters m,  and X I  given by 

P(Zi = k )  = ( m i  +: - '> ( 1  - xi)", xik, k = 0, 1,2,  ..., 

with mean and variance 

mixi  mixi  
1 -xi' ( 1  - X y '  

E&=- var(Zi) = - 

In the special case mi=  1 ,  this is just the geometric distribution, and in 
general Zi  is the sum of mi independent random variables each with the 
geometric distribution P( Y = k )  = ( 1  - x i )  xik for k 2 0. 

For selections, g , ( k ) =  (7)) which is zero for k > m i ,  so that (10) is 
satisfied for all x > 0. We see that ci = (1 + by writing 

P ( Z i  k )  = ci ( : i )  xik = (mi)(  A)* ( ' ) m t - k .  
k 1+x '  l + x i  
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Thus, with p i  = xi/(  1 + xi) ,  the distribution of Zi is binomial with 
parameters mi and p i ,  with mean and variance 

(13) 
m .xi mixi  

Ezi = mi p i  = var(Zi) = m i p i ( l  - p i )  = - 1 +xi'  ( 1  + Xi) * '  

2.2. Conditioning on Weighted Sums in General 
In order to give a proof of (6) which will also serve in Section 6 on 

process refinements, and Section 8 on large deviations, we generalize to a 
situation that handles weighted sums with an arbitrary finite index set. We 
assume that Z is a finite set, and for each a E Z, g,:  Z + + R + is given. We 
assume that w is a given weight function with values in W CH more generally 
R", so that for aEZ, W(Q$ is the weight of CI. For the combinatorial 
examples ,in Section 1, we had I =  fl, 2, ..., n } ,  and a one-dimensioad space 
of weights, wii$i w ( i ) =  i. For a e L 5  with coordinates u,=a(a), we use 
vector dot prodwt notation for the wigkted sum 

W - a ~  u(a)w(a). 
a e l  

Furthermore, we assume that we are given a target value t such that 
there exists a normalizing constantf(Z, t )  so that the formula 

P ( C , = a ) = l ( w . a = t ) f ( z ,  t )  n ga(aa),  aEZ'+ (149 
a e l  

defines a probability distribution for a stochastic process C ,  with values in 
Z:. The distribution of C(n) given by (8) is a special case of (14) with t = n 

Assume that for some value x>O there exist normalizing constants 
and f(4 t )  =Anl/Pin).  

ca c, (x)  E (0, co), such that for each a E Z, 

P(2, = k )  = c,(x)  g , (k)  x ~ ( ~ ) ~ ,  k = 0, 1,2, ... (15) 

defines a probability distribution on Z+. In case d >  1, so that w(a)= 
(w, (a) ,  ..., w,(a)), we take x ( x , ,  ..., x d )  E (0, m)", and x'"(,)& denotes the 
product x ; ' ( ' ) ~  Define the weighted sum T by 

TI TIE w(a)  Z,. 
a e l  

It should now be clear that the following is a g e n e r d a n  of (6). 

THEOREM 1. Let Z, (Z,), I have independent coondinates Z ,  with 
distribution given by (15), and let C ,  have the distrihution given by (14). 
Then 

C ,  = (Z, I T= t ) ,  (17) 
d 
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Another characterization of total variation distance is 

d,,(X, Y)=max (P(XEA)-P(YEA)) ,  
A c S  

and in the discrete case, a necessary and sufficient condition that the maxi- 
mum be achieved by A is that {s: P(X= s) > P( Y = s)}  c A c {s: P(X= s) > 

The most intuitive description of total variation distance is in terms of 
coupling. A “coupling” of X and Y is a probability measure on S2 whose 
first and second marginals are the distributions of X and Y, respectively. 
Less formally, a coupling of X and Y is a recipe for constructing X and Y 
simultaneously on the same probability space, subject only to having given 
marginal distributions for X and for Y. In terms of all possible coupling 
measures on S2, 

P( Y = s)}. 

The minimum above is achieved, but in general there is not a unique 
optimal coupling. In fact a discrete coupling achieves P(X# Y) = 
dTy(X ,  Y), if and only if, for all SES, P(X=Y=s)=min(P(X=s) ,  
P(Y=s)). Intuitively, if d,,(X, Y) is small, then X and Y are nearly 
indistinguishable from a single observation; formally, for any statistical test 
to decide whether X or Y is being observed, the sum of the type1 and 
type I1 errors is at least 1 - dTY(X,  Y). 

Upper bounds on the total variation distance between a combinatorial 
process and a simpler process are useful because these upper bounds are 
inherited by functionals of the processes. If h: S + T is a deterministic map 
between countable spaces, and X and Y are random elements of S, so that 
h(X)  and h( Y) are random elements of T, then 

Theorem 3 below, and its refinement, Theorem 5 in Section 6, both describe 
combinatorially interesting cases in which equality holds in (28). It is 
natural to ask when, in general, such equality holds. The following elemen- 
tary theorem provides an answer. 

THEOREM 2. Zn the discrete case, equality holds in ( 2 8 )  if and only if the 
sign of P(X= s) - P( Y = s) depends only on h(s), in the non-strict sense that 
Va, b E S, 

h ( a ) = h ( b )  implies (P(X=a)-P(Y=a))(P(X=b)-P(Y= b) )aO.  
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ProoJ: Consider the proof of (28), namely 

=E I 1 ( P ( X = a ) - P ( Y = a ) ) l  (29) 
r a s  S : h(a)  = r  

~1 1 IP(X=a)-P(Y=a)l  (30) 
r a: h(a) = r 

=2dTv(X, Y). 

Since the inequality in (30) holds term by term in the outer sums, equality 
holds overall if and only if equality holds for each r. This in turn is 
equivalent to the condition that for each r, there are no terms of opposite 
sign in the inner sum in (29). I 

Diaconis and Pitman [14] view “sufficiency” as a key concept. In the 
context above, h: S + T is a sufficient statistic for discriminating between 
the distributions of X and Y in S, if the likehood ratio depends only on h, 
i.e., if there is a function f :  T+ R such that for all s E S, P(X= s) = 
f ( h ( s ) )  P( Y = s). Taking a sufficient statistic preserves total variation dis- 
tance, as observed by Stam [53]. This is also a special case of Theorem 2, 
in which a product is nonnegative because it is a square: (P(X=a)-  
P ( Y  = a ) ) ( P ( X  = b )  - P ( Y  = b ) )  = ( f ( h ( a ) )  - l ) ( f ( h ( b ) )  - 1)P(Y = a )  
P( Y = 6 )  2 0 whenever h(a) = h(b). 

TIEOREM 3. Let I be a finite set, and for a €  I, let C, and Z,  be h, 
valued random variables, such that the Z ,  are mutually independent. Let 
w = (w(a))asI  be a deterministic weight function on I with values in some 
linear space, let T = C a s I w ( a )  ha, and let t be such that P(T= t)>O. For 
B c I ,  we use the notation C B = ( C a ) a c B  and ZB=(Za)aeB  for random 
elements of Z:. Define 
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=-C 1 P ( R = r )  
2 ,  

Proof We present two proofs, since it is instructive to contrast 
them. Note that not only are R and S independent, but also that R is a 
function of Z,, and Z, and S are independent. For aEZ:, write 
w .a Erne, w(a)  a(a). 

P ( S = t - r )  
-11. 

P(T= t )  

1 
d,,(C,,Z,)=- (P(Z,=a 1 T=t)-P(Z,=a)/ 

8 E Z :  

P(Z,= a, r + S =  t )  

P(Z,= a )  P(r + S= t )  

- P(Z, = a) 
1 

=iF 8 : W , 8 = r  I P(T=t) 

1 P ( R = r )  P ( r + S = t )  - P(R = I )  
P(T=t) 

1 P ( R = r , r + S = t )  - P(R = r )  =iFl P(T=t) 

Here is a second proof of Theorem 3, viewed as a corollary of 
Theorem 2, with the functional h on 728, defined by h(a) = w .a. We need 
only observe that h is a sufficient statistic since P(Z,=a I T= t ) =  
P(Z,=a) P(S= t-h(a))/P(T=t). 

For the sake of calculations of total variation distance between a 
combinatorial process and its independent process approximation, the 
most useful form for the conclusion of Theorem 3 is 

(33) 

In the usual combinatorial case, where t = n and T = Z ,  + 2Z2 + . . . + nZ,, 
this gives 

P ( S = n - r )  
d*Y(C,, Z,) =- 1 P(R > n) + - 1 "  P(R = r )  -11. (34) 

2 2 r = o  P(T=n)  
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There are two elementary observations that point to strategies for giving 
upper bounds on total variation distance. First, for discrete random 
elements we have in general 

dTV(X, Y ) = $  tP(X=s)-P(Y=s)l 
seS 

= (P(X=s)-P(Y=s))+ 

= 1 (P(X=s)-P(Y=s))-, 

s e S  

s a S  

where the notation for positive and negative parts is such that, for real x, 
x = x +  -x- ,  and 1x1 = x +  +x-.  In the context of (33) this is useful in the 
following form. Let A c I. Then 

<P(R$A)+sup (35) 
r c A  P(T= t )  

Specializing to the case where the weighted sum R is real valued, and 
A = (0, 1,2, ..., k}, the truncation level k is chosen much larger than ER, so 
that large deviation theory can be used to bound P(R>k), but not too 
large, so that P(S= t -  r ) / P ( T =  t)  can be controlled to show it is close to 
one. 

The second elementary observation, which is proved and exploited in 
Arratia and Tavari [2], is that the denominator in (33) can be replaced 
by any constant c > 0, at the price of at most a factor of 2, in the sense that 
for independent R and S such that P(R + S = t )  > 0, 

P(S= t-r)  
2 r  P ( R + S = t )  

P(S = t - r )  -1 1 P ( R = r )  I -11. 

By using this, for example with c = P(S = t), giving an upper bound on 
the total variation distance for combinatorial process approximations is 
reduced to showing that the density of S is relatively constant. 

Lower bounds for variation distance are often more difficult to obtain, 
but it is worth noting that in the combinatorial setup, since {R,>n} c 
{ C B # Z B } ,  we have, without the factor 1/2 suggested by (34), 

d,,(Cs, Z,) 2 P(RB > n). (36) 
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4. HEURISTICS FOR USEFUL APPROXIMATION 

d Recall first that for Bc [ n ] ,  we have C B  = ( Z B  I T,, = n). If d, , (CB,  Z , )  
is small, the approximation of C ,  by Z B  is useful. Probabilistic intuition 
suggests that conditioning on T,, = n does not change the distribution of Z B  
by much, provided that the event { T,, = n 1 is relatively likely. This in turn 
corresponds to a choice of x = x ( n )  for which ET,, is approximately n. Let 
C T ~  var( T,,), and let C T ~  = var(R,). Intuition then suggests that if 

and 

(38) 6, 

6, on 
and - are small E R B  - 

then d T Y ( C B ,  Z , )  is small. 
While our main focus is on the appropriate choice of x, we also discuss 

below the appropriate choice of B for examples including permutations, 
mappings, graphs, partitions of sets, and partitions of integers. 

There is an important qualitative distinction between cases in which the 
appropriate x is constant, and those in which x varies with n. If x does not 
depend on n, then a single independent process Z = ( Z , ,  Z 2 ,  ...) may be 
used to approximate C ( n )  = ( C , ( n ) ,  ..., C,(n)), which we identify with 
(C , (n ) ,  ..., C,,(n), O,O, ...) EZT. Under the usual product topology on Zy, 
we have that C ( n ) + Z  if, and only if, for every fixed b, C , ( n ) =  
(C , (n ) ,  ..., C,(n))  * Z ,  = ( Z , ,  ..., 2,) as random elements in Z”, Since the 
metric on Z!+ is discrete, we conclude that C b ( n ) * Z b  if, and only if, for 
each fixed b, d,,(C,(n), Z,) 0. For cases where x, and hence Z ,  varies 
with n, it makes no sense to write C ( n )  =. Z .  However, it is still useful to 
be able to estimate d,,(C,(n), z B ( n ) ) .  

We discuss first considerations involved in the choice of x and. B, and 
then heuristics for predicting the accuracy of approximation. 

4.1. Choosing the Free Parameter x 

It is convenient to discuss the three basic types of combinatorial 
structure separately. 

4.1.1. Assemblies 
It follows from ( 1  1 ) that 

n mixi  
ET,,= i U i =  - 

i- 1 ( i -  l)!’ 
(39) 
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while 

n i2m,xi 
0; = C i21EZi= -. 

i =  1 i = l  i !  

In the case of permutations, we take x = 1 to see that IE T,, = n, and 0: = 
n(n + 1)/2. In Arratia and Tavark [ 2 ]  it is proved that dTY(CB, Z,) + 0 as 
n + 00, with B =  B(n),  if and only if IBI = o(n). 

For the class of assemblies which satisfy the additional condition 

mi ICY' --- as i - c o y  
i !  i 

where y > O  and IC>O are constants, we see that 

0, if O < x < y - '  

00, if x > y - ' .  
n 

Hence the only fixed x that ensures that ET,, x n is x = y - ' ,  in which case 

ET,,-nlc, c n - n k .  (42)  

For the example of random mappings, 

m i = e i ( i - l ) !  P ( P o ( i ) < i ) ,  

where Po(i) denotes a Poisson random variable with mean i, Harris [33], 
Stepanov [56 ] .  It follows that we must take x = l / e ,  and, from the Central 
Limit Theorem, IC = 1/2. In this case IE Tn - n/2 and 0, - n/2. 

For the example of random graphs, with all 2(:)  graphs equally likely, 
the fact that the probability of being connected tends to 1 means that 
the constant vector (0, 0, ..., 0, 1 )  E Z: is a good approximation, in total 
variation distance, to C(n).  This is a situation in which the equality 
C ( n )  = d  (Z,, 1 T,, = n) yields no useful approximation. With x chosen so 
that E T, = n, and B = { 1,2,  ..., n - 1 }, we have that dTy(CB,  Z,) + 0, 
but only because both distributions are close to that of the process that is 
identically 0 on Z:. 

For partitions of a set, which is discussed further in Subsection 5.2 
and Section 10, with x = x ( n )  being the solution of xex=n,  and B =  
{ 1,2, ..., b }  u {cy c + 1 ,  ..., n} where b = b(n)  and c = c(n),  the heuristic (37) 
suggests that d,,(C,, Z,) + 0 if and only if both (x - 6)/& + 00 and 
(c - x)/& + co. For B of the complementary form B = (6, b + 1 ,  ..., c }  
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with b < c  both within a bounded number of & of x the heuristic 
suggests that dTY(CB, Z,) + 0 if, and only if, ( c  - b) = o(&). Sachkov 
[Sl] and Fristedt [24] have partial results in this area. 

4.1.2. Multisets 
Using (12) we see that 

while 

If the multiset construction satisfies the additional hypothesis that 

Icy' 
m i - -  as i - t c o ,  

i (45) 

where y > 1 and IC > 0 is fixed, a similar analysis shows that the only fixed 
x that ensures that IE T, x n is x = y- ' ,  in which case the asymptotics for 
ET, and 0, are the same as those in (42). 

The first example that satisfies the hypothesis in (45) is the multiset in 
which p ( n ) =  q" for some integer 4 2 2 .  In this case the mi satisfy 

q"= jmj,  
j l n  

so that by the Mobius inversion formula we have 

where p( - )  is the Mobius function, defined by 

p ( n )  = ( - l ) k  

p ( n )  = 0 otherwise. 

if n is the product of k distinct primes 

It follows from (46) that 
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so that 

2 2 &  u,, - - n3? 
R 

(49 ) 

For sets of the form B = { 1, 2, ..., b }  u { c, c + 1, ..., n }  where 0 < b 3 b(n)  
and c E c ( n )  < n, the heuristic in (37) and (38) suggests that d,,(C,, Z,) + 0 
if, and only if, both b = o(&) and c/& + co. For B of the complementary 
form B = {b, b + 1, ..., c }  with b < c both of the order of &, the heuristic 
suggests that d,,(CB, Z,) --+ 0 if, and only if, (c - b )  = o(&). See Fristedt 
[25] and Goh and Schmutz [ 2 6 ]  for related results. 

4.1.3. Selections 
In this case, it follows from (13) that 

while 

If the 

imixi 
ET,,= 1 - 

i =  1 1 +xi '  

i2mixi  
u;= 1 - 

i =  1 (1 + X y '  

dection construction satisfies the additi nal hypothesis (45), then, 
just as for the assembly and multiset constructions, we take x = y - ' ,  and 
(42) holds once more. As an example, for square-free factorizations of 
polynomials over a finite field with q elements, we have y =  q, K = 1, 

For an example in which x varies with n, we consider once more random 
partitions of the integer n with all parts distinct, which is the selection 
construction with mi E 1. Taking x = 

x = q - ?  

and using (50) we see that 

=- 
12d2' 

Hence to satisfy ET,, - n, we pick d = n/@, so that 

x = exp( - n/J1?I;). 
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From (44), it follows by a similar calculation that 

1 1 -1ogv 
=d0(I+v) dv 

For the choice of x in (52),  we see that 

To see how easy the heuristic for choosing x can be, consider partitions 
of the integer n with all parts distinct and odd. Compared to the above 
calculations, we are simply leaving out every other term so that 
n-'E T,, -+ n2/(24d2),  and we prescribe using x = exp( -*I&). As with 
unrestricted partitions, using the appropriate x for either partitions with 
distinct parts or partitions with distinct odd parts, we believe that the 
unconditioned process Z, is a good approximation for the combinatorial 
process C,, in the total variation sense, if and only if b/& is small and 
c/& is large, for B = { l , 2  ,..., b } u { c , c + l ,  ..., n } .  For B of the 
complementary form B = {b ,  b + 1, ..., c }  with b < c both of the order of 
&, the heuristic suggests that d,,(Cs, Z,) is small if, and only if, ( c -  b )  
is small relative to J;;. 

4.2. A Quantitative Heuristic 

In several examples, the h +-valued random variables T,, , appropriately 
centered and rescaled, converge in distribution to a continuous limit X 
having a density f on R. For illustration, we describe the important class 
of cases in which 

(54)  Tn -* X. 
n 

A local limit heuristic suggests the approximation 

f ( 1 )  P ( T , , = n ) =  -, n ( 5 5 )  
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1 "  
dTv(CB,ZB)=s C P ( R = k )  

k-0 

where the sense of the approximation is deliberately vague. Assuming 
that B is small, so that R/n + ,, 0, we also have S/n =- X. For 0 < k < n, the 
local limit heuristic gives 

P ( S = n - k )  1 
P(T , ,=n)  2 

1 + - P ( R > n )  1 -  

n 

and a Taylor expansion further simplifies this to 

Using these approximations in the total variation formula (33) gives 

P ( S = n - k )  1 
k = O  P ( T , = n )  2 

n - '(f( 1) - n-'kff(  1 - )) 1 
n - m  

I + - P ( R > n )  1 "  
dTy(CB,ZB)=? P ( R = k )  1 -  

1 
=- C P ( R = k )  1 1  - 

k T O  

- _  - 1 If'(1- )i [E(R( 
2 f(1) n a 

However, this approximation ignores the essential feature d,,(p, v )  = 
f lp - V I ,  where the signed measure p - v has net mass zero. Thus, even 
though f( l ) /n  is the natural approximation for P( T,  = n ) ,  it is important to 
use a more complicated heuristic in which the approximation for T is 
the convolution of the distribution of R and our approximation for the 
distribution of S. Thus 

n 

P ( T = n ) =  P ( R = k ) P ( S = n - k )  
k-0 

P ( R = k ) l ( f ( l ) - - f ( l - ) )  k 
n n k 3 0  

1 ER 
n n 

= - (f( 1) - -ff( 1 - )). 

Using this approximation 

(57) 

i- 1 P ( R = k ) I l -  n - '(f( 1 ) - n - 'kf'( 1 - )) 
k > O  n - l ( f ( 1 )  -n-'IERf'( 1 - )) 
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1 

2k20 
=- P ( R = k )  

n-’(k- E R ) f ’ ( l - )  
f ( 1 )  -n-’ERf’( 1 - ) 

As a plausibility check, we note that the alternative approximation 
using P(T,=n)=( l /n)  f ( 1 )  and S I T - E R ,  so that P ( S = n - k ) =  
P( T = n + E R - k) = ( l / n )  f ( 1  - (k - ER)/n), also satisfies the convolu- 
tional property, and leads to the same first order result as (58). 

One possible specific interpretation of the approximation in (58) would 
be the following pair of statements, giving a decay rate for dTY, for fixed 
B, as n + 00. 

I f  T,/n => X, and X has density f with f ‘( 1 - ) # 0, then 

I f  T,/n =. X, and X has density f with f ‘( 1 - ) = 0, then 

For the more general case in which there are constants s, such that 

where X has densityf, these statements are to be replaced by 

and 

d,V(CB,ZB)=O , if f ’ ( O - ) = O .  (62 1 (3 
For partitions of an integer and for partitions of a set, a good choice for 
s, is the standard deviation 6, with asymptotics given by (49) and (160) ,  
and X is normally distributed, so that (62) should apply. 
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Observe that for two fixed sets B, B' the approximation in (59)  or (61 )  
has a corollary the statement that i fy(0-  ) # 0 then as n + 00, 

By the Cauchy-Schwarz inequality, E ( R E  - ERE1 < oB, so another 
rigorous version of the heuristic in ( 5 8 )  would be the statement that as 
n + 00, dTv(CB,  Z , )  = O(U,/O,) uniformly in B; that is, 

lim sup d , , ( C B , Z , ) -  <a. (63) 
n -  w B c  [ n ]  ( OB ".> 

Note that (63)  is not embarrassed by the largest possible 4, namely 
B =  [n], since dTv( ., e )  < 1. 

4.3. Examples with a Limit Process: The Logarithmic Class 
The previous section suggests that the limit law of Tn/n plays a key role 

in analyzing the accuracy of the approximation of certain combinatorial 
structures by independent processes. The logarithmic class consists of those 
assemblies which satisfy (41 ), and those multisets and selections which 
satisfy (45). All of these, with the appropriate Gonstant choice of x ,  satisfy 

i E Z i + K , i P ( Z , = l ) + K  for some K > O .  (64 )  

Lemma2 below shows that, for Z ,  satisfying (64), and T n = Z l +  
2Z,+ . -  +nZ, ,  the limit distribution of Tn/n depends only on the 
parameter K. 

Let d ,  be the L1 Wasserstein distance between distributions, which can 
be defined, in the same spirit as (27), by 

d,(X, Y)= min E IX- YI. 
couplings 

For Z+-valued random variables, d ,  is easily computed via 

and when X is stochastically larger than Y, so that the absolute values 
above do nothing, this further simplifies to d,(X, Y) = EX- E Y. Note that 
for integer-valued random values, d ,  k dTv. 

Let zi be Bernoulli with parameter K / i  A 1 ,  and let Z,* be Poisson with 
mean d i .  It is easy to check that the condition (64) is equivalent to 
d w ( Z , ,  2,) = o( l / i ) .  Since dw(Zi ,  2:) = o( l / i ) ,  the triangle inequality 
implies that the condition (64) is also equivalent to dw(Zi ,  Z,*) = o ( l / i ) .  
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For the class of assemblies that satisfy the condition (41), we use x = y - '  
and EZ, = m$/i!, so that EZ, - u/i. Lemma 1 applies directly; for Poisson 
random variables (64) is equivalent to EZ, - u/i, so Lemma 2 also applies. 
For multisets and selections satisfying the hypothesis (45), it is easy to 
show that (64) holds. 

LEMMA 1. If Z, are independent Poisson random variables with EZj= 
A, - u/j for some constant IC > 0, and T ,  = jZ,, then 

n-'Tn X,, n + 00 (65) 

and X, has Laplace transform 

Prooj By direct calculation, 
n 

log Ee-sTJn= - 1 Aj(l -e-js/n) 
j =  I 

Clearly, the first term on the right converges to - I C  JA ( 1  - e-sx )(dx/x )- 
That the second term is o(1) follows by observing that Aj-u/ j=o(j- ' ) ,  
and comparing to the first sum. I 

LEMMA 2. For i = 1,2, ..., let Z ,  be nonnegative integer-valued random 
variables satisfying the conditions in (64). If T ,  = j Z j ,  then 

n-'T, * X,, n --f 00 (67) 

and X, has the Laplace transform given in (66). 

Prooj Construct independent Bernoulli random variables 2, = Zi A 1. 
Clearly 2, < Z ,  and P(Z i=  1 )  < IEZ, < EZi. It follows that iEZ,+ IC. There- 
fore 

i I I E Z , - E ~ ~ I  =i(EZ,-EZ,)+O. 

Hence if T n = z 1 +  +nZn ,  

It remains to show that iz-'Fn;l=>X,. 
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For i = 1,2, ..., let 2: be independent Poisson random variables satisfying 
pi = EZ,* = Ezi - K l i .  We may construct ZY in such a way that for each i 

E 12,- Z,*I = d,(Zi ,  Z?),  

where d ,  denotes Wasserstein L ,  distance. But if X is Bernoulli with 
parameter p and Y is Poisson with parameter p, then a simple calculation 
shows that d,(X, Y) = 2(p - 1 + e-") <p2. Hence 

n 

It follows that n - ' T n  has the same limit law as n-'T,*, which is that of X,, 
by Lemma 1. I 

The random variable X, has appeared in several guises before, not least 
as part of the description of the density of points in a Poisson-Dirichlet 
process. See Watterson [60], Vershik and Shmidt [57], Ignatov [37], and 
Griffiths [28], Ethier and Kurtz [ 171 and the references contained therein. 
For our purposes, it is enough to record that the density g ( . )  of X, is 
known explicitly on the interval [0, 11, 

where y is Euler's constant. From (69) follows the fact that 

We may now combine the previous results with (58) and (42) to rephrase 
the asymptotic behavior of dTV(C,,  Z,) in (59) and (60) as follows. For 
any assembly satisfying (41), or for any multiset or selection satisfying (45), 
we should have the following decay rates, for any fixed B, as n + 00. 

In the case K # 1 

In the case K = 1 

For a class of examples known as the Ewens sampling formula, described 
in Subsection 5.1, and for B of the form B =  { 1,2, ..., b}, (71) is proved in 
Arratia, Stark, and Tavark [7]. The analogous result for random map- 
pings, in which K = 112, and other assemblies that can be approximated 
by the Ewens sampling formula, may also be found there. For the corre- 
sponding results for multisets and selections, see Stark [%I. 
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The statement (72) has been established for random permutations by 
Arratia and Tavark [2], where it is shown inter alia that for B = { 1,2, ..., b } ,  
d,,(C,, Z,) < F(n/b), where log F ( x )  - -x  log x as x --t oc). For the case of 
random polynomials over a finite field, Arratia, Barbour, and Tavark E51 
established that d,,(CB, Z,) = O(b exp( -cn/b)),  where c = f log(4/3). . 

Among the class of assemblies in the logarithmic class, weak convergence 
(in Wm) of the component counting process to the appropriate Poisson 
process has been established for random permutations by Goncharov [27], 
for random mappings by Kolchin [63], and for the Ewens sampling 
formula by Arratia, Barbour, and Tavark [4]. For multisets in the 
logarithmic class, this has been established for random polynomials by 
Diaconis, McGrath, and Pitman [ l S ]  and Arratia, Barbour, and Tavark 
[SI, and for random mapping patterns by Mutafciev [47]. 

5. NON-UNIQUENESS IN THE CHOICE OF THE PARAMETER x 

An appropriate choice of x = x ( n )  for good approximation is not unique. 
An obvious candidate is that x which maximizes P( T,, = n) ,  which is also 

that x for which ET,, = n. This can be seen by differentiating log P( Tn = n) 
in formulas (24)-(26) and comparing to ET,, from formulas (11)-(13); at 
the general level this is the observation that P ( T =  t )  in (19) is maximized 
by that x for which IET=t. Nevertheless, the obvious candidate is not 
always the best one. 

We discuss here two qualitatively different examples: the logarithmic 
class, and partitions of a set. 

5.1. The Ewens Sampling Formula 
The central object in the logarithmic class is the Ewens sampling formula 

(ESF). This is the family of distributions with parameter IC > 0 given by (6), 
where the Z i  are independent Poisson random variables with IEZ, = u/i, or 
more generally, with 

(73 1 
lCX1 li=IEzl=- 

i '  

the conditional distribution being unaffected by the choice of x > 0. For 
IC = 1, the ESF is the distribution of cycle counts for a uniformly chosen 
random permutation. For IC # 1, the ESF can be viewed as the nonuniform 
measure on permutations with sampling bias proportional to I C ~ ~ ~ ~ ' ~ ~ ;  see 
Section8 for details. The ESF arose first in the context of population 
genetics (Ewens [18]), and is given explicitly by 
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The ESF corresponds to (41) with y = 1 and the asymptotic relation in i 
replaced by equality. It is useful in describing all assemblies, multisets, and 
selections in the logarithmic class; see Arratia, Barbour and TavarC [ 6 ]  for 
further details. 

For irrational K the ESF cannot be realized as a uniform measure on a 
class of combinatorial objects. For rational IC = r/s with integers r > 0, s > 0, 
there are at least two possibilities. First, comparing (6) with EZ, = x/i, and 
(1  1) with EZ, = m,x'/ i! ,  for any choice x > 0, we take x = l/s to see that the 
ESF is the uniform measure on the assembly with m, = r ( i -  l)! S I - ' .  One 
interpretation of this is permutations on integers, enriched by coloring each 
cycle with one of r possible colors, and coloring each element of each 
cycle, except the smallest, with one of s colors. For a second construction, 
we use a device from Stark [54]. Consider permutations of ns objects, 
in which all cycle lengths must be multiples of s. Formally, this is the 
assembly on ns objects, with m, = (i- l ) !  l ( s  I i),  so that (C,, C2, ..., C,) = 
(Z,,  Z,, ..., Z,, I Z ,  + 2Z2 + . . . + nsZ,,, = ns), where Z, is Poisson with 
EZ, = l ( s  I i)/i. Since those C,  and Z, for which s does not divide i 
are identically zero, we consider C,* = C,,, Z,* = Z, ,  and T,* Z: + 
22: + + nZ,* = (l/s)(Zl + 2Z2 + ... + nsZ,,,). We have (CF, ..., C,*) 9 
(Zt,  ..., Z,* I T,* =n), and the Z,* are independent Poisson with EZ.? = 
l/(si), Thus the distribution of (C:(n) ,  ..., C,*(n)) is the ESF with K = l/s. 
To change this to ~ = r / s ,  we need only color each cycle with one of r 
possible colors, so that m, = r ( i -  l)! l(s I i),  EZ,  = rl(s/i)/i, and EZ.? = 
r/(si). To summarize our second construction of the ESF with IC = r/s, let 
C:(n) be the number of cycles of length si in a random permutation of ns 
objects, requiring that all cycle lengths be multiples of s, and assigning one 
of r possible colors to each cycle. 

For comparing the ESF tO the unconditioned, independent process 
(Z l ,  ..., Z,) it is interesting to consider the role of varying x. The choice 
x =  1 in (73), so that IEZ,=ic/i, yields E T , , = K ~ ,  and a,-nJK/2. In 
the case K # 1 the discrepancy between ET,, and the goal n is a bounded 
multiple of 0,. This is close enough for good approximation, in the sense 
that (C, (n) ,  ..., C,(n), 0, ...) =. ( Z l ,  Z , ,  ...). This, together with a O(b/n) 
bound on d,,((C,(n),  ..., C,(n)) ,  ( Z , ,  ..., Z,)) that is uniform in 1 < b < n, is 
proved in Arratia, Barbour, and TavarC [4] by exploiting a coupling based 
on Feller [19]. This coupling provided even stronger information whose 
utility is discussed in Arratia and TavarC [3]. Barbour [8] showed that 
the O(b/n)  bound above cannot be replaced by o(b/n) for x = 1, K # 1. 

For the case of independent Z !  which are Poisson with means varying 
with n given by 

d 

K n(n- 1 )  * *  * (n- i+ 1 )  IEz; = EC,(n) = - 
i (K + n- i). ( ~ + n  - 1)'  
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Barbour [SI showed that dTv((Cl(n) ,  ..., C,(n)), (Zl, ..., Z b ) )  = O((b/n)'), 
uniformly in 1 <b<n. Observe that with this choice of Poisson 
parameters, E TL - I C ~  but i t  is not the case that (C,(n), ..., C,(n)) = 
(Zl, ..., Zn 1 T i  = n). 

If we are willing to use coordinates Zi = Z i ( n )  whose means vary with n, 
we can still have the conditional relation (6) by using x = x ( n )  in (73). An 
appealing family of choices is given by x = exp( - c/n), since this yields for 
C Z O  

d 

By choosing C = C ( I C )  as the solution of ic=c/(l -e-'), we can make 
ET,, - n, and this should provide a closer approximation than the choice 
c = 0, x = 1. However, an even better choice of c is available, We explore 
this in the next subsection. 

5.2. More Accurate Approximations to the Logarithmic Class 
For assemblies, multisets, and selections in the logarithmic class 

discussed in Subsection4.3, as well as for the ESF, the choice of x 
proportional to exp( -c/n) is interesting. In this situation, the limit law of 
T,/n depends only on the parameters IC and c. Properties of this limit law 
lead to an optimal choice for c. 

The following lemma applies to assemblies that satisfy the condition 
(41), and to the ESF by taking mi= K(i- l)!, y =  1, the mi not necessarily 
being integers. 

LEMMA 3. Assume that mi> 0 satisfies m J i !  - uyyi for constants y 2 1, 
IC > 0, and set x = e-'f"y-' for constant c E R. If Zj = Z j ( n )  are independent 
Poisson random variables with EZj = mjxJb!,  and T,, = cy= j Z j ,  then 

and XK. has Laplace transform 

$'(s) 3 Ee-"XK*c = exp ( - X I :  ( l-e-")-dx e-cx ) . (77) 
X 

ProoJ As in Lemma 1,  calculate the limit of the log Laplace 
transform. I 

Next we prove that the same limit law holds for multisets or selections 
satisfying the hypothesis (45). 
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LEMMA 4. Assume that the multiset (or selection) satisfies (45): 
m,-uyi/ i  for constants y >  1,  K > O ,  and set x=e-‘lny-’. If Z,=Z,(n) 
are independent negative binomial random variables with parameters mJ 
and x’ (respectively, binomial with parameters mJ and xJf( 1 -t- x’)) and 
T,, = jZJ ,  then 

n-‘T,,*XK,‘, n+co (78 1 
and XK,‘ has the Laplace trandorm given in (77). 

Remark. For the case of multisets, we assume that x < 1. 

Proof: Observe first that in either case, if b=o(n) ,  then n-lETOb-rO, 
so that n-lTob+pO as n+ co. Let zJ be independent - -  Poisson random 
variables with ~2~ = mJxl,  and write T,, = C/”= j Z J ,  Tbn = C,”= b + I j ZJ .  We 
show that for b = o(n), Tb,/n and Tb,,/n have the same limit law, which 
complete the proof since by Lemma 3, Tbn/n XK, C. We will use the nota- 
tion NB, Po, and Geom to denote the negative binomial, Poisson, and 
geometric distributions .with the indicated parameters. 

For the multiset case, notice that 

dTY(Tbn ,  pbn)GdTV((Zb+1, *..? zn), ( 2 b + 1 ?  2 n ) )  

To estimate each summand, we have 

d,,(Zj, 21) = dTV(NB(m,, X I ) ,  PO(m~X’)) 

< m, dTv(  Geom( x’), Po( x’)) 

< 2m, x”. (79)  

The bound in (79) follows from the fact that d,,(Geom(p), Be(p))=p2 
and dTY(Be(p) ,  P o ( p ) )  = p ( l  -e-”) < p z ,  so that d,,(Geom(p), P o ( p ) ) <  
dT,(GeOm(p), Be(p) )  + dT,(Be(p), P o ( p ) )  < 2 p 2 ,  a result we apply with 
p=xJ.  Hence 

n 

dTv( Tbn, T b n )  < 2 1 (mix’) xi= O( y-b/b).  
j = b + 1  

Choosing b --f 00, b = o(n) completes the proof for multisets. 
For the selection case, (79) may be replaced by 

d,,(Zj, Zi) < mjdTY(Be(xi/(l  +x i ) ) ,  Po(xj)) < 2mjx23. 



118 ARRATIA AND TAVARB 

The last estimate following from the observation that dTY(Be(p/( 1 + p ) ) ,  

Be(p)) + d,,(Be(p), Po(p)) G 2p2, which we apply with p =xi. This 
completes the proof. 

The random variable X ,  of Subsection 4.3 is the special case c = 0 of 
X,, ,. Further, for c # 0, 

W p ) )  =p2/(1 +PI, so that d,,(Be(p/(l +PI), P O ( P ) )  G ~ T Y ( B W ( 1  +PI), 

and 

1 - (1 + c) e-' 
C2 

Var X,, , = IC 

The density g, of A',, may be found from the density g of A', by observing 
that the log Laplace transforms, given by (66) and (77), are related by 

so that 

In particular, from (69), 

From (80) the value of c that maximizes the density g,(z) for fixed 
Z E  [0, 11 is the c that maximizes -cz-log i,h(c), just as suggested by large 
deviation theory. This c is the solution of the equation 

cz = JC( 1 -e-"). 

Using z =  1, we see from the heuristic (55) that choosing c to be the 
solution of c = IC( 1 - e-,) asymptotically maximizes P( T,, = n); and from 
(75), this also makes ET,, - n. 

However, the heuristic in (59)  and (60) suggests that better approxima- 
tion should follow from choosing c so that g:(l-)=O. From (80) and 
(70), we get 
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For this choice of c we have g:( 1 - ) = 0, and 

A second order approximation in the spirit of Section 4 then leads us to the 
following heuristic: 

In the case IC = 1 

for any fixed B, in the case K # 1 

4 
d T V ( C E 1  z B )  - *  n2 ’ (83) 

(84) 

For the case B =  [b] { 1,2,  .,.., b } ,  extensive numerical computations 
using the recurrence methods described in Section 9 support these conjec- 
tures for several of the combinatorial examples discussed earlier. In these 
cases, the bound in (83) is of order ( b / r ~ ) ~ .  Finding the asymptotic form of 
this rate seems to be a much harder problem, since it seems to depend 
heavily on the value of IC. 

5.3. Further Examples 
The class of partitions of a set provides another example to show that 

the choice of x for good approximation is partly a matter of taste. In this 
example, mi=  1, so that 

im,xr n - l  xr  
ET,= C T = X  5. 

I =  1 r = O  . 
One choice of x would be the exact solution x* of the equation ET,, = n, 
but this choice is poor since the definition of x* is complicated. A second 
choice which is more usable is to take x = x’, the solution of the equation 
xex = n. This is based on the observation that E T, - xex, provided x = o(n). 
The solution x’ has the form (cf. de Bruijn [ l l ,  p. 261) 

log log n + 1 (log log n))” + (log log n) 
logn 2 logn log2n ’ 

x’= log n-  log log n + 
For set partitions, with either x* or x‘ in the role of x we have 

cf - xZeX - n,log n, and we can check that In - ET,, 1 = O ( , / G )  is 
satisfied using x = x’. This corresponds to checking the condition in (37). 
Comparing the condition E T,, - n with the condition that n - ET, = O(a,) 
required by (37), we see that in the logarithmic class the former is too 
restrictive while for set partitions it is not restrictive enough. 
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6. REFINING THE COMBINATORIAL AND INDEPENDENT PRoc~ss~s 

6.1. Refining and Conditioning 
Although the refinements considered in this section are complicated in 

notation, the ingredients-including geometric and Bernoulli random 
variables and the counting formulas (89 )-(92)-are simpler than their 
unrefined counterparts. 

The dependent random variables Cir Ci(n) ,  which count the number of 
components of weight i in a randomly selected object of total weight n, 
may be refined as 

J =  1 

Here we suppose that the m, possible structures of weight i have been 
labelled 1,2, ..., m,,  and D,,= D O ( n )  counts the number of occurrences of 
the j t h  object of weight i. The independent random variable 2, can also be 
refined, as 

m, 

z,= c YIJ, 
J = I  

where the Y,, are mutually independent, and for each i, Y , , ,  Y Z 2 ,  ..., Ym, 
are identically distributed. For assemblies, multisets, and selections, 
respectively, the distribution of Y,, is Poisson (x ' / i ! )  for x > 0, geometric 
( X I )  for O < x <  1, or Bernoulli (x ' / ( l  + X I ) )  for x>O. If the choice of 
parameter x is taken as a function of n, then one can view Y,, as Y,,(n). For 
assemblies, with x > 0, 

. ( x i / i ! ) k  
P( Y ,  = k )  = exp( -x ' / i ! )  - 

k !  ' 
k = 0 ,  1, .... (85) 

For multisets, with 0 < x < 1, 

P ( Y , , = k ) = ( l - x ' ) x ' k ,  k = 0 ,  1 ,..., 0 (86) 

whereas for selections, with x > 0, we have 

1 a 
P( Y ,  = k )  = I l ( k  = 0 )  + - l ( k  = 1). 

1 + x i  l + x i  (87) 

For the full refined processes corresponding to a random object of size 
n we denote the combinatorial process by f 

D(n) = (DO(n) ,  1 < i <  n, 1 < j <  mi),  
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and the independent process by 

Y(n)=(YU,  l< i<n ,  l G j < m J .  

The weighted sum T, = Cy iZi is of course a weighted sum of the refined 
independent Y‘s, since 

n m, 
T,= iY,. 

For assemblies, multisets, and selections, 
then the refined combinatorial process, for a un$ormly 
weight n, is equal in distribution to the independent process 
on the event ( T,  = n } ,  that is, 

l = l  J = 1  

THEOREM 4. 

d D(n) = ( Y ( n )  1 T, = n). 

if P(T,=n)>O, 
chosen object of 
Y(n) ,  conditioned 

Proox Just as ( 6 )  is a special case of Theorem 1 with t = n, so is this. 
Imagine first the special case of (6) with each m, = 1, and then replicate 
m,-fold the index i and its corresponding function g ,  and normalizing 
constant c,. The case m, = 0 for some i is allowed. We have index set 

Z = ( a = ( i , j ) :  1<i<n,  1 < j < m , }  (88) 

and weight function w given by w(a) = i for a = (i ,  j )  E I. 
The reader should be convinced by now, but for the record, here are the 

details. For b=(b(a))a,IEZ!+, write b.w=C,w(a)b(a) .  Consider the 
number R(n, b)  of objects of total weight b . w  =n,  having b,=b(a) 
components of type a, for a E I. For assemblies, the refined generalization 
of Cauchy’s formula is that 

R(n, b )  1 {assemblies on [ n ]  : D = b) 1 

where i= w(a) = the first coordinate of CY. For multisets, 

R(n, b )  1 {multisets of weight n : D = b)l 

= I ( b - w = n ) ,  

while for selections, 

R(n, b )  I (selections of weight n : D = b 1 I 

1 
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These examples have the form 

R ( n , b ) ~ l { D = b } l = l ( b . ~ = n ) f ( n )  n g,(b,), (92) 
a E I  

with f(n) = n ! for assemblies and f(n) = 1 for multisets and selections. With 
p ( n )  given by (4), we have the refined analysis of the total number of 
structures of weight n: 

A n ) =  1 R(n ,b ) .  (93) 
bsh:  

Picking an object of weight n uniformly defines the refined combinatorial 
distribution 

Observe that with multisets, g, (k)  = 1 for k E Z +; with selections g , (k )  = 
(L) = l (k  = 0 or 1); and with assemblies, if ct = (i,j), then g, (k)  = (l/i!)k/k!, 
for k E Z,. Now apply Theorem 1 with D, in the role of CI,  Y g =  Y ,  in the 
role of Z , ,  and t = n. 

It would be reasonable to consider (89) through (92) as the 
basic counting formulas, with (1) through (3) as corollaries derived by 
summing, and to consider the Poisson, geometric, and Bernoulli distribu- 
tions in (86) as the basic distributions, with the Poisson, negative binomial, 
and binomial distribution in (11) through (13) derived by convolution. 

6.2. Total Variation Distance 
Since the refined combinatorial process D(n)  and the refined independent 

process Y(n)  are related by conditioning on the value of a weighted sum of 
the Y's, Theorem 3 applies. For K c  I, where I is given by (88), write D K  

and Y ,  for our refined processes, restricted to indices in K. Write 

I 
Remark. 

SO that T E T, = Rk -+ S K .  

THEOREM 5. 

d T V ( D K ,  Y K ) = d T Y ( ( R k  1 T = n ) ,  Rk)* (95) 

Proof: This is a special case of Theorem3, with the independent 
process Y(n) E Y, playing the role of Z, and D(n)  3 D ,  playing the role 
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of C,. Theor5m 4 is used to verify that the hypothesis (31) is satisfied, in 
the form D, = (Y,l T = n ) .  

For the special case where B c { l ,  ..., n} and K = { c r = ( i , j ) ~ Z : i ~ B ) ,  
denote the restriction of the refined combinatorial process, restricted to 
sizes in B, by DE. =DK, so that 

D p  (DU, i E B, 1 < j < mi), 

and similarly define YE..  In this special case, Rk= RB = zicB iZi is 
the weighted sum, restricted to B, for the unrefined process, so (95) 
reduces to 

Furthermore, by Theorem 3 applied to the unrefined case, with 
I =  (1 ,  ..., n} and w ( i )  = i, we see that d,,((RB 1 T = n ) ,  RB) is equal to 

We have here a most striking example of the situation analyzed in 
Theorem 2, where taking functionals doesn’t change a total variation 
distance. Namely, there is a functional g: E!+ -, h;, which “unrefines,” and 
the functional h :  78, + 7 ,  discussed in our second proof of Theorem 3, 
such that 

d T V ( C B ,  z B ) *  

so that, a priori via (28), 

Perhaps the result in (96), which shows that equality holds throughout 
(97), is surprising. 

7. CONDITIONING ON EVENTS OF MODERATE PROBABILITY 

We consider random combinatorial structures conditioned on some event. 
Given that we have a good approximation by another process, this other 
process, conditioned on the same event, may yield a good approximation 
to the conditioned combinatorial structure. The conditioning event must 
have moderate probability, large relative to the original approximation 
error. In contrast, if the conditioning event is very unlikely then the 
approximating process must also be changed, as discussed in Section 8 on 
large deviations. 
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Remark. While the theorem above uses the notation C, and Z ,  to 
suggest applications where one process is obtained from an independent 
process by conditioning, no such structure is required. An arbitrary discrete 
space S, together with an arbitrary functional h :  S - ,  (0, l } ,  may be 
encoded in terms of S=E:, with A =  { l }  and B =  { 1 , 2 } ,  so that h 
depends only on the first coordinate. Thus Theorem 6 applies to discrete 
random objects in general. 

1.2. Examples 

1.2.1. Random Permutations 

In this case, the Z i  are independent Poisson distributed random 
variables, with l i  EZi = l / i .  In Arratia and Tavare [ 2 ]  it is proved that 
for 1 < b < n, the total variation distance db(n) between (C,(n), ..., C,(n)) 
and (Zl,  ..., 2,) satisfies db(n) < F(n/b) where 

2"- 1 

F(X) = J2.nm - + + + 3 ( : ) - x ,  with m - L x J  
( m - l ) !  m .  

as x -, co. To get an approximation result for derangements, we use 
the functional h having h( (a,, ..., a b ) )  = l ( a ,  = 0), with A = { 1 } and 
B = { 1,2, ..., b } .  This makes Cg the process counting cycles of size at most 
b in a randomly chosen derangement, and Z,* = ( Z f ,  Z:, ..., Z,*) 2 
(0, Z , ,  ..., Zb) .  The total variation distance d,*(n) between C,* and Z,* 

satisfies d,*(n) < (3 /2 )  eF(n/b), simply by using (100). 
Changing random permutations to random derangements is a special 

case of conditioning on some fixed conditions of the form C i ( n )  = c i ,  ie A,  
for given constants c i ,  with A E B G { 1,2,  ..., b} .  In this situation, all the 
Z: are mutually independent, Z: ci for ie A,  and for i $  A,  Z: = d  Zi is 
Poisson with mean l/i. Here, Theorem 6 yields the bound d,*(n)< 
3/(2p) F(n/b), where p = P(Z i  = ci V i  E A ) .  Theorem 3 in Arratia and Tavark 
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[2] gives a different upper bound, namely d,*(n) < F((n - s)/b) + 
26e((n - s)/(be))-‘“-”)Ib, where s =CiEA ic,. Either of these two upper 
bounds may be smaller, depending on the situation given by A, b, and 
the ci. 

For a more complicated conditioning in which the Z y  are not mutually 
independent, consider random permutations on n objects conditional on 
having at least one cycle of length two or three. Here, 2; and Z: are 
dependent, although the pair (Z; ,  2:) and the variables Z:, Z t ,  Z:, ... 
are mutually independent. With A = (2, 3 )  E B =  { 1,2, ..., b), we have 
p = P(Zz + Z 3  > 0) = 1 - and d,*(n) < 3/(2p) F(n/b). Thus, for 
example, with b=3,  the probability that a random permutation of n 
objects is a derangement, given that C,(n) + C3(n) > 0, can be approximated 
by P(Zf = 0) = l/e, with error at most 3/(2p) F(n/3). Similarly, the 
probability that a random permutation of n objects has a cycle of length 2, 
given that C,(n)  + C3(n)  > 0, can be approximated by P(Z; > 0) = 
P(Z, > 0 I Z2 + Z 3  > 0) = (1 - e-’/’)/( 1 - e-”‘), with error again at most 

The next example shows how to approximate easily the small component 
counts for 2-regular graphs by exploiting a decoupling result for the Ewens 
sampling formula with parameter IC = 1/2. 

3/(2P) F(n/3). 

1.2.2. 2-Regular Graphs 

The combinatorial structure known as “2-regular graphs” is the assembly 
in which components are undirected cycles on three or more points, so that 

m,=$( i - l ) !  l ( i 2 3 ) .  (102) 

Let C,*(n) be the number of components of size i in a random 2-regular 
graph on n points. A process that corresponds to this, with the condition 
l ( i 2  3) removed, is the Ewens sampling formula with parameter IC = 1/2 
described in Subsection 5.1. Observe that 

The bound 

C*(n)  2 (C(n)  1 C,(n)  = C,(n) = O ) .  

is known from results of Arratia, Barbour, and Tavark [4]. We are 
interested in how this translates into a bound on 
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With A = { 1, 2}, B = { 1, 2, ..., b } ,  d ,  < 4/n, d ,  < 2b/n, p = P(Z1 = Z 2  = 0) 
= the inequality in (99) guarantees that 

For an example that shows the conditioning event can have probability 
tending to zero, consider 2-regular graphs conditioned on having no cycles 
of size less than or equal to t t (n)  2 2. The previous example is the special 
case t = 2. For b > t ,  we have 

d (C?+l, ...) C,*) = ( C , , ,  ,..., Cbl c1= . - .  =C,=O). 

NOW dA < 2t/n, d, < 2b/n, and 

1 
p = P ( Z , =  - . - = Z I = O ) = e x p  

so (99) establishes that 

d: <: (%+ da)  

t 2b < Jet (; + --). 
This provides a useful bound provided that 4 bin is small. Note that both 
t and b may grow with n, as long as t < b. For example, conditional on no 
cycles of length less than or equal to t=Ln2 /3 -Ej  this approximation 
successfully describes the distribution of the k smallest cycles, for fixed k as 
n + co, by using b =n2I3. See Arratia and Tavare [3, Theorem 71 for 
related details. 

8. LARGE DEVIATION THEORY 

8.1. Biasing the Combinatorial and Independent Processes 
A guiding principle of large deviation theory is that unlikely events of the 

form { U 2  u }  or { U <  u }  or { U = u } ,  where the target u is far from E U, 
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can be studied by changing the measure P to another measure Po defined 
by 

Observe that for 8 = 1, the new measure P, coincides with the original 
measure P, regardless of the choice of U. The parameter 8 is chosen so 
that the average value of U under the new measure is u, i.e., IE,U=u. 
In the literature on large deviations and statistical mechanics (cf. Ellis 
[16]), the notation is usually 8 = e B ,  and our normalizing factor E O u  is 
expressed as the Laplace transform of the P-distribution of U, parameterized 

For the case of a combinatorial process C ( n )  = (C, (n) ,  ..., C,(n)),  with 
by B* 

the total number of components 

K = K,, C , (n )  + . . + C,(n) 

in the role of U, this says to change from the measure P, which makes 
all possible structures equally likely, to the measure Po, which selects a 
structure with bias proportional to 8Xcomponents . The Ewens sampling 
formula discussed in Subsection 5.1 is exactly this in the case of random 
permutations, with IC playing the role of 8. This may easily be verified by 
comparing (74) to Cauchy's formula, the special case IC = 1 of (74), in 
which the equality of normalizing constants, with I E K ~ "  = IC(,,), expresses a 
well known identity for Stirling numbers of the first kind. 

Theorem 1 showed that many a combinatorial process is equal in 
distribution to a process of independent random variables, conditioned on 
the value of a weighted sum. The next theorem asserts that this form is 
preserved by the change of measure from large deviation theory, provided 
that U is also a weighted sum. 

As in the discussion before Theorem 1, the weight function u, just like 
the weight function w, can take values in R or R". In case the weights u, 
and hence the random variable U, takes values in R" with d >  1, we take 
8 >  0 to mean that 8 = (e,, ..., 8,)E (0, a)', and with U =  ( U , ,  ..., U"), 8' 
represents the product . .82. 

THEOREM 7. Let Z be a finite set, and for U E I ,  let C ,  and Z ,  
be Z,-valued random variables. Let w = ( w ( u ) ) , ~ ,  and u= ( ~ ( u ) ) , , ,  be 
deterministic weight functions on I, with real values for u, let T =  w ' Z, = 
C, E, w ( u )  Z , ,  and let U = u . C, .  Let P be a probability measure and t be a 
constant such that, under P the 2, are mutually independent, P( T =  t )  > 0, 
and C ,  = (Z, I T =  t) .  Let 8 > 0 be any constant such that the random 
variable Y E  8"' z1 has E Y <  00. Let PO, restricted to the sigma-field 

d 
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generated by C,, be given by (103). Let Po, restricted to the sigma-field 
generated by Z,, be given by 

d P ,  Y 
dP EY' 
-=- 

so that the 2, are mutually independent under Po with 

O w ( , )  k 

E p ( " )  Z:. P,(Z, = k )  = - P(2, = k) ,  k 2 0. 

~ 

d Then under P,, C, = (Z, I T = t ) ,  that is, 

P,(C, = a) = P,(Z, = a I T =  t ) ,  

for aEZ:. 

ProoJ: For a E Z:, 

P,(C,=a)= ( E O u ) - '  O"'"P(C,=a) 

= ( E O u ) - '  O"'"P(Z,=a I T =  t )  

=(EO")- '  P ( T = t ) - ' @ " ' " l ( w - a = t )  P(Z,=a). (106) 

Now 

so that 

P,(Z,=a I T =  t )  = (EOu.z')-l P , ( T =  t)- '  O"'"l(w . a =  t )  P(Z,=a). 

(107) 

Comparing (106) and (107), we see both expressions are probability 
densities on Z: which are proportional to the same function of a, and 
hence they are equal. From this it also follows that the normalizing 
constants are equal, which is written below with the combinatorial 
generating function on the left, and the three factors determined by 
independent random variables on the right: 

For the case U =  K,,, the total number of components, the P, measure 
corresponds to the following generalization of (1 1) through (13). For 
assemblies, multisets, or selections, chosen with probability proportional to 
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d e # components , C ( n )  = ((Zl, ..., 2,) 1 Z1 + 2Z2 + - .  . + nZ, = n) where the Zi  
are mutually independent. With 8, x > 0, for assemblies we have 

zi is Poisson (T), 
whereas for multisets we require x < 1, 8x < 1 and then 

Zi is negative binomial (mi ,  Ox'). 

Finally, for selections 

2, is binomial mi,  - ( 1:L). 

In the general case, where U = u . C ( n )  is a weighted sum of component 
counts, so that the selection bias is 8" each factor 8 in (109) above is 
replaced by eU('). Furthermore, we observe that Theorems 3, 4, and 5 apply 
to Po in place of P. For the refinements in Section 6, for assemblies, multi- 
sets, and selections respectively, the distribution of Y,, is Poisson ( OU(')xJ/i!), 
Geometric (O"(')x'), or Bernoulli (OUc1)x'/( 1 + P(%')). 

An example where such a bias is well known is the random graph model 
9,,p; see Bollobas [lo]. This corresponds to picking a labelled graph on n 
vertices, where each of the potential edges is independently taken with 
probability p; the unbiased case with all 2(;) graphs equally likely is given 
by p = 1/2. We need something like the refined setup of Section 6 to be able 
to keep track of components in terms of the number of edges in addition 
to the number of vertices. Using the full refinement of Section 6, D, counts 
the number of components on i vertices having the j th  possible structure, 
for j =  1, ..., m,, in some fixed enumeration of these. The weight function 
should be u( i , j )  = #edges in the j th  possible structure on i vertices. With 
8=p/(l - p ) ,  the P, law of D(n) is a description of g,,,. A more natural 
refinement for this example, intermediate between C and D, would be the 
process A with A l k  = c,: u( , , , ) -k  D,, the number of components with i ver- 
tices and k edges, for k = i -  1, ..., (;). As in (96) and (97), the total varia- 
tion distances are insensitive to the amount of relining. Presumably there 
are interesting results about random graphs that could easily be deduced 
from estimates of the total variation distance in Theorem 5. 

One form of the general large deviation heuristic is that for a process C, 
conditioned on the event { U>,  u }  where U is a functional of the process 
and u > E U, the P-law of the conditioned process is nicely approximated 
by the Po-law of C, where 8 is chosen so that Eo U = u. We are interested 
in the special case where the functional U is a weighted sum, and the 
distribution of C under P is that of an independent process Z conditioned 
on the value of another weighted sum T. In this case, Theorem3 yields 
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a direct quantitative handle on the quality of approximation by the 
Pe-distribution of the independent process, provided we condition on the 
event { U =  u }  instead of the event { U 2  u } .  

THEOREM 8. Assume the hypotheses and notation of Theorems 3 and 7 
combined. For B c  I write UB C X e B  u(a)  Z , ,  so that U I m  u . Z,. Write 9 6  

for distributions governed by PO, so that the conclusion of Theorem 7 may be 
written 

-Ye(C,) = -%(ZI I T =  t ) ,  

dTV(-%(CB), % ( Z B ) )  = dT,(-%(RB I T =  t ) ,  % ( R B ) ) .  

and Theorem 3 states that for B c  I 

(1 10) 
Assume that u is such that P( U = u )  > 0. Then under the further conditioning 
on U = u ,  

d T V ( % ( C B  I u= u) ,  - % d Z B ) )  

=dw(-%((uB,  R B )  I U I = &  T = t ) ,  % ( ( u B ,  R B ) ) ) .  (111)  
Proof: Observe first that 

9 i ( C I l  U = U ) = Y ~ ( C I I  U=U), (112)  
so that it suffices to prove (111)  with the subscript 8 appearing on all four 
distributions, i.e., 

dTV(%(CB I u= u) ,  - % ( Z B ) )  

= d T V ( % ( ( u B ,  R B )  I T = t ) ,  % ( ( u B ,  (113)  
Observe next that this is a special case of Theorem 3, but with two-compo- 
nent weights w*(a)  m (u(a) ,  w ( a ) )  in the role of w(a). For example, in the 
usual combinatorial case, with I= [ n ]  and w(i )  = i, and further specialized 
to U =  K, = the total number of components, so that u(i)  = 1, we have that 
w* takes values in R2, with w*(i)  = (1,  i ) .  I 

Discussion. The proof of the previous theorem helps make it clear that 
the free parameter x, such that Y ( ( Z l ,  ..., Z , )  I T ,  = n )  does not vary with 
x, is analogous to the parameter 8, such that relation (1 12)  holds. With this 
perspective, the discussion of an appropriate choice of x in Section 4 and 
Subsection 5.2 is simply giving details in some special cases of the general 
large deviation heuristic. Note that T,  is a sufficient statistic for x, while U 
is a sufficient statistic for 8. 

There are three distributions involved in the discussion above: the first 
is 9 ( C I  I U =  u),  corresponding to a combinatorial distribution condi- 
tioned on the value of a weighted sum U, the second is 9e(CI) ,  which is 
a biased version of the combinatorial distribution, and the third is 90( Z,), 
which governs an independent process. Theorem 3, used with Theorem 7, 
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compares the second and third of these; Theorem 8 above compares the 
first and third of these; and the following theorem completes the triangle, 
by comparing the first and second distributions. 

THEOREM 9. In the setup of Theorem 8, for B c I, 

dTv(2i(CB I u= u), -%e(CB)) 

=dTv(=%e((UB, R E )  I u I = u ,  T =  t ) ,  -%((uB, R B )  I T =  t ) ) .  (114) 

By Theorem 7, together with ( 1  12), the left side of ( 1  14) is equal 
to dTv(2e(ZB I V I =  u, T =  t ) ,  9 , (ZB I T =  t)). We modify the second proof 
of Theorem 3 as follows: replace P by Po, use two-component weights, 
replace the original conditioning T =  t by U,=u,  and then further 
condition on ( T = t } .  Explicitly, the functional h on Z: defined by 
h(a)  = C U E B  a(a)(u(a) ,  w ( a ) )  is a sufficient statistic,' and the sign of 
P e ( Z B = a  I U I = u ,  T = t ) - P , ( Z , = a l T = t )  is equal to the sign of 
P, ( (UB,RB)=h(a)  I U I = u ,  T = t ) - P , ( ( U B , R B ) = h ( a )  I T = t ) ,  i.e., the 
sign depends on a only through the value of h(a). 

Observe that Theorem 8 contains Theorem 3 as a special case, by taking 
weights u ( a )  0 and target u = 0, so that P, = P and the extra conditioning 
event { U = u> has probability one. 

8.2. Heuristics for Good Approximation of Conditioned Combinatorial 

The following applies to weighted sums U in general, but to be concrete 
we present the special case U = K , .  Let K G K ,  be the total number of 
components of some assembly, multiset, or selection of total weight n, 
and let some deterministic target k G k(n)  be given. The goal is to describe 
an independent process to approximate C(n) ,  conditioned on the event 
{ K a r t } ,  in case k is large compared to E K ;  or conditioned on the event 
{ K G k } ,  in the opposite case; or more simply, conditioned on the event 
(K= k}. We accomplish this by picking the free parameters 8 and x in (109) 
so that simultaneously E(Z1 + ... + Z,) is close to k and ET,, is close to n. 

For example, to study random permutations on n objects, conditional on 
having at least 5 logn cycles, or conditional on having exactly L5lognJ 
cycles, or conditional on having at most 0.3 log n cycles, we propose using 
x =  1, and 8= 5 or 0.3. The independent process with this choice of 
parameter should be a good approximation for both the conditioned 
random permutations and for the Ewens sampling formula. As a corollary, 
the Ewens sampling formula should be a good approximation for the 
conditioned permutations; see Arratia, Barbour, and Tovark [ 6 ] .  

For assemblies, multisets, and selections in the logarithmic class discussed 
in Subsection 4.3, in which EZ; N x/i ,  biasing by OK yields E e Z i  N &/i, so 

Proof: 

Structures 
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that the Ewens sampling formula with parameter utl is a useful approxima- 
tion for the biased measures. In particular, the heuristics (71) and (72) 
should apply in the following form: for fixed BE [n], in the case Ice # 1, 

in the case K O  = 1, 

For random permutations, for which K = 1, with B = { 1,2, ..., b }  the 
bound 

was established via a particular coupling in Arratia, Barbour, and Tavark 
[4], and the asymptotic relation (1 15) has been established by Arratia, 
Stark, and TavarC [7]. 

To show how the parameters x and 8 may interact, we consider random 
permutations with k(n) further away from log a. Assume that k(n) is given 
such that as n --* co, 

kjlog n -+ 00, k/n + 0. 
Then we would take 

Observe that O/n + 0, so that x + 1 and 1 - x - e/n, and 6 + co, so that 
x“ = exp( - e )  + 0. Hence 

and 

With this \choice of parameters 8 and x the independent Poisson process 
(Zl,  Z , ,  ...) should, be a good approximation for random permutations, 
conditioned either on having exactly k cycles, or on having at least k cycles. 

9. THE GENERATING FUNCTION CONNECTION AND MOMENTS ‘ 

In this section, we ~ relate the probabilistic technique to the more 
conventional one based on generating functions; Wilf [61]. One reason for 
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this is to provide a simple method, based on an idea of Shepp and Lloyd 
1521, for calculating moments of component counts for combinatorial 
structures. A second reason is to provide a framework within which 
detailed estimates and bounds for total variation distances can be obtained 
by using the results of Theorem 3 and 8, together with analytic techniques 
such as Darboux's method or the transfer methods of Flajolet and Odlyzko 

Throughout, we let p(n,  k) be the number of objects of weight n having 
k components, so that p(n)=z;_ ,p(n ,k)  is the number of objects of 
weight n. Finally, recall that mi is the number of available structures for a 
component of size i. 

[20, 211. 

9.1. Assemblies 
We form the exponential generating functions 

(119) 
S" 

" = I  n. 

00 

P(s )  = 1 + 1 p ( n )  r= P(s, l), 

and 
Sn 00 

A&)= n = l  1 mn- n!' (120) 

For assemblies, (1 ) gives 

where C, is over {a E Z: : C ia,= n, C a, = k ) :  It follows that 

j -  1 

ti (121 ) is the well-known exponential generating function relation 
for assemblies (cf. Foata [23]), which has as a special case the relationship 

Recall from Section 8 that in studying large deviations of K,, the number 
of components in the structure of total weight n, we were led to the 
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measure Po corresponding to sampling with probability proportional to 
OK". It follows from (1) that there is a normalizing constant p,(n) such that 

pe(n)  P , (C(n)  = a )  = eul+  '.. +un N(n, a) 

for any x>O.  Clearly, 
n 

p d n )  = 1 A n ,  k) ek 
k - 1  

= n !  c S n ]  &, e )  
= A n )  E ( O K n ) ,  

where E E E, denotes expectation with respect 
P = P corresponding to 8 = 1. 

to the uniform measure 

Next we explore the connection with the probability generating function 
(pgf) of the random variable T, = cy= j Z j ,  where the Z j  are independent 
Poisson distributed random variables with mean 

mixi 
j !  

EeZj  = eAj = e -. 
Recall that the pgf of a Poisson-distributed random variable Z with mean 
I is 

m 

EeszE C Pe(Z= j )  sj=exp(-A(l - s ) ) ,  
j = O  

so using the independence of the Z j ,  
E , ~ T ~  = EeSZ'=@l 

=exp ( - 6  f I ~ ( I  - s j ) ) .  

j =  1 

Thus 

Po( T, = n )  = [ s " ]  E,sTn 
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using (121) at the last step. Thus, via (123), 

as can also be calculated from (24) and (108) for the special case U =  K,. 
The next result gives a simple expression for the joint moments of the 

component counts. We use the notation y C n ,  to denote the falling factorial 
y ( y -  l ) . . . ( y - n +  1 ) .  

LEMMA 5. For ( r l ,  ..., rb) E Z: with m = rl + 2r, + + brb, we have 

ProoJ The key step is the substitution of a,, ..., ab for a, - rl ,  ..., ab - rb 
in the third equality below. For m < n, we have 

j =  1 
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Remark. If { Z i }  are mutually independent Poisson random variables 
with IEeZj= 6mixi/i!, then the product term on the right of Eq. (126) is 

In the special case of permutations, in which mi = ( i -  l ) !  and 
p(n )  = n ! ,  the normalizing constant p e ( n )  is given by pe(n)  = 6(6 + 1 ) .  . . 
( 6  + n - 1 ), and Eq. (126) reduces to 

precisely Ee II;= 1 (zj) rr,, * 

Remark. 

a result of Watterson [SS, 591. 
9.2. Multisets 

For multisets, the (ordinary) generating functions are 
O C n  

P(s,  6 )  = 1 + 1 ( 1 p(n, k )  B k )  s", 
n = l  \k=l  / 

00 

P ( s )  = 1 + 1 p ( n )  s" = P(s, l ) ,  
n =  1 

oc 
M ( s ) =  1 mnsn. 

n =  1 

In this case, using ( 2 )  gives 

the sum Ca being over {a E Z:: ia, = n, oi = k,}. It follows that 
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See Flajolet and Soria [22], for example. 
Under the measure P,, there is a normalizing constant p , (n )  such that 

for any 0 < x < 1. Indeed, 

p d n )  = p ( n )  El(@) = [s"] p(s, e), (132) 

In this case, the relevant Z j  are independent negative binomial random 
where p s ( 0 )  1. 

variables with parameters mi and Ox' and pgf 

Using the independence of the Zj  once more, the pfg of T,, may be found 
as 

-mi (133) 
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so that 

Po( T,, = n) = f I  ( 1  - Ox')"') x"p,(n). (,= I (134) 

Equation (134) can also be calculated from (24) and (108) for the special 
case U =  K,,. 

In order to calculate moments of the component counts C(n) ,  it is 
convenient to use a variant on a theme of Shepp and Lloyd [ 5 2 ] .  We 
assume that M ( s )  has positive radius of convergence, R. As above, let 
Z , ,  Z , ,  ... be mutually independent negative binomial random variables, 
Z ,  having parameters m,  and Ox', where 0 < x e min{ R, 1 , O -  }. Let 
T ,  Cp"= , iZ, .  Note that T ,  is almost surely finite, because 

O0 imdx' Ox 
EeT, = 1 -.<- M ' ( x )  < 00. '=, 1 - 0 ~ '  1-ex 

The distribution of T ,  follows from (130), (133), and monotone 
convergence since 

Hence 

Po( T ,  = n )  = x"po(n)/P(x, e), n = 0, 1, .... (135) 

Further, for a E Z: and Z ( n )  = ( Z , ,  ..., Z , )  

Pe(C(n) = a) = Pe(Z(n) = a 1 T ,  = n) .  (136) 

This follows from the statement (109) that 

P,(C(n) = a) = Pe(Z(n) = a I T,, = n), 

and the observation that 

= P,(Z(n) = a I F, = n ) .  
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Now let @: Z y  -, R, and set Cn= (C,(n) ,  ..., C,(n), O,O, ...) with 
C o s  (0, 0, ...). The aim is to find an easy way to compute E:(@) = EO@(C,). 
It is convenient to use the notation EX,e to denote expectations computed 
under the independent negative binomial measure with parameters x and 8. 
Shepp and Lloyd's method in the present context is the observation, based 
on ( 1 3 5 )  and (136), that Ex,e(@ I T, = n )  = E:(@), so that 

Ex,e(@)= C E , d @  I T,=n) pe(T ,=n)  
03 

n = O  

03 

= E",@) xnpe(n)/P(x, 0). (137) 
n = O  

This leads to the result that 

For r 2 1, j r  6 n, we use this methad to calculate the falling factorial 
moments E,(Cj(n))crl. This determines all moments, since Cj(n)crl EO if 
j r > n .  In this case @(x,, x2, ...)= and 

E x ,  e ( @ )  = Ex, d z j ) [ r j  

- r ( m j +  r )  ( Ox' , ) r  

r ( m j )  I-8x1 
- 

Hence we have 

Remark. See Hansen [ 3 1 ]  for related material. The Shepp and Lloyd 
method can also be used in the context of assemblies, for which ( 1 3 5 )  holds 
with 

(140) 
X" 

P , ( T , = n ) = z p e ( n ) / B ( x ,  e), , n = ~ ,  1, .... 
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This provides another proof of Lemma 5. See Hansen [29] for the case of 
random mappings, and Hansen [30] for the case of the Ewens sampling 
formula. 

9.3. Selections 
The details for the case of selections are similar to those for multisets. 

Most follow by replacing 8 and mi by -8 and -ml, respectively, in the 
formulas for multisets. First, we have from (3) 

the sum E,, being over ( a  E 27:: C iai = n, C ai = k}. Therefore 

the last following just as (131) followed from (130). See Flajolet and Soria 
[22], for example. 

Under the measure Po, there is a normalizing constant p , ( n )  such that 

for any x>O; p e ( n )  is given in (132) once more. In this case, the Zj  are 
independent binomial random variables with pgf 

and the pgf of Tn is 
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It follows from (130) that 

Po( Tn 7 n )  = n (1 + ex') - m a  [s"] P(sx, e), 
( n  i =  1 ) 

Pe(Tn = n)  = n (1 + exi)-ma) x"p,(n). ( "  i =  1 

so that 

(145) 

The joint moments of the counts can be calculated using the Shepp and 
Lloyd construction once more. In particular, Eqs. (135) and (136) hold, 
and we can apply (138) with Ex,@(@) denoting expectation with respect 
to independent binomial random variables Z1, Z 2 ,  ... with distribution 
determined by (143). 

As an example, we use this method to calculate E,(Cj(n))[rl  for r 2 1, 
j r  < n. Since 

from (138) we have 

9.4. Recurrence Relations and Numerical Methods 
We saw in Theorems 3 and 8 that for any B G  [n], the total variation 

distance between C B  and Z B  can be expressed in terms of the distributions 
of random variables S ,  and RB defined by 
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A direct attack on estimation of dTV(pe (CB) ,  T e ( Z B ) )  can be based on 
a generating function approach to the asymptotics (for large n)  of the terms 
in (149). In the setting of assemblies, this uses the result before (125) for 
Pe( Tn = n), and the fact that for k 3 0 

For applications of this technique, see Arratia, Stark, and Tavart [7] and 
Stark [ 5 5 ] .  

It is also useful to have a recursive method for calculating the 
distribution of R B  for any Bt [ n ] .  Clearly, for assemblies 

Write 

and 

with q B ( 0 )  
sGL(s) FB(s) (cf. Pourahmadi [SO]), and equating coefficients of sk gives 

1. Differentiating with respect to s shows that sFL(s) = 

where 

g B ( i )  = &Ai l ( i ~  B).  
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Since p B ( k )  = Po(RB = k )  = exp( -GB( 1)) qB(k), we find that 
k 

kpB(k) = 1 g B ( i ) p B ( k  - i), k = 1,2, ... (153) 

with p,(O)=exp(-GB(l)). The relation (153) has been exploited in the 
case of uniform permutations (0 = 1, ,Il = l/i) by Arratia and Tavark [2]. 

For multisets, the analog of (150) is 

~ , ( ~ , = n - k ) = (  H ( i - e x y )  [ s n - k ]  n ( i - e ( x s ) l ) - m ~  

r = l  

r ~ [ n ] - B  i c [ n ] - B  

= ( n (1 - e x y )  [ s n - k ]  n (1 - e ( x s ) y l  
8 s C n l - B  r ~ C n 1 - B  

I 
x n (1 - e ( x s ) y g  

r i n  

= ( n (1 - e ~ y )  [ s n - k ]  P(SX,  e) n (1 - e ( X s ) y .  
r s [ n ] - B  r c B  

(154) 

To develop a recursion for p , (k )  P,(R, = k) ,  we can use logarithmic 
differentiation; cf. Apostol [ l ,  Theorem 14.81. First, we have 

IE.P*= n (1 - e x y  n (1 - e X i S y m l .  (155) 
r s B  r s B  

GB(S)= 1 
I E B  

00 

FB(s) = fl (1 - e X i S i ) - m ~ =  1 q B ( k )  sk, 
I E B  k = O  

with q B ( 0 )  = 1. Then 

m el 
1% F B ( ~ )  = 7 Gs((xs)’). 

j 1 1  

Differentiating with respect to s and simplifying shows that 

I 
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where 

Equating coefficients of sk gives 
k 

kqB(k) = c g B ( i )  q B ( k  - i ) ,  k = 1, 2, .... 
f = l  

Since p, (k)  P,(R, = k )  = nlcB ( 1  - q B ( k ) ,  it follows that 

k 

kp,(k)  = 1 g B ( i ) p B ( k  - i ) ~  k = 1, 2, e.. (157) 
I =  I 

with p B ( 0 )  = nreB (1 - 
For selections, we have the following identity, valid for k 2 0: 

~ , ( ~ , = n - k ) = (  n ( I  + ~ x ’ ) - m f  [ s n - k l  P ( s x ,  e) n ( 1  + O ( x s ) f ) - m i .  

If we define p , (k )  

r c [ n ] - B  ) I E B  

P,(R, = k ) ,  then we obtain 

k 

k p B ( k )  = g B ( i )  - i), = 2, ...? (158) 
I =  I 

where 

and 

10. PROOFS BY OVERPOWERING THE CONDITIONING 

d The basic strategy for making the relation C, = (Z, I T= t )  into a useful 
approximation is to pick the free parameter x in the distribution of Z, so 
that the conditioning is not severe, i.e., so that P(T= f) is not too small. 
It is sometimes possible to get useful upper bounds on events involving the 
combinatorial process C, by combining upper bounds on the probability of 
the same event for the independent process, together with lower bounds for 
P(T= t ) .  The formal description of this strategy is given by the following 
lemma. 
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d LEMMA 6. Assume that C ,  = ( Z ,  I T =  t )  and that h is a nonnegative 

functional of these processes, i.e., 

h :  Z: + R,. 

Then 

Proof: 

10.1. Example: Partitions of a Set 

Recall that partitions of a set is the assembly with mi= 1 for all i. 
Following the discussion in Subsection 5.3 we take x 3 x (n )  = log n - 
log log n + to be the solution of xex = n, so that for i =  1,2, ..., n, Zi is 
Poisson distributed, with mean and variance Ai = xyi! .  With this choice 
of x ,  we have 

and 
n 

0; 3 var( T,,) = 1 i21i - n log n. 
1 

By combining (24) with the asymptotics for the Bell numbers given in 
Moser and Wyman [46], and simplifying, we see that 

(161) 

which is easy to remember, since it agrees with what one would guess from 
the local central limit heuristic. 

Write U,=Z, +Z2+ ... +Z,, so that the total number of blocks K,, 
satisfies K,, = (U,, I T,,=n). Harper [32] proved that K,, is asymptotically 
normal with mean n/x and variance n/x2. We observe that this contrasts 
with the unconditional behavior: U, is asymptotically normal with mean 
nix, like K,,, and variance n/x, unlike K,,. Since U,, is Poisson, it has equal 
mean and variance. Harper’s result says that conditioning on T,,=n 
reduces the variance of U,, by a factor asymptotic to log n. 

1 1 

J i i & G F K ’  P(T,, = n )  - 

d 
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Note that Z ,  is Poisson with parameter x-logn, and hence the 
distribution of Z 1  is asymptotically normal with mean and variance log n. 
Note also that the Poisson parameters Ai = xi / i !  are themselves propor- 
tional to P(Z1 = i ) ;  in fact for i >  1 

n 
Ai = e”P(Z,  = i )  = - P(Z, = i ) .  

X 

We can use the normal approximation for Z ,  to see that, for fixed a<b,  
asn-co, 

+ n 1 e - u ~ , 2  
Ai  - - du. 

a G< i -  c log n < b log n S, 
Informally, the relatively large values of Ai occur for i within a few 
of log n. 

10.1.1. The Size of a Randomly Selected Block 
A result similar to the following appears as Corollary 3.3 in DeLaurentis 

and Pittel [ 121. The size D = D ,  of “a randomly selected component” of a 
random assembly on n elements is defined by a two step procedure: first 
pick a random assembly, then pick one of its K,, components, each with 
probability l/K,. The same definition applies to the case of random multi- 
sets or selections of weight n. 

Given 1 < b < n, consider the functional h:  Z: + [0,1] defined by 

with h(0, 0, ..., 0 )  defined to be 1. The distribution of the size of a randomly 
selected component is determined by 

P(D, < b )  = iEh(C(n)). 

Define U, = Z ,  + . .. + z b ,  so that h ( Z , ,  ..., Z , )  = ub/u, and 

P(D,<b)= Eh((Z, ,  ..., Z , )  I T , = n ) =  E - T n = n  (3 ) 
Let E > 0 and p > 1 be’ given. Let 1 < b < n such that 

q = P(Z1 < b)  E [2&, 1 - 2E]. (162) 

Now for all n > n ( ~ ,  p )  we have EU,> En/log n and [EU,/IEU,E [q/p,  qp]. 
Large deviation theory says that for p > 1 there is a constant c = c( p )  > 0 
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such that if Y is Poisson with parameter A, then P( Y/A < l/p) < exp( - Ac) 
and P(Y/A2p)<exp(-Ac). (In fact, the optimal c is given by c ( p ) =  
min( 1 + p log p - p, 1 - p - ’  log p - p - ’ ) ,  with the two terms in the mini- 
mum corresponding respectively to large deviations above the mean and 
below the mean.) Putting these together, using the large deviation bounds 
once with ub as Y and a second time with U, as Y, we have for n 2 n(&, p )  

Since the functional h takes values in [0, 11, this proves, for n 2 n(&, p) ,  

IP(D,<h)-ql < q ( p 3 -  1 ) + 2 e x p ( - c ( p ) & n / l o g n ) / P ( T , = n ) .  (163) 

In terms of Lemma 6, the above argument involves the functional h* 
defined by h*(a) = l ( h ( a )  $ [q/p3, q p 3 ] ) .  The inequality (163) not only 
proves that D, is asymptotically normal with mean and variance log n, but 
also provides an upper bound on the Prohorov distance between the 
distributions of D ,  and Z , .  

10.1.2. The Size of the Block Containing a Given Element 

In the case of assemblies, it is possible that someone describing “a 
randomly selected component” has in mind the component containing a 
randomly selected element, where the element and the assembly are chosen 
independently. This includes, for example, the case where the element is 
deterministically chosen, say it is always 1. Let D,* be the size of the 
component containing 1, in a random assembly on the set [n]. 

The two notions of “a randomly selected component” can be very 
far apart. For example, with random permutations, D,* is uniformly 
distributed over { 1, 2, ..., n}, while the size D ,  of a randomly cycle is such 
that log D,/log n is approximately uniformly distributed over [0, 11. For 
random partitions of a set, the argument below proves that D ,  and D,* are 
close in distribution, because both distributions are close to Poisson with 
parameter x, where xex = n. 

Given 1 < h < n, consider the functional g :  Z; [0,1] defined by 

1 
g(a)=- ia,. 

i C b  

The distribution of the size of the component containing a given element 
is determined by 

P(D,* < 6 )  = Eg(C(n)). 
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Define Rb = z, + 222 + . . . + bzb, SO that g(Z1, ..., z,) = Rb/n and 

P(D,* < 6) = Eg( ( z , ,  ..., z,) I T,  = n )  = [E(Rb/n I T,, = n). 

With E, p, 6, n, and q as above in (162), and with the same c( p )  as above 
but with a different n ( ~ ,  p ) ,  for all n 2 n ( ~ ,  p )  we have EU,>~n/iogn and 
ER,/n€ [q/p,  qp]. Large deviation theory says that, with E. = EU, as the 
mean of an unweighted sum of independent Poissons, the weighted sum 
Y =  Rb satisfies P(Y/EY< l/p)<exp(-Lc) and P(Y/EY2p)<exp(-Ac). 
Putting these together, we have for n 2 n ( ~ ,  p )  

Since the functional g takes values in [0, 11, this proves, for n 2 H(E, p) ,  

IP(D,* < h )  - q1 < q( pz - 1 )  + 2 exp( -c (  p )  Enllog n ) / P (  TI, = n) .  (164) 

10.1.3. The Number of Distinct Block Skes 

Odlyzko and Richmond [48] prove that the number J,, of distinct block 
sizes in a random partition of the set [n] is asymptotic to elogn in 
expectation and in probability. A stronger result can easily be proved by 
overwhelming the conditioning. 

Informally, our argument is that for 1 < i < ( e  - E )  log n, the Poisson 
parameter i ,  = d / i !  is large, so that P(Z, = 0) is very small, in fact small 
enough to overwhelm the conditioning on {T , ,=n} ,  so that P(C, (n )=O)  
is also very small, and we can conclude P(C,(n)=O for any 
i < (e - E )  log n )  + 0. This accounts for at least ( e  - E )  log n distinct block 
sizes. On the other side, x,3(E+E,,08n EZ,  is small, hence for some k = k(e), 
P(Z, > 0 for at least k values of i 2 (e + E )  log n )  is very small, in fact small 
enough to overwhelm the conditioning (using roughly k = 1/(2~).) We 
conclude P( C,(n) > 0 for at least k values i 2 ( e  + E )  log n )  + 0. Our result, 
that for any E > 0, P(C,(n) = 0 for any i < ( e  - E )  log n, or C, (n )  > 0 for at 
least k values i 2 (e  + E)  log n )  0, implies but is not implied by the result 
that J,/log n + e in probability. Furthermore, the bounds supplied by 
Theorem 10 below imply that J,/logn+e in the rth mean for every 
1 < r < 00. The result that P(C,(n)  = 0) + 0 was proved in Sachkov [Sl]. 

In a little more detail, observe that P(ZI = 0) = exp( - A,)  = e-x = x / n  - 
log n/n, which is smaller than the conditioning probability, given by (161), 
by a factor on the order of &/(log 1 2 ) ~ ~ ~ .  The preceding argument is given 
in Sachkov [Sl] .  The Poisson parameters increase rapidly, so P ( Z 2  = 0 )  = 
exp( - A 2 )  = exp( -x2/2) = (x/n)'I2, which decays faster than any power 
of n. 

For a more careful analysis of the boundary where the Poisson 
parameter A, changes from large to small, write i = (x + d )  e, where 

I 

l 
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d=o(x) .  Recall x-logn. Using Stirling's formula, and writing x for 
logarithmically asymptotic, we have l i  = xyi!  N ( x e / i ) ' / G  = ( x / ( x  + d))'/ 
6 x exp( - id/x - log f i )  x exp( - ed - (1/2) log log n),  so that the 
critical boundary for i, corresponding to d = - (1/2e) log log n, is at 
c(n)  xe - (1/2) log log n. On the left side of this boundary the argument 
via overwhelming the conditioning shows that P(Ci(n)  = 0 for any 
i e ex - (3/2 + E )  log log n )  + 0. The argument is very asymmetric between 
left and right: on the left, where Ai is large, we use P(Zi = 0) = exp( -Ai), 
gaining the use of an exponential; while on the right, where 1, is small, we 
use P(Z,>O) <Ai .  Thus in Theorem 10, the left boundary a is an extra 
(1 + E )  log log n below c(n), while the right boundary b is an extra E log n 
above c(n). 

The results of the above discussion are summarized by the following 

THEOREM 10. For partitions of a set of size n, for E > O ,  there are 
with high probability blocks of every size i < ( e  - E )  log n, and not many 
blocks of size i 2 (e  + E )  log n. More precisely, for any r e  co there exists 
k = k(E, r )  

P(C,(n)  = 0) = O((1og n)3/2/&), 

co so that, as n -, co, 

while for a ex - (3/2 + E )  log log n 

and 

where xex = n, Ai = xi/ i! ,  and P( T,  = n )  satisjles (161). 

Prooj Most of the proof is contained in the informal discussion before 
the theorem. For the second statement, it remains to check that 

exp( -Ai )  = o(n+) for any r, which follows from an upper bound on the 
first and last terms of the sum, which has at most n terms, together with 
the observation that the A2 < A 3  e c l L x j  2 ..- 2 A,,,. For the third 
statement, we are merely using the estimate, for Y =  x iab  Z,, which is 
Poisson with small parameter 1, that P( Y 2 k )  = O(Ak) as 1 + 0. Note that 
lEYxIEZrb,E1rb,x(xe/b)bx(l  + & / e ) - b e n - e .  I 

The above argument by overwhelming the conditioning is crude but easy 
to use because it gives away a factor of P( T,  = n), when in fact the event 
{ T, = n }  is approximately independent of the events involving { Z i  > 0} 
for large i. An effective way to quantify and handle this approximate 

I 
I 
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independence is the total variation method outlined in Sections 3 and 4. 
Sachkov [Sl] analyzed the size L, of the largest block of a random parti- 
tion, and gave its approximate distribution. Writing L, = h(C(n) )  where 
h(a, ,  ..., a,) = max(i: a, > 0), Sachkov’s result can be paraphrased as 
dTV(Ln,  h ( Z , ) )  + 0. Note that the number J, of distinct block sizes satisfies 
J, < L, always. Using B = { i < n : i > ex - 2 log log n}, for example, it 
should be possible to prove that dTV(CB, Z,) + 0. Then, by comparison of 
J, = h(C(n) )  with h ( Z , ,  ..., Z , )  = C l (Zi  > 0), it would follow that, with 
centering constants c (n)  = ex - (1/2e) log log n, the family of random 
variable {J,, - c ( n ) }  is tight, and the family {L ,  - J , }  is tight; and for each 
family, along a subsequence n(k) there is convergence in distribution if and 
only if the c (n(k ) )  mod 1 converge. 

1 1. DEPENDENT RROCESS APPROXIMAT’IWS 

For the logarithmic class of structures discussed in Subsections 4.3, 5.1, 
and 5.2, we have seen that the Ewms sampling formula (ESF) plays a 
crucial role. In the counting process for large components of logarithmic 
combinatorial structures, there is substantial dependence; an appropriate 
comparison object is the dependent process of large cornponerats in the 
ESF. For example, in Arratia, Barbour, and Tavari [ 5 ]  it is shown t h  
the process of counts of factors of large degree in a random polynomial 
over a finite field is close in total variation to the process of munts of large 
cycles in a random permutation, corresponding to the E!5F with parameter 
8= 1. In Arxatia, Barbour, and Tavark [SI, Stein’s method is used to 
establish an analogcirus m u l t  for all the logarithmic class, and somewhat 
more generally. The basic technique involving Stein’s method specialized to 
the compound Poisson is described in kbOulT, Holst, and Jan- [9, 
Chap. 101. 

Once such bounds are available, it is a simple matter to establish 
approximation results, with bounds, for d e r  interesting functionals of the 
large component counts of the combinatorial process. For example, the 
Poisson-Dirichlet and GEM limits for random polynomials are established 
with metric bounds in Arratia, Barbour, and Tavart [ S I .  Poisson-Dirichlet 
limits for the logarithmic class are also discussed by Hansen [31]. 
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