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Many random combinatorial objects have a component structure whose joint
distribution is equal to that of a process of mutually independent random variables,
conditioned on the value of a weighted sum of the variables. It is interesting to
compare the combinatorial structure directly to the independent discrete process,
without renormalizing. The quality of approximation can often be conveniently
quantified in terms of total variation distance, for functionals which observe part,
but not all, of the combinatorial and independent processes. Among the examples
are combinatorial assemblies (e.g., permutations, random mapping functions, and
partitions of a set), multisets (e.g., polynomials over a finite field, mapping patterns
and partitions of an integer), and selections (e.g., partitions of an integer into
distinct parts, and square-free polynomials over finite fields). We consider issues
common to all the above examples, including equalities and upper bounds for total
variation distances, existence of limiting processes, heuristics for good approxima-
tions, the relation to standard generating functions, moment formulas and
recursions for computing densities, refinement to the process which counts the
number of parts of each possible type, the effect of further conditioning on events
of moderate probability, large deviation theory and nonuniform measures on
combinatorial objects, and the possibility of getting useful results by overpowering
the conditioning.  © 1994 Academic Press, Inc.
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1. INTRODUCTION

We consider random combinatorial objects which can be described in
terms of their component structure. For an object of weight n, denote the
component structure by

C=C(n)=(C,(n), Coln), .., C,(n)),

where C,= C,(n) is the number of component's‘ of size i Since iC, is the
total weight in components of size i, we have - :

C1+2C2+ cen +nC,,=n.'

For each fixed n, by choosing an object of weight n at fandom, with all
possibilities equally likely, we view C(n) as a Z”, -valued stochastic process,
whose coordinates C,(n), i=1, .., n, are dependent, nonnegative integer-
valued random variables. This paper considers combinatorial objects
for which the joint distribution of C(n) can be expressed as the joint
distribution of independent random variables Z,, Z,, ..., Z, conditioned on
the value of a particular weighted sum. '

There are at least three broad classes of combinatorial structures which
have this description in terms of conditioning an independent process.
The first class is assemblies of labelled structures on [n]={1,2,..,n} see
Foata [23], Joyal [38]. This class includes permutations, decomposed into
cycles; mappings, decomposed into connected components; graphs, decom-
posed into connected components, and partitions of a finite set. The second
class is multisets, i.c., unordered samples taken with replacement. This class
includes partitions of an integer; random mapping patterns; and monic
polynomials over a finite field, decomposed into monic irreducible factors.
The third class is selections, i.e., unordered samples taken without
replacement, including partitions of an integer into parts of. dlstmct sizes,
and square-free polynomials.
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The detailed description of any of the above examples is given in terms
of a sequence of nonnegative integers m,, m,, ... For assemblies, let m, be
the number of labelled structures on a set of size i, for i=1, 2, ...; permuta-
tions have m,=(i—1)!, mappings have m,=(i—1)! (1 +i+i%*2+ .- +
i=1/(i—1)!), and partitions of a set have m,=1. For multisets and
selections, let m; be the number of objects of weight i; partitions of an
integer have m;=1, and the factorizations of monic polynomials over a
finite field have m, equal to the number of monic, irreducible polynomials
of degree i.

For a=(a,, a,,..,a,)€Z", consider the number N(n, a) of objects of
total weight n, havmg a; components of size i, for i= 1 to n. For assemblies,
the generalization of Cauchy’s formula for permutations is the enumeration

N(n, a)= |{assemblies on [n]: C=a}|

a; ..

mé

=1(a, +2a,+ -+ +na, —n)n'H(l')a,a' ‘(1)
For multisets,

N(n, a) = | {multisets of weight n: C=a}|
1

=1(a; +2a,+ -+ +na, —n)n(m +aa ) (2)

For selections,
N(n, a) = | {selections of weight n: C=a}|
=1(a; +2a,+ --- +na,,»=n)H<r:">. (3)
1 i
Let p(n) denote the total number of structures of weight », to wit
p(n)= Y, N(n,a). (4)

aeZ’,
For permutations, p(n)=n!; for mappings, p(n)=n"; for graphs,
p(n)=2%2/; for partitions of a set p(n)='B,, the Bell number; for partitions
of an mteger p(n) is the standard notation; and for monic polynomlals
over a field with g elements, p(n) = g¢".

A random structure is understood as follows. Fix a constant n, and
choose one of the p(n) structures at random, with each possibility equally
likely. This makes C(n) a stochastic process with values in Z”, whose
distribution is determined by :

N(n,a)

P(C(n)=a)= FOR

aeZ’,. (5)
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In Section 2 below, we show that there are independent random variables
Z,, Z,, .. such that the combinatorial distribution (5) is equal to the joint
distribution of (Z,, Z,, .., Z,) conditional on the event {T, =n}, where

T"-=—-Zl+222+ s +nZ,,.
Explicitly, for all aeZ",
P(C(n)=a)=P(Z,,Z,,...Z,)=a| T,=n). (6)

Assemblies, multisets, and selections are not the only places where (6)
arises in combinatorics. For example, the distribution of the counts of the
factor degrees of the characteristic polynomial of a uniformly chosen random
matrix over a finite field also satisfies (6); see Hansen and Schmutz [62].

It is fruitful to compare the combinatorial structure directly to the
independent discrete process, without renormalizing. The quality of
approximation can be usefully quantified in terms of total variation distance
between the restrictions of the dependent and independent processes to a
subset of the possible coordinates. We carry this out in Section 3. Bounds
and limit theorems for natural functionals which depend on the coordinates,
albeit weakly on those outside a subset, are then easily obtained as
corollaries. For examples of this in the context of random polynomials over
finite fields, and random permutations and random mappings, see Arratia,
Barbour, and Tavaré [5] and Arratia and Tavaré [3].

The comparison of combinatorial structures to independent processes,
with and without further conditioning, has a long history. Perhaps the best
known example is the representation of the multinomial distribution with
parameters n and p,, ..., p; as the joint law of independent Poisson random
variables with means Ap,, ..., Ap;, conditional on their sum being equal to n.

Holst [34] provides an approach to urn models that unifies multinomial,
hypergeometric, and Pélya sampling. The joint laws of the dependent counts
of the different types sampled are represented, respectively, as the joint dis-
tribution of independent Poisson, negative binomial, and binomial random
variables, conditioned on their sum. See also Holst [35, 36]. The quality of
such approximations is assessed using metrics, including the total variation
distance, by Stam [53] and Diaconis and Freedman [13].

The books by Kolchin, Sevast’yanov, and Chistyakov [40] and Kolchin
[39] use the representation of combinatorial structures, including random
permutations and random mappings, in terms of independently distributed
random variables, conditioned on the value of their sum. However, the
Kolchin technique requires that the independent variables be identically
distributed. The number of components C, of size i is the number of
random variables which take on the value i.
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Shepp and Lloyd [52] study random permutations using a conditional
relation almost -identical to (6), with EZ,= x"/i and x = x(n), except that
they condition on n being the value of an infinite sum Z,+2Z,+ ---,
which of course entails that Z,,,=Z,,,=--- =0, and requires x< 1.
Variants on the Shepp and Lloyd technique are discussed by Diaconis and
Pitman [14], are effectively exploited to prove functional central limit
theorems for two combinatorial assemblies by Hansen [29, 30], and are
used as a convenient tool for moment calculations by Watterson [58] and
Hansen [31]. A related technigque, coupled with an observation of Levin
[417, is used by Fristedt [24, 25] to study random partitions of a set and
random partitions of an integer.

1.1. Notation

There are several types of asymptotic relations used in this paper. For
sequences {a,} and {b,}, we write a,~b, for the asymptotic relation
a,/b,— 1 as n— co. We write a,, < b, if there are constaats 0 < ¢, <c, < ®
such that cyb,<a,<cb, for all sufficiently large n. We write a,~ 5, to
denote that log a, ~log b,. Finally, we say that a,=b, if a, and b, are
approximately equal in some heuristic sense deliberately lcft vague.

ForreZ, =190, 1,2, ..}, we denote the rising factorial y,, by yo,=1,
Yo=¥y+1)---(y+r—1) and the falling factorial y;,; by yo=1,
Yiry=y(y—1)---(y—r+1). We also write N={1,2,..}, R, =[0, o).

We write X, -, X if X, converges to X in probability, X,= X if X,
converges to X in distribution, and X L2 Yif X and Y have the same
distribution. We use 1 to denote indicator functions, so that 1(4)=1if 4
is true and 1(A4) =0 otherwise.

2. INDEPENDENT RANDOM VARIABLES CONDITIONED ON-A WEIGHTED SUM

2.1. The Combinatorial Setup
Common to the enumerations (1) through (3) is the form

N )= {C=a}| = 1(a, + 2ay + - +na,=n) () [[g:(a, ()
1

with f(n)=n! for assemblies, and f(n)=1 for multisets -and selections. To
see that (7) involves independent random variables conditioned on a
weighted sum, view the right hand side as a product of three factors. First,
the -indicator function, which depends on both n and a, corresponds to
conditioning on the value of a weighted sum. Second, the factor f(n) does
not depend on a, and hence disappears from conditional probabilities. The
product form of the third factor corresponds to n mutually independent,
but not identically distributed, random variables.
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The distribution of a random assembly, multiset, or selection C(n) given
in (5) can now be expressed in the following form. For ae Z",

P(C(n)=a)=1(a; +2a,+ --- +na,,=n)MfIg,.(a,-). (8)
p(n) 7

Given functions g, g,,.. from Z, to R,, and a constant x>0, let
Z,,Z,,.. be independent nonnegative integer valued random variables
with distributions given by

P(Z,=k)=c,g,(k) x*  k=0,1,2,.. ' )

The above definition, in which ¢; = c,(x) is the normalizing constant, makes
sense if and only if the value of x and the functions g, are such that

—1
c=( T alb)x) e o) (10)
k=20
For assemblies, g,-(k)—é (m;/i')*/k!, so that (10) is satisfied for all x> 0.
Defining 4;,=m;x'/i!, we see that c¢,=exp(—4,) and Z, is Poisson with
mean and variance.

EZ,=var(Z)=i=——. (11)

For multisets, g,(k)=("*f""'), so the summability condition (10) is
satisfied if and only if x< 1. For xe (0, 1), we have ¢;= (1 —x)™ and Z,
has the negative binomial distribution with parameters m, and x' given by

+k—1 ) )
p(zi=k)=<m’ +k )(1 —xymx*,  k=0,1,2,..,
with mean and variance
m;x' _omx’
EZ,= 1—x" var(Z,-)—(l —x) (12)

In the special case m;=1, this is just the geometric distribution, and in
general Z; is the sum of m; independent random variables each with the
geometric distribution P(Y =k) = (1 — x) x* for k>0.

For selections, g;(k)=("}), which is zero for k>m,, so that (10) is
satisfied for all x> 0. We see that ¢;= (1 + x')~™, by writing

= (e =()ee) ()
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Thus, with p,=x%/(1+x’), the distribution of Z; is binomial with
parameters m, and p,, with mean and variance
xt mx'

e v Z)=mp(l-p) =

1+x (13)

EZ,=m;p;=

2.2. Conditioning on Weighted Sums in General

In order to give a proof of (6) which will also serve in Section 6 on
process refinements, and Section 8 on large deviations, we generalize to a
situation that handles weighted sums with an arbitrary finite index set. We
assume that [ is a finite set, and for each a €], g,:Z, - R is given. We
assume that w is a given weight function with values in ‘R or more generally
RY so that for ael, w(a) is the weight of a For the combinatorial
examples in Section 1, we had I= {1, 2, ..., n}, and a one-dimensional space
of weights, with w(i)=i. For a€Z’, with coordinates g, =a(x), we use
vector dot product notation for the weighted sum

w-as= Y a(a)w(a)

axed

Furthermore, we assume that we are given a target value ¢ such that
there exists a normalizing constant f(Z, t) so that the formula

P(C,=a)=1(w-a=1)f(L, 1) [] g(a.), aeZ, (14y

ael
defines a probability distribution for a stochastic process C; with values in
Z', . The distribution of C(n) given by (8) is a special case of (14) with t=n
and f(I, t) =f(n)/p(n).

Assume that for some value x>0 there exist normalizing constants
€y = Co(x) € (0, 0), such that for each a €/,

P(Z,=k)=c,(x) g, (k) x*®%  k=0,1,2,.. (15)

defines a probability distribution on Z,. In case d>1, so that w(a)=
(wy(@), ..., wa(a)), we take x = (xq, ..., X4) € (0, )%, and x*** denotes the
product x 7 ®* ... x%4®k Define the weighted sum T by o

T=T,=) w()Z,. (16)

ael

It should now be clear that the following is a generalization of (6).

THEOREM 1. Let Z,=(Z,),.; have independent coordinates Z, with
distribution given by (15), and let C, have the distribution given by (14).
Then

C, = (Z,| T=1), (17)
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and hence for any Bc I, the processes restricted to indices in B satisfy
Cs = (Zs] T=1) (18)

Furthermore, the normalizing constants and the conditioning probability are
related by

P(T=0) =5 1)~ x' [ cu(x). (19)

ael

Remark. The distribution of Z,, and hence that of T=w-Z,, depends
on x, so the left side P(T=1) of (19) is a function of x.

Proof. The distribution of Z, is given by
P(Z,=2)=[] (c,ga) x" @) =x""*T] c, [] 8u(2.);

ael xel ael

for ae Z’,, so that if w-a=1 then
P(Z,=a)=x"'[[ c. /UL, 1) ' P(C,=2). (20)
The conditional distribution of Z, given {T=1} is given by
1t=w-a)P(Z,=a)
P(T=1)

_x'([1e)fU, 1) P(C,=2)
P(T=1t)

_ X(Ie)fW, )" P(C,=2)
T Shezt, ¥([Tel) U 1)~ P(C;=D)

P(C,=a)
"~ 3, P(C;=b)

=P(C,=a), aeZ’. (22)

The equality between (21) and (22), for any a for which P(C,=a)>0,
establishes (19). 1§

For the combinatorial objects in Section 1, I={1,2, .., n}, and w(i)=i.
For this case T reduces to

T=T,=Z,+2Z,+ - +nZ, (23)

P(Z,=a| T=1)=

(21)

In the case of assemblies, corresponding to (1) and (11), the distribution of
Z, is Poisson(4;), and (19) reduces to

p()

P(T, —-n)— x"exp(—A;— -+ —4n) (24)
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where A;=m,x/i! and x> 0. In the case of multisets, corresponding to (2)
and (12), Z, is distributed like the sum of m, independent geometric (x)
random variables, and (19) reduces to

P(T,=n)=p(n) " [ (1= Y™, . (25)
1 N

for 0 <x < 1. In the case of selections, corresponding to (3) and (13), the
distribution of Z, is binomial (m;, x/(1 + x')), so that (19) reduces to -

P(T,,=n)=p(n)x”l£[(1+x")""', (26)
1 .

for x>0.

3. ToTAL VARIATION DISTANCE

A useful way to establish that the independent process Z,=
(Z:,Z,, .., Z,) is a good approximation for the dependent combinatorial
process C(n) is to focus on a subset B of the possible component sizes, and
give an upper bound on the total variation distance between the two
processes, both restricted to B. Theorem 3 below shows how this total
variation distance for these two processes reduces to the total variation
distance between two one-dimensional random variables.

Here is a quick review of the relevant features of total variation distance.
For two random elements X and Y of a finite or countable space S, the
total variation distance between X and Y is defined by

dry(X, Y)=3 ) |P(X=5)—P(Y=5s)I.

seS§

Properly speaking this .should be referred to as the distance between
the distribution #(X) of X and the distribution #(Y) of Y written, for
example, as d; (£ (X), £(Y)). Throughout this paper we use the simpler
notation, except in Section 8 which involves changes of measure.

Many authors, following the tradition of analysis of signed measures,
omit the factor of 1/2. Using the factor of 1/2, we have that dy, (X, Y)e
[0, 1], and furthermore, d;, is identical to.the Prohorov metric, providing
the underlying metric on S assigns distance >1 between any two distinct
points. In particular, a sequence of random elements X, in a discrete space
S converges in distribution to X if and only if dry (X, X) —0.
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Another characterization of total variation distance is

dr (X, V)= rzlays( (P(XeAd)—P(YeA)),

and in the discrete case, a necessary and sufficient condition that the maxi-
mum be achieved by Aisthat {s: P(X=5)>P(Y=s)}cdc {s: P(X=5)2
P(Y=s)}.

The most intuitive description of total variation distance is in terms of
coupling. A “coupling” of X and Y is a probability measure on S? whose
first and second marginals are the distributions of X and Y, respectively.
Less formally, a coupling of X and Y is a recipe for constructing X and Y
simultaneously on the same probability space, subject only to having given
marginal distributions for X and for Y. In terms of all possible coupling
measures on S2,

dry(X, Y)= min P(X#7Y). (27)

couplings

The minimum above is achieved, but in general there is not a unique
optimal coupling. In fact a discrete coupling achieves P(X#Y)=
dry(X, Y), if and only if, for all seS, P(X=Y=s5)=min(P(X=5s),
P(Y =s)). Intuitively, if dr, (X, Y) is small, then X and Y are nearly
indistinguishable from a single observation; formally, for any statistical test
to decide whether X or Y is being observed, the sum of the typeI and
type II errors is at least 1 —d,, (X, Y).

Upper bounds on the total variation distance between a combinatorial
process and a simpler process are useful because these upper bounds are
inherited by functionals of the processes. If : S — T is a deterministic map
between countable spaces, and X and Y are random elements of S, so that
h(X) and A(Y) are random elements of T, then

dry (W(X), (Y))<dry (X, Y). (28)

Theorem 3 below, and its refinement, Theorem 5 in Section 6, both describe
combinatorially interesting cases in which equality holds in (28). It is
natural to ask when, in general, such equality holds. The following elemen-
tary theorem provides an answer.

THEOREM 2. In the discrete case, equality holds in (28) if and only if the
sign of P(X =s)— P(Y = s) depends only on h(s), in the non-strict sense that
Ya,beS,

h(a) = h(b) implies (P(X=a)—P(Y=a))}(P(X=0)—P(Y=5))=0.
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Proof. Consider the proof.of (28), namely

2d7y (h(X), h(Y)) =}, |P(h(X)=r)—P(h(Y)=r)|

reT

=¥| ¥ (PX=a)-P(Y=a)l ()

r laeS:h(a)=r

<Y Y IP(X=a)-P(Y=a) (30)

r ah(a)=r

= 2dTV(X9 Y).

Since the inequality in (30) hoids term by term in the outer sums, equality
holds overall if and only if equality holds for each r. This in turn is
equivalent to the condition that for each r, there are no terms of opposite
sign in the inner sum in (29). |

Diaconis and Pitman [14] view “sufficiency” as a key concept. In the
context above, h: S — T is a sufficient statistic for discriminating between
the distributions of X and Y in S, if the likehood ratio depends only on A,
ie, if there is a function f: T— R such that for all se S, P(X=s)=
f(h(s)) P(Y=s). Taking a sufficient statistic preserves total variation dis-
tance, as observed by Stam [53]. This is also a special case of Theorem 2,
in which a product is nonnegative because it is a square: (P(X=a)—
P(Y = a))(P(X = b) — P(Y = b)) = (f(h(a)) — 1)(f(h(b)) — 1)P(Y = a)
P(Y = b) =0 whenever h(a)= h(b).

THEOREM 3. Let I be a finite set, and for a€l, let C, and Z, be Z ,
valued random variables, such that the Z, are mutually independent. Let
w=(w(a)),.; be a deterministic weight function on I with values in some
linear space, let T=Y,.,w(a) Z,, and let t be such that P(T=1t)>0. For
Bc I, we use the notation Cp=(C,)ycp and Zg=(Z,),p for random
elements of 72 . Define

R=Ry=) w)Z,, S=Sz= ) wa)Z,

xeB ael—B

so that T=R+ S and R and S are indepéndent. If
C/ = (21 T=1), (31)
then

dry(Ca, Zp)=dry(Rg| T=1),Rp). (32)
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Proof. We present two proofs, since it is instructive to contrast
them. Note that not only are R and S independent, but also that R is a
function of Zg, and Z, and S are independent. For aeZ%, write

w-as=3,.pw()a(a).

dn(Cp.Zp)=3 L, PZy=a|T=0)=P(Zs=a)

P(Zy=a,r+S=t)
P(T=1)
P(Zy=2)P(r+S=1)
P(T=1)
P(R=r)P(r+S=1)

P(T=1)
1 |P(R=r,r+S=1t)
72 P(T=1)

r

32 3

r aw-a=r

~P(Zy=2)

~P(Zy=2)

—P(R=r)

1l

—P(R=r)

N

%ZIP(R—rlT—t)—R(R—r)I

=dm((R| T=1), R).

Here is a second proof of Theorem 3, viewed as a corollary of
Theorem 2, with the functional 4 on ZZ defined by h(a)=w-a. We need
only observe that h is a sufficient statistic since P(Zyz=a|T=1¢)=
P(Zg=a)P(S=t—h(a))/P(T=1t). |}

For the sake of calculations of total variation distance between a
combinatorial process and its independent process approximation, the
most useful form for the conclusion of Theorem 3 is

P(R=r)P(r+S=1)
P(T=1)

M_l‘
P(T

dTV(CB! ZB) Z

r

—P(R=r)

~3ZP(R=n)| (33)
In the usual combinatorial case, where t=nand T=2Z,+2Z,+ --- +nZ,,
this gives

P(S=n—

dTV(CB,ZB)-—P(R>n)+ ZP(R )( P(T=

r==0

—1\. (34)
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There are two elementary observations that point to strategies for giving

upper bounds on total variation distance. First, for discrete random
clements we have in general

dr(X, Y)=1 ¥ IP(X=5)—P(Y=3)|

seS
=), (P(X=5)-P(Y=s))"
seSs
=Y (P(X=5)—-P(¥Y=s))",

where the notation for positive and negative parts is such that, for real x,
x=x"—x",and |x|=x* +x". In the context of (33) this is useful in the
following form Let A= Then

P(S=t—r)\*

dry (€2 25) =S P(R=1)(1-"5 2 0)
P(S=t—r)\* '
SP(R¢A)+§21:(1—————P(T=0 ) . (35)

Specializing to the case where the weighted sum R is real valued, and
A={0,1,2, ..k}, the truncation level k is chosen much larger than ER, so
that large deviation theory can be used to bound P(R> k), but not too
large, so that P(S=¢—r)/P(T=1) can be controlled to show it is close to
one.

The second elementary observation, which is proved and exploited in
Arratia and Tavaré [2], is that the denominator in (33) can be replaced
by any constant ¢ >0, at the price of at most a factor of 2, in the sense that
for independent R and S such that P(R+S=1¢)>0,

P(S=t— )
P(R+S=

%Z}P(R=r) l<Z[P(R )‘B(—S——)—l‘.
By using this, for example with ¢ =P(S=1t), giving an upper bound on
the total variation distance for combinatorial process approximations. is
reduced to showing that the density of S is relatively constant.

Lower bounds for variation distance are often more difficult to obtain,
but it is worth noting that in the combinatorial setup, since {Rz>n} <
{Cs# Zz}, we have, without the factor 1/2 suggested by (34),

dpy(Cp, Z3)> P(Ry > n). (36)



INDEPENDENT PROCESS APPROXIMATIONS 103
4. HBURISTICS FOR USEFUL APPROXIMATION

Recall first that for B« [#], we have Cp 1 (Zg| T,=n). U d (Cg,Zp)
is small, the approximation of Cz by Z, is useful. Probabilistic intuition
suggests that conditioning on T, =n does not change the distribution of Z
by much, provided that the event {T,=n} is relatively likely. This in turn
corresponds to a choice of x = x(n) for which ET,, is approximately ». Let

=var(T,), and let 6% =var(R}). Intuition then suggests that if

;_E( T, is not large (37)
and
ERp and Iz are small (38)
O, O,

then d;,(Cg, Zp) is small.

While our main focus is on the appropriate choice of x, we also discuss
below the appropriate choice of B for examples including permutations,
mappings, graphs, partitions of sets, and partitions of integers.

There is an important qualitative distinction between cases in which the
appropriate x is constant, and those in which x varies with ». If x does not
depend on n, then a single independent process Z=(Z,, Z,, ...) may be
used to approximate C(n)=(C,(n),.., C,(n)), which we identify with
(Ci(n), ..., Cy(n), 0,0, ..)eZ%. Under the usual product topology on Z%
we have that C(n)=Z if, and only if, for every fixed b, C,(n)=
(Ci(n), ... Co(n))=>Z,=(Z,, .., Z,) as random elements in Z% . Since the
metric on Z% is discrete, we conclude that C,(n) = Z, if, and only if, for
each fixed b, d;, (Cy(n), Z,) - 0. For cases where x, and hence Z, varies
with », it makes no sense to write C(n)=Z. However, it is still useful to
be able to estimate d ., (Cz(n), Zg(n)).

We discuss first considerations involved in the choice of x and B, and
then heuristics for predicting the accuracy of approximation.

4.1, Choosing the Free Parameter x

It is convenient to discuss the three basic types of combinatorial
structure separately. :

4.1.1. Assemblies
It follows from (11) that

ET,= Y iEZ,= 2

i=1 r=1

1)', : (39)
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while

n n :2 i
02=Y i%Z,= Y - ':,"‘x. " (40)

i=1 i=1

In the case of permutations, we take x=1 to see that ET,=n, and ¢2=
n(n+ 1)/2. In Arratia and Tavaré [2] it is proved that d;,.(Cz, Z5)— 0 as
n— oo, with B= B(n), if and only if |B| = o(n).
For the class of assemblies which satisfy the additional condition
m Ky

— ~— as i— oo, (41)
i! i

where y >0 and k>0 are constants, we see that
0, if 0<x<y?
1

- <K, if x=y~
0, if x>y L.

Hence the only fixed x that ensures that ET,><n is x =y !, in which case

ET,~nk, o,~n \/% (42)

For the example of random mappings,
m;=eé'(i—1)! P(Po(i) < i),

where Po(i) denotes a Poisson random variable with mean #, Harris [33],
Stepanov [56]. It follows that we must take x = 1/e, and, from the Central
Limit Theorem, k= 1/2. In this case ET,~n/2 and ¢, ~n/2.

For the example of random graphs, with all 2(2) graphs equally likely,
the fact that the probability of being connected tends to 1 means that
the constant vector (0,0, ..,0, 1)eZ” is a good approximation, in total
variation distance, to C(n). This is a situation in which the equality
C(n)=%(Z,| T,=n) yields no useful approximation. With x chosen so
that ET,=n, and B={1,2,..,n—1}, we have that d,(Cp, Z)—0,
but only because both distributions are close to that of the process that is
identically 0 on Z%. v

For partitions of a set, which is discussed further in Subsection 5.2
and Section 10, with x=x(n) being the solution of xe*=n, and B=
{1,2,.,b}u{c,c+1,..n} where b= b(n) and c=c(n), the heuristic (37)
suggests that d;, (Cg, Zg) — 0 if and only if both (x — b)/,/log n - o and
(¢ —x)//log n = 0. For B of the complementary form B= {b, b+ 1, ..., ¢}
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with b <c both within a bounded number of ./logn of x, the heuristic
suggests that dr,(Cg, Zg)— 0 if, and only if, (c—b) = o(/log n). Sachkov
[51] and Fristedt [24] have partial results in this area.

4.1.2. Multisets

Using (12) we see that

nimxt
[ET,,=E1 T -(43)
while
T YL )
S (=X
If the multiset constructioﬁ satisfies the additional hypothesis that
m,~~ﬁi as i— o0, (45)

where y>1 and x>0 is fixed, a similar analysis shows that the only fixed
x that ensures that ET,<n is x=y !, in which case the asymptotics for
ET, and o, are the same as those in (42).

The first example that satisfies the hypothesis in (45) is the multiset in
which p(n) = g" for some integer ¢ >2. In this case the m, satisfy

q"= 3, jm, (46)
jln
so that by the Mbius inversion formula we have
1 . |
m,== % u(n/k) g, (47)
n k|n
where pu(-) is the Mobius function, defined by
u(n)=(—1)* if nis the product of k distinct primes

u(n)=0 _ otherwise.
It follows from (46) that

q ~‘ﬁ ¢ <im;<q',
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so that (45) holds with k=1, y =g¢. This construction arises in the study
of necklaces (see Metropolis and Rota [44,45], for example), in card
shuffling (Diaconis, McGrath and Pitman [15]), and, for ¢ a prime power,
in factoring polynomials over GF(q), a finite field of ¢ elements. In this last
case m; is the number of irreducible monic polynomials over GF(g); see
Lidl and Niederreiter [42], for example. '

Another example concerns random mapping patterns. Let ¢, denote the
number of rooted trees with n unlabelled points, and set T(x)=Y2_, 1,x".
Otter [49] showed that T'(x) has radius of convergence p =0.3383..., from
which Meir and Moon [43] established that

p—i
" 2i°
Hence (45) applies with xk=1/2, y=p~L
For an example in which x varies with n, we consider random partitions
of the integer n. In this case m;= 1. Taking x=e~" and using (43), we
see that

1 on 12 exp(—ic/\/r_t) 1

T, =
" o 1—exp(—ic/\/;) \/;
© ye —cy
"L 1o

1 !t —log(l—v)
_?J — Y ®

2

]

[=a)
[}]

C
Hence to satisfy ET, ~n, we choose c=n \/3, so that
x =exp(—n/./6n). (48)

From (44), it follows by a similar calculation that

2—cy'

—3/2 2
_>j (1 G ?

_?L (—logf}l —v)>

[
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so that

o2~ 2—;/—3 2. . (49)

For sets of the form B={1,2,.,b}u{c,c+1,..,n} where 0<b=b(n)
and ¢ = ¢(n) < n, the heuristic in (37) and (38) suggests that d . (Cz, Z5) - 0
if, and only if, both b= o(\/)_z) and c/\/; — 00. For B of the complementary
form B={b,b+1, .., ¢} with b<c both of the order of \/r;, the heuristic
suggests that d;, (Cp, Z) — 0 if, and only if, (c—b) = o(\/;). See Fristedt
[25] and Goh and Schmutz [26] for related results.

4.1.3. Selections
In this case, it follows from (13) that

roimx
=y —, 50
ET, E‘ll+x‘ (50)
while
n 22 i
) i‘m;x
= —., 51
7= L T | Gl

If the selection construction satisfies the additional hypothesis (45), then,
just as for the assembly and multiset constructions, we take x=y~', and
(42) holds once more. As an example, for square-free factorizations of
polynomials over a finite field with ¢ elements, we have y=g¢4, k=1,
x=q~ .

For an example in which x varies with n, we consider once more random
partitions of the integer n with all parts distinct, which is the selection
construction with m,=1. Taking x= e"d/‘/;, and using (50) we see that

” n“1/2iexp(—id/\/t_1)_l_
=1 1+exp(—id/\/n) /n

o ye_d)’
__}L l+e ¥ dy

1 ! —logo
—Pfo 1+v dv

7':2

T 12d%
Hence to satisfy ET, ~n, we pick d ==‘1r/, /12, so that
x =exp(—n/\/12n). (52)

n~'ET,=
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From (44), it follows by a similar calculation that

2 —dy

_’f Trep?

1 —logv
_d3jo< 1+v ) dv

—3/2 2

/I

For the choice of x in (52), We see that

02~4;ﬁ"”’- | (53)

To see how easy the heuristic for choosing x can be, consider partitions
of the integer n with all parts distinct and odd. Compared to the above
calculations, we are simply leaving out every other term, so that
n~'ET, - n%/(24d?), and we prescribe using x = exp(—mn/./24n). As with
unrestricted partitions, using the appropriate x for either partitions with
distinct parts or partitions with distinct odd parts, we believe that the
unconditioned process Zg is a good approximation for the combinatorial
process Cj, in the total variation sense, if and only if b/\/; is small and
c/\/; is large, for B={1,2,.,b}u{c,c+1,..,n}. For B of the
complementary form B={b,b+1, .., c} with b<c both of the order of
\/t_t, the heuristic suggests that d;,(Cp, Zp) is small if, and only if, (¢ —5)

is small relative to \/;

4.2. A Quantitative Heuristic

In several examples, the Z , -valued random variables T, appropriately
centered and rescaled, converge in distribution to a continuous limit X
having a density f on R. For 1llustrat10n we describe the important class
of cases in which

L=:»X. ‘ (54)
n

A local limit heuristic suggests the approximation

P(T, —n)—f(l) ' (55)
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where the sense of the approximation = is deliberately- vague. Assuming

that B is small, so that R/n — » 0, we also have S/n=>X. For 0<k <n, the
local limit heuristic gives

1 k
P(S=n——k)—nf<1 —;>,
and a Taylor expansion further simplifies this to
1 k.,
ps=n-k=1(70-2r1-)), (56)

Using these approximations in the total variation formula (33) gives

dr(Co,Zp)=1 3. PR=R)[1-Z = PR )
k=0 n

=1 o T ) =T R (1)
=5 2 P(R=K) |1 }

k>0 - o)
=l|f’(1—’)iﬂR_l :
2 fQ1) n

However this approximation ignores the essential feature dry(u, v)=
i |u~—v|, where the signed measure u—v has net mass zero. Thus, even
though f(1)/n is the natural approximation for P(T, =n), it is important to
use a more complicated heuristic in which the approximation for T is

the convolution of the distribution of R and our approximation for the
distribution of S. Thus

P(T=n)= 2 P(R=k)P(S=n—k)

k=0
k
P(R=k H—-f(1-
2 3 pr=h (10— 701-))
ER
- (rw-SEra-). (57)

Using this approximation

12 P
dry(Chp, ZB)=§ Y P(R=k)|1- _.%S(Tn_;c)
k=0 =

.1 ] e -k
=32, PR=B |1 = =y e R (1-)

+=P(R>n)
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n_'(k—ER) f'(1—)
f)—n"'ERf(1-)

1
E,E P(R=k)
iL |lf(1=) E|R- IIERI If(l) nT'ERf'(1—)

1A=
2n f(1)

As a plausibility check, we note that the alternative approximation
using P(T,=n)=(1/n)f(1) and S=T—ER, so that P(S=n—k)=
P(T=n+ER—-k)=(1/n) f(1 — (k—ER)/n), also satisfies the convolu-
tional property, and leads to the same first order result as (58).

One possible specific interpretation of the approximation in (58) would
be the following pair of statements, giving a decay rate for d,, for fixed
B, as n— o0.

If T,/n=X, and X has density f with f'(1—)+#0, then

E|R—ER| ’ (58)

LIS A-)EIR—ER]

dTV(CB’ ZB)~2 f(l) n (59)
If T,/n=X, and X has density f with f'(1—-)=0, then
|
dry(CaZs)=0 (). (60)

For the more general case in which there are constants s, such that

T,—n
s"

= X,

where X has density f, these statements are to be replaced by

. 11f(0=) E|R—ER|
dry(C 23) ~ 5 L=,

if £(0=)%0, (61)
and
dnCoZ=o(7). if £O-)=0. (@)

For partitions of an integer and for partitions of a set, a good choice for
s, is the standard deviation ¢, with asymptotics-given by (49) and (160),
and X is normally distributed, so that (62) should apply.
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Observe that for two fixed sets B, B’ the approximation in (59) or (61)
has a corollary the statement that if f/'(0— ) #0 then as n — oo,
dry(Cp Z5) _ EIRy—ERs|
drv(Cp,Zp) E|Rp—ERp|

By the Cauchy-Schwarz inequality, E|Rz;—ERpz| <05, so another
rigorous version of the heuristic in (58) would be the statement that as
n— o, dr (Cs, Zg)= O(0/c,) uniformly in B; that is,

lim sup (dT,,(CB, ZB)g'i><oo. (63)

n— o Bc[n] B

Note that (63) is not embarrassed by the largest possible B, namely
B=[n], since d;,(-, )< 1.

4.3, Examples with a Limit Process: The Logarithmic Class

The previous section suggests that the limit law of T, /n plays a key role
in analyzing the accuracy of the approximation of certain combinatorial
structures by independent processes. The logarithmic class consists of those
assemblies which satisfy (41), and those multisets and selections which
satisfy (45). All of these, with the appropriate constant choice of x, satisfy

iEZ,» K, iP(Z,=1)>«k for some k>0. (64)

Lemma 2 below shows that, for Z; satisfying (64), and T,=Z,+
2Z,+ --- +nZ,, the limit distribution of T,/n depends only on the
parameter K.

Let d,, be the L, Wasserstein distance between distributions, which can
be defined, in the same spirit as (27), by

dy(X,Y)= min E|X-7Y].

couplings -

For Z *-valued random variables, dy, is easily computed via

dy(X, V)= Y |P(X=i)—-P(Y=i),
izl
and when X is stochastically larger than Y, so that the absolute values
above do nothing, this further simplifies to d,(X, Y)=EX — EY. Note that
for integer-valued random values, dy, = dp).

Let Z; be Bernoulli with parameter «/i A 1, and let Z* be Poisson with
mean k/i. It is easy to check that the condition (64) is equivalent to
dwl(Z,, Z;)=0(1/i). Since dw(Z2, Z*)=o0(1/i), the triangle inequality
implies that the condition (64) is also equivalent to dy.(Z;, Z}*) = o(1/i).

607/104/1-8
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For the class of assemblies that satisfy the condition (41), we use x=y !

and EZ,=m,x'/i!, so that EZ,~ k/i. Lemma 1 applies directly; for Poisson
random variables (64) is equivalent to EZ,~ k/i, so Lemma 2 also applies.
For multisets and selections satisfying the hypothesis (45), it is easy to
show that (64) holds.

LEMMA 1. If Z; are independent Poisson random variables with EZ;=
A;~K[j for some constant k>0, and T,=37_ | jZ;, then

n'T,=X, n-ow (65)

and X, has Laplace transform

1
Y(s)= [Ee‘”"‘=exp<—xj (1—e“")é>. . (66)
0 x
Proof. - By direct calculation,

logEe = Tn=— % (1—e7HM)
j=1

=-y ;(l—e‘j‘/”)+ Y (;—f-aj) (1—e=rm),
j=1 j=1

Clearly, the first term on the right converges to —x [g (1 —e™)(dx/x).
That the second term is o(1) follows by observing that 1,—«/j=o0(j~"),
and comparing to the first sum. ||

LEMMA 2. For i=1,2,.., let Z, be nonnegative integer-valued random
variables satisfying the conditions in (64). If T,=37_,jZ;, then ’
n'T,=X,, n-o : (67)
and X, has the Laplace transform given in (66).

Proof. Construct independent Bernoulli random variables Z,=Z; A 1.
Clearly Z,< Z, and P(Z,=1)<EZ,<EZ,. It follows that iEZ, > k. There-
fore

i|EZ,—EZ,|=i{EZ,—EZ)—0.
Hence if T,=Z,+ --- +nZ,,
T, T,

n n

E -0. | (68)

It remains to show that n~'T, = X,.
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Fori=1,2, .., let Z} be independent Poisson random variables satisfying
p;=EZ*=EZ,~ x/i. We may construct Z* in such a way that for each i

E |Zi_Z;"| =dW(Zi’ Z?‘),

where dj denotes Wasserstein L, distance. But if X is Bernoulli with
parameter p and Y is Poisson with parameter p, then a simple calculation
shows that dy, (X, Y)=2(p—1+e~?)< p*. Hence

n'E|T,—-TX<n'Y ip?-o.
i=1
It follows that n =7, has the same limit law as n~'T*, which is that of X,,
by Lemma 1. |}

The random variable X, has appeared in several guises before, not least
as part of the description of the density of points in a Poisson—Dirichlet
process. See Watterson [60], Vershik and Shmidt [57], Ignatov [37], and
Griffiths [28], Ethier and Kurtz [17] and the references contained therein.
For our purposes, it is enough to record that the density g(-) of X, is
known explicitly on the interval [0, 1],

e !
= b £zg|, 69
8o =Fn " h 0z (69)
where y is Euler’s constant. From (69) follows the fact that
g(1-)
= ——=k—1 : 70)
g() (

We may now combine the previous results with (58) and (42) to rephrase
the asymptotic behavior of d; (Cp, Zp) in (59) and (60) as follows. For
any assembly satisfying (41), or for any multiset or selection satisfying (45),
we should have the following decay rates, for any fixed B, as n — oo.

In the case k #1

E|R—-ER]

1
. dry(Cp, ZB)NEIK_” (71)

In the case k=1

dy(Cpy Zp)=0 (i) (72)

For a class of examples known as the Ewens sampling formula, described
in Subsection 5.1, and for B of the form B= {1, 2, .., b}, (71) is proved in
Arratia, Stark, and Tavaré [7]. The analogous result for random map-
pings, in which x =1/2, and other assemblies that can be approximated
by the Ewens sampling formula, may also be found there. For the corre-
sponding results for multisets and selections, see Stark [55]."
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The statement- (72) has been established for random permutations by
Arratia and Tavaré [2], where it is shown inter alia that for B= {1, 2, .., b},
dr(Cg, Zg) < F(n/b), where log F(x) ~ —x log x as x — 00. For the case of
random polynomials over a finite field, Arratia, Barbour, and Tavaré [5]
established that d,, (Cp, Zg) = O(b exp(—cn/b)), where ¢ = L 1og(4/3).

Among the class of assemblies in the logarithmic class, weak convergence
(in R*) of the component counting process to the appropriate Poisson
process has been established for random permutations by Goncharov [27],
for random mappings by Kolchin [63], and for the Ewens sampling
formula by Arratia, Barbour, and Tavaré [4]. For multisets in the
logarithmic class, this has been established for random polynomials by
Diaconis, McGrath, and Pitman [15] and Arratia, Barbour, and Tavaré
[5], and for random mapping patterns by Mutafciev [47].

5. NON-UNIQUENESS IN THE CHOICE OF THE PARAMETER x

An appropriate choice of x = x(n) for good approximation is not unique.

An obvious candidate is that x which maximizes P(T, = n), which is also
that x for which ET,=n. This can be seen by differentiating log P(T,=n)
in formulas (24)-(26) and comparing to ET, from formulas (11)—(13); at
the general level this is the observation that P(T=¢) in (19) is maximized
by that x for which ET =+ Nevertheless, the obv1ous candldate is not
always the best one.

We discuss here two qualitatively different examples: the loganthmlc
class, and partitions of a set.

5.1. The Ewens Sampling Formula

The central object in the logarithmic class is the Ewens sampling formula
(ESF). This is the family of distributions with parameter x > 0 given by (6),
where the Z; are independent Poisson random variables with EZ;=«/i, or
more generally, with

M=EZ,=", . ‘ (73)

the conditional distribution being unaffected by the choice of x> 0. For
k=1, the ESF is the distribution of cycle counts for a uniformly chosen
random permutation. For k # I, the ESF can be viewed as the nonuniform
measure on permutations with sampling bias proportional to x™*¥; see
Section 8 for details,. The ESF arose first -in the contéxt of population
genetics (Ewens [18]), and is given explicitly by

P(C\(n)=ay, .., Co(n)=a,)=1 (2 la,= ) HG)% (74)

Knyi=1
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The ESF corresponds to (41) with y =1 and the asymptotic relation in i
replaced by equality. It is useful in describing all assemblies, multisets, and
selections in the logarithmic class; see Arratia, Barbour and Tavaré [6] for
further details.

For irrational x the ESF cannot be realized as a umform measure on a
class of combinatorial objects. For rational x = r/s with integers r >0, s >0,
there are at least two possibilities. First, comparing (6) with EZ,=«/i, and
(11) with EZ; = m;x"/i!, for any choice x >0, we take x = 1/s to see that the
ESF is the uniform measure on the assembly with m,=r(i—1)!s°~'. One
interpretation of this is permutations on integers, enriched by coloring each
cycle with one of r possible colors, and coloring each element of each
cycle, except the smallest, with one of s colors. For a second construction,
we use a device from Stark [54]. Consider permutations of ns objects,
in which all cycle lengths must be multiples of s. Formally, this is the
assembly on ns objects, with m, = (i—1)! 1(s | i), so that (C,, C,, ..., C,;;) <
Zz,Z,,., Z,,| Z,+2Z,+ --- +nsZ,,=ns), where Z, is Poisson with
EZ,=1(s|{)/i. Since those C;, and Z, for which s does not divide i
are 1dent1cally zero, we consider C =C,, Z¥=2Z,, and T*=Z}+
2Z¥+ - +nZ¥=(1/s)(Z,+2Z,+ --- +nsZ,). We have (CF, ... C*) =
(Zy, ..., Z,’,“ | T*=n), and the Z}* are independent Poisson with EZ}* =
1/(si). Thus the distribution of (C¥(n), ..., C¥(n)) is the ESF with x=1/s.
To change this to x=r/s, we need only color each cycle with one of r
possible colors, so that m,=r(i—1)!1(s | i), EZ;=r1(s/i)/i, and EZ* =
r/(si). To summarize our second construction of the ESF with k =r/s, let
C*(n) be the number of cycles of length s/ in a random permutatlon of ns
objects, requiring that all cycle lengths be multiples of s, and assigning one
of r possible colors to each cycle.

For comparing the ESF to the unconditioned, independent process
(Z,, .., Z,) it is interesting to consider the role of varying x. The_choice
x=1 in (73), so that EZ,=«/i, yields ET,=xkn, and a,,~n\/x_/2. In
the case k # 1 the discrepancy between ET, and the goal n is a bounded
multiple of o,. This is close enough for good approximation, in the sense
that (C,(n), .., C,(n),0,..)=>(Z,, Z,,..). This, together with a O(b/n)
bound on d7.((C,(n), ..., Cs(n)), (Z,, .., Z,)) that is uniform in 1 <b<n, is
proved in Arratia, Barbour, and Tavaré [4] by exploiting a coupling based
on Feller [19]. This coupling provided even stronger information whose
utility is discussed in Arratia and Tavaré [3]. Barbour [8] showed that
the O(b/n) bound above cannot be replaced by o(b/n) for x=1, k # 1.

For the case of independent Z; which are Poisson with means varying
with n given by

- _Kk _nn=1)--(n—i+1)
EZ;—IECl(n)_i(K+n_i)---(k+n_1),
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Barbour [8] showed that d;,.((Cy(n), ..., Co(n)), (Z1, .. Z4))=O0((b/n)?),
uniformly in 1<b<n Observe that with this choice of Poisson
parameters, ET,~kn but it is not the case that (C,(n),.., C,(n)) <
zy,..2Z,| T,=n).

If we are willing to use coordinates Z,= Z,(n) whose means vary with n,
we can still have the conditional relation (6) by using x = x(n) in (73). An
appealing family of choices is given by x =exp(—c/n), since this yields for
c#0

l1—e—¢
prl—e™)
c

ET,=Y il=Y i%e“"/"~ (75)
i=1 i=1

By choosing c¢=c(x) as the solution of kx=c/(1 —e°), we can make
ET,~n, and this should provide a closer approximation than the choice
¢=0, x=1. However, an even better choice of ¢ is available, We explore
this in the next subsection.

5.2. More Accurate Approximations to the Logarithmic Class

For assemblies, multisets, and selections in the logarithmic class
discussed in Subsection 4.3, as well as for the ESF, the choice of x
proportional to exp(—c/n) is interesting. In this situation, the limit law of
T,/n depends only on the parameters k and c¢. Properties of this limit law
lead to an optimal choice for c.

The following lemma applies to assemblies that satisfy the condition
(41), and to the ESF by taking m;,=xk(i—1)!, y =1, the m; not necessarily
being integers.

LEMMA 3. Assume that m;>0 satisfies m;/i! ~ ky'/i for constants y > 1,
k>0, and set x=e~""y~! for constant ce R. If Z;= Z,(n) are independent
Poisson random variables with EZ;=nm;x’/j!, and T,=37_, jZ;, then

n'T,=X,, n-oow (76)

and X . . has Laplace transform

¥ (s)=Ee~ = exp (—x [a-emt= dx). (77

Proof. As in Lemmal, calculate the limit of the log Laplace
transform. || ‘

Next we prove that the same limit law holds for multisets or selections
satisfying the hypothesis (45). )



INDEPENDENT PROCESS APPROXIMATIONS 117

LEMMA 4. Assume that the multiset (or selection) satisfies (45):
m;~ky'fi for constants y21, k>0, and set x=e~ "y~ If Z,=Z;(n)
are independent negative binomial random variables with parameters m;
and x’ (respectively, binomial with parameters m; and x’/(1+x’)) and
T,=%7_,JZ;, then

n'\T,=X, . nowo (78)

and X, . has the Laplace transform given in (77).
Remark. For the case of multisets, we assume that x < 1.

Proof. Observe first that in either case, if = o0(n), then n='ET,, -0,
so that n™'Ty, =0 as n— co. Let Zj be independent Poisson random
variables with EZ,=m,x/, and write T, =%"_,jZ;,, T,,=3"_,. jZ, We
show that for b=o(n), T,,/n and T,,/n have the same limit law, which
complete the proof since by Lemma 3, 7,,,/n= X, .. We will use the nota-
tion NB, Po, and Geom to denote the negative binomial, Poisson, and
geometric distributions ‘with the indicated parameters.

For the multiset case, notice that

dTV(Tbn’ Tbn)sdTV((ZlH—l’ (] Zn)9 (Zb+1’ (] Z,,))
<Y dnlZ,Z).
b+ 14

To estimate each summand, we have

drv(Z;, Z/) =dyy (NB(m;, x), Po(mjxj))

<m;dr, (Geom(x’), Po(x’))
< 2m;x%. ' - ' (79)
The bound in (79) follows from the fact that dr,(Geom(p), Be(p))=p>
and dry (Be(p), Po(p))=p(1 ~e~?)<p? so that dr,(Geom(p), Po(p)) <

dr,(Geom(p), Be(p)) + d(Be(p), Po(p)) <2 p? a result we apply with
p=x’. Hence

dry Ty, Tbn)<2 Z (mjxj)xj=0(}’—b/b)-
j=b+1

Choosing b — o0, b=o0(n) completes the prbof for multisets.
For the selection case, (79) may be replaced by

dr(Z,, 2;) < mydyy(Be(x//(1 +x7)), Po(x')) < 2m,x%.
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The last estimate following from the observation that d, (Be(p/(1+ p)),

Be(p))=p?/(1 + p), so that dr,(Be(p/(1+p)), Po(p)) < dry(Be(p/(1 +p)),
Be(p)) + dry(Be(p), Po(p)) <2p* which we apply with p=x’/. This
completes the proof. ||

The random variable X, of Subsect10n43 is the special case ¢=0 of
X, .. Further, for ¢ #0,

[EX,c;c=x1_e
c
and
1-(1 —e
Vaer=rc—(—:2—c—)e——.

The density g, of X, . may be found from the density g of X, by obsérving
that the log Laplace transforms, given by (66) and (77), are related by

Y(c+s)

bl =50

so that

g(z)=e"“g(2)(c), z20.
In particular, from (69),

e—yxe—czzx— 1
gC(z)=T)|p(c)_’ 0<zg1. (80)

From (80) the value of ¢ that maximizes the density g.(z) for fixed
ze [0, 1] is the ¢ that maximizes —cz —log ¥(c), just as suggested by large
deviation theory. This c¢ is the solution of the equation

cz=x(l—e~")

Using z=1, we see from the heuristic (55) that choosing ¢ to be the
solution of ¢=«x(1—e~°) asymptotically maximizes P(T,=n); and from
(75), this also makes ET, ~ n.

However, the heuristic in (59) and (60) suggests that better approxima-
tion should follow from choosing ¢ so that g.(1—)=0. From (80) and
(70), we get

g'(1-)
==——=x—1. 1
‘= O F 1 ‘. (81)



INDEPENDENT PROCESS APPROXIMATIONS 119

For this choice of ¢ we have g/(1—)=0, and
g:(1-)
g.(1)

A second order approximation in the spirit of Section 4 then leads us to the
following heuristic: for any fixed B, in the case x # 1

=1-k | (82)

3
dry(Cp, Lp) =< ;17; (83)
In the case k=1
1
dry(Ca Z5)=0(53). (84)

For the case B=[b]={1,2,.., b}, extensive numerical computations
using the recurrence methods described in Section 9 support these conjec-
tures for several of the combinatorial examples discussed earlier. In these
cases, the bound in (83) is of order (b/n). Finding the asymptotic form of
this rate seems to be a much harder problem, since it seems to depend
heavily on the value of x.

5.3. Further Examples

The class of partitions of a set provides another example to show that
the choice of x for good approximation is partly a matter of taste. In this
example, m;= 1, so that

"oimxt -
_igl i! g

One choice of x would be the exact solution x* of the equation ET, =n,
but this choice is poor since the:definition of x* is complicated. A second
choice which is more usable is to take x = x’, the solution of the equation
xe* =n. This is based on the observation that ET', ~ xe*, provided x = o(n).
The solution x’ has the form (cf. de Bruijn [11, p. 26])

loglogn 1 (log log n>2 loglogn
3 O\ oz, /-
logn 2\ logn log*n

x'=logn—loglogn+

For set partitions, with either x* or x’ in the role of x, we have
02~ x%*~nlogn, and we can check that |n—ET,|=0(/nlogn) is
satisfied using x = x’. This corresponds to checking the condition in (37).
Comparing the condition ET, ~ n with the condition that n—ET, = O(o,)
required by (37), we see that in the logarithmic class the former is too
restrictive while for set partitions it is not restrictive enough.
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6. REFINING THE COMBINATORIAL AND ‘INDEPENDENT PROCESSES

6.1. Refining and Conditioning

Although the refinements considered in this section are complicated in
notation, the ingredients—including geometric and Bernoulli random
variables and the counting formulas (89)-(92)—are simpler than their
unrefined counterparts.

The dependent random variables C, = C,(n), which count the number of
components of weight / in a randomly selected object of total weight n,
may be refined as

c=3 D,

j=1

Here we suppose that the m; possible structures of weight i have been
labelled 1, 2, .., m;, and D;= D (n) counts the number of occurrences of
the jth object of weight i, The 1ndependent random variable Z, can also be
refined, as

where the Y; are mutually independent, and for each i, Y;, Y;3, ., ¥y,
are 1dent1cally distributed. For assemblies, multisets, and selections,
respectively, the distribution of Y; is Poisson (x'/i!) for x>0, geometric
(x") for 0<x<1, or Bernoulli (x’/(l +x%) for x>0. If the choice of
parameter x is taken as a function of », then one can view Y as Y;(n). For
assemblies, with x >0,

ey X / ')" _
P(Y;=k)=exp(— x'il) ———— k=0,1,... (85)
For multisets, with 0 <x < 1,
P(Y;=k)=(1 —x') x*, k=0,1,.., . - (86)
whereas for selections, with x>0, we have -
P(Y —k)—;l(k—0)+—)i—1(k—1) (87)
T X L+xt 7

For the full refined processes corresponding to a random object of size
n we denote the combinatorial process by

D(n)=(D;(n), 1 <i<n 1<j<m),
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and the independent process by
' Y(n)=(Y,, 1<i<n 1<j<m,).

The weighted sum T,=37iZ, is of course a weighted sum of the refined
independent Y’s, since

T,= Z Z i¥y.

i=1 j=1

THEOREM 4. For assemblies, multisets, and selections, if P(T,=n}>0,
then the refined combinatorial process, for a uniformly chosen object of
weight n, is equal in distribution to the independent process Y(n), conditioned
on the event {T,=n}, that is,

D(n) £ (¥(n) | T,=n).

Proof. Just as (6) is a special case of Theorem 1 with ¢=n, so is this.
Imagine first the special case of (6) with each m;=1, and then replicate
m-fold the index i and its corresponding function g, and normalizing
constant ¢;. The case m; =0 for some i is allowed. We have index set

I={cx=(i,j):1<i<n,1<j<mi} (88)

and weight function w given by w(a)=1i for a=(i,j)e L

The reader should be convinced by now, but for the record, here are the
details. For b=(b(a)),.,€Z",, write b-w=3,w(a)b(a). Consider the
number R(n,b) of objects of total weight b-w=nr, having b,=b(a)
components of type «, for ae I. For assemblies, the refined generalization
of Cauchy’s formula is that

R(n, b)=|{assemblies on [#]:D=b}|
1

=1(b.w=n)n!£llm~)i, (89)
where i = w(a)= the first coordinate of a. For multisets,
R(n, b) = | {multisets of weight n: D =b}|
=1(b-w=n), (90)

while for selections,

R(n, b) = | {selections of weight n: D =b}|

»=1(b-w=n)11:](bla). (91)
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These examples have the form

R(n,b)=|{D=b}|=1(b-w=n) f(n) [] .(b,), (92)
ael
with f{n)=n! for assemblies and f(n) =1 for multisets and selections. With
p(n) given by (4), we have the refined analysis of the total number of
structures of weight n:

p(m)= )} R(nb). 93)
beZ,
Picking an object of weight n uniformly defines the refined combinatorial
distribution

R(n,b) _

fin)
F) [Tau(bn). (94)

n)y—

pn) 7,
Observe that with multisets, g, (k)=1 for ke Z ,; with selections g, (k)=
(1)=1(k=0 or 1); and with assemblies, if a = (i, j), then g,(k) = (1/i!)*/k!,
for ke Z .. Now apply Theorem 1 with D, in the role of C;, Y;= ¥, in the
role of Z,, and t=n. |

P(D(n)=b)= 1(b-w=

Remark. Tt would be reasonable to consider (89) through (92) as the
basic counting formulas, with (1) through (3) as corollaries derived by
summing, and to consider the Poisson, geometric, and Bernoulli distribu-
tions in (86) as the basic distributions, with the Poisson, negative binomial,
and binomial distribution in (11) through (13) derived by convolution.

6.2. Total Variation Distance

Since the refined combinatorial process D(n) and the refined independent
process Y(n) are related by conditioning on the value of a weighted sum of
the Y’s, Theorem 3 applies. For K< I, where I is given by (88), write D4
and Y for our refined processes, restricted to indices in K. Write

Rx= )Y w()Y,, Sx= Y w@)Y,,

ae K ael—K
so that T=T,= Ry + Sk.
THEOREM 5.
dry(Dy, Yg)=dry ((Rx | T=n), R). (95)

Proof. This is a special case of Theorem 3, with the independent
process Y(n)=Y, playing the role of Z, and D(n) =D, playing the role
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of C,. Theor%m 4 is used to verify that the hypothesis (31) is satisfied, in
the form D, = (Y,| T'=n). |

For the special case where B< {1, ..,n} and K= {a=(i,j)el:ic B},
denote the restriction of the refined combinatorial process, restricted to
sizes in B, by Dgz. =Dy, so that

DB‘E(‘D"I" iEB, lsjsml),

and similarly define Yg.. In this special case, Rx=Rz=3,.piZ; is
the weighted sum, restricted to B, for the unrefined process, so (95)
reduces to

dTV(DB" YFB*) = dTV((RB | T= n), RB)- (96)

Furthermore, by Theorem3 applied to the unrefined case, with
I={1,..,n} and w(i)=i, we see that d,((Rz| T=n), Rp) is equal to
dry(Cp, Zp).

We have here a most striking example of the situation analyzed in
Theorem 2, where taking functionals doesn’t change a total variation
distance. Namely, there is a functional g: Z’, — Z”,, which “unrefines,” and
the functional h:Z% — Z, discussed in our second proof of Theorem 3,
such that

gD5)=Cps, g(Yp)=Zs, h(Cp) = (Ry|T=n), and h(Zz)=Rs,
so that, a priori via (28),
dry(Dpe, Yg) 2dry(Cp, L) 2dry((Rp| T=n), Rp). (97)

Perhaps the result in (96), which shows that equality holds throughout
(97), is surprising.

7. CONDITIONING ON EVENTS OF MODERATE PROBABILITY

We consider random combinatorial structures conditioned on some event.
Given that we have a good approximation by another process, this other
process, conditioned on the same event, may yield a good approximation
to the conditioned combinatorial structure. The conditioning event must
have moderate probability, large relative to the original approximation
error. In contrast, if the conditioning event is very unlikely then the
approximating process must also be changed, as discussed in Section 8 on
large deviations.
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7.1. Bounds for Conditioned Structures

In this subsection, we consider bounds on total variation distance that
are inherited from an existing approximation, after additional conditioning
is applied.

TuEOREM 6. Let ASBc[n], and let h:Z% — {0,1} be measurable
with respect to coordinates in A. Let Z g, and C g be arbitrary processes with
values in Z%, and let Z, and C, denote their respective restrictions to
coordinates in A. Let

C3 2 (Cy| h(Cp)=1),
and
4

Z} = (Zg| h(Zp)=1).

Write p = P(h(Zp)=1), q = P(h(Cp)=1), dg = dry(Cp, Zp), d, =
dry(C4, Z,), and assume that p>0 and q>0. Then

1 q| dg
* * <= —_= —-
arics,zp<z|1-4+2 9®)
'sl'(fl-hds) 99)
p\2
Szﬁ. (100)
2p

Proof. The second to last inequality follows from the relation
|p— q| <d, and is useful when this is the extent of our ability to estimate g.
The last inequality follows simply from the fact that d, <dp. To establish
the first inequality, we have

1
drV(CE,Z§)=5 Y IP(Ci=a)—P(Z}=a)
aeZ,
=1 Y P(CB=8)_‘P(ZB=a)
2 =1 q p
1 11 P(Cp=a)—P(Zz=a)
== P(Cz= ———
2.;;.(.2)-1\ (€5 a)(q p>+ P
1]1 1
L= |--- P(Cyz=
<2 q9 p l:hg;-l ( o a)

+1 Y IP(Cy=a)-P(Z,=a)

2p ah(a)=1
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11 1 1
=22 g+— [P(Cz=a)— P(Zz=a)]
2 9 p 4 2pa:h(az)=1 ’ ?
1|t 1 1
L=|=== — P(Cg=a)—P(Zyz=

217 Pq+2pgl (Co=2)—P(Z;=2)
LY PO | BT

2 plp

Remark. While the theorem above uses the notation Cp and Zj, to
suggest applications where one process is obtained from an independent
process by conditioning, no such structure is required. An arbitrary discrete
space S, together with an arbitrary functional 4:S— {0,1}, may be
encoded in terms of S=2%, with A={1} and B={1,2}, so that h
depends only on the first coordinate. Thus Theorem 6 applies to discrete
random objects in general.

7.2. Examples

7.2.1. Random Permutations

In this case, the Z, are independent Poisson distributed random
variables, with 4,=EZ,=1/i. In Arratia and Tavaré [2] it is proved that
for 1<b<n, the total variation distance d,(n) between (C,(n), ..., C,(n))
and (Z,, .., Z,) satisfies d,(n) < F(n/b) where

F(x)= 27zm + 3 <£) —x’ with m=|x|
1)' e

as x—o0. To get an approximation result for derangements, we use
the functional 4 having h((ay, .., a,))=1(a;=0), with 4={1} and
B=1{1,2, .., b}. This makes C} the process counting cycles of size at most
b in a randomly chosen derangement, and Z}=(Z¥, Z%,.. Z,,) =

©, Z,, .., Z,). The total variation distance d;*(n) between Cj% and 7z}
satisfies d*(n) < (3/2) eF(n/b), simply by using (100).

Changing random permutations to random derangements is a special
case of conditioning on some fixed conditions of the form C;(n)=c,, i€ A4,
for given constants c¢;, with A< B< {1,2,.., b}. In this situation, all the
Z* are mutually independent, Z*=c, for ic A, and for i¢ A, Z¥=42Z, is
Poisson with mean 1/i Here, Theorem 6 yields the bound d}(n)<
3/(2p) F(n/b), where p=P(Z,=c;Vie A). Theorem 3 in Arratia and Tavaré
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[2] gives a different upper bound, namely d*(n)< F((n—s)/b)+
2be((n— s)/(be))""~*¥% where s=3,.,ic;. Either of these two upper
bounds may be smaller, depending on the situation given by 4, b, and
the c,.

For a more complicated conditioning in which the Z}* are not mutually
independent, consider random permutations on 7z objects conditional on
having at least one cycle of length two or three. Here, Z¥ and Z¥ are
dependent, although the pair (Z¥, Z#) and the variables Z}, Z}, Z¥, ...
are mutually independent. With 4={2,3}<B={1,2,..,b}, we have
p=P(Z,+Z;>0)=1—¢" and d¥(n)<3/(2p) F(n/b). Thus, for
example, with b=3, the probability that a random permutation of »
objects is a derangement, given that C,(n) + C;(n) > 0, can be approximated
by P(Z¥=0)=1/e, with error at most 3/(2p) F(n/3). Similarly, the
probability that a random permutation of n objects has a cycle of length 2,
given that C,(n)+ Ci;(n)>0, can be approximated by P(Z¥>0)=
P(Z,>0|2Z,+Z,>0)=(1—e""?)/(1 —e~%5), with error again at most
3/(2p) F(n/3).

The next example shows how to approximate easily the small component
counts for 2-regular graphs by exploiting a decoupling result for the Ewens
sampling formula with parameter x = 1/2.

7.2.2. 2-Regular Graphs

The combinatorial structure known as “2-regular graphs” is the assembly
in which components are undirected cycles on three or more points, so that

m=LG—1)11{i>3). (102)

Let C*(n) be the number of components of size i in a random 2-regular
graph on n points. A process that corresponds to this, with the condition
1{i>3} removed, is the Ewens sampling formula with parameter x = 1/2
described in Subsection S5.1. Observe that

C*(n) £ (C(n) | Cy(n) = Cy(n)=0).
The bound

2b
dTV((Cl’ ves Cb): (le sey Zb)) <'n—

is known from results of Arratia, Barbour, and Tavaré [4]. We are
interested in how this translates into a bound on

db* = dTV((C;’ seey C:)’ (Z3’ A2 Zb))
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With 4= {1,2}, B={1,2, .., b}, d,<4/n, dy<2bjn, p=P(Z,=Z,=0)
=e~ ¥4 the inequality in (99) guarantees that

1/d,
< (3 +4s)

con(242)

n n

_ 261
—_—

For an example that shows the conditioning event can have probability
tending to zero, consider 2-regular graphs conditioned on having no cycles
of size less than or equal to ¢ = t(n) > 2. The previous example is the special
case t=2. For b>t, we have

(C*1r o CF) = (Cryty o Cp | Cy= -+ = C,=0).
Now d, < 2t/n, dy <2b/n, and

H

p=PZ,=--- =Z,=0)=exp<——%(1+ +1/t)>>

T~
3

s0 (99) establishes that
t/d |
ar<y(5+a)

t 2b

<\Jet (n += ),
This provides a useful bound provided that \/E b/n is small. Note that both
¢t and b may grow with », as long as ¢ < b. For example, conditional on no
cycles of length less than or equal to t=|n**~¢] this approximation
successfully describes the distribution of the £ smallest cycles, for fixed & as
n— oo, by using 6=n?? See Arratia and Tavaré [3, Theorem 7] for
related details.

8. LARGE DEVIATION THEORY

8.1. Biasing the Combinatorial and Independent Processes

A guiding principle of large deviation theory is that unlikely events of the
form {U>u} or {U<u} or {U=u}, where the target u is far from EU,
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can be studied by changing the measure P to another measure P4 defined
by
dP, ¢Y
—8__- 1
dP E@Y (103)
Observe that for § =1, the new measure P, coincides with the original
measure P, regardless of the choice of U. The parameter 6 is chosen so
that the average value of U under the new measure is u, ie., E,U=u.
In the literature on large deviations and statistical mechanics (cf. Ellis
[16]), the notation is usually § =e”, and our normalizing factor EQY is
expressed as the Laplace transform of the P-distribution of U, parameterized
by B.
For the case of a combinatorial process C(n)=(C,(n), ..., C,(n)), with
the total number of components

K=K,=Cy(n)+ - + C,(n)

in the role of U, this says to change from the measure P, which makes
all possible structures equally likely, to the measure P,, which selects a
structure with bias proportional to @#<°™Pere®s The Ewens sampling
formula discussed in Subsection 5.1 is exactly this in the case of random
permutations, with x playing the role of 6. This may easily be verified by
comparing (74) to Cauchy’s formula, the special case k=1 of (74), in
which the equality of normalizing constants, with Ex*"=1x,,, expresses a
well known identity for Stirling numbers of the first kind.

Theorem 1 showed that many a combinatorial process is equal in
distribution to a process of independent random variables, conditioned on
the value of a weighted sum. The next theorem asserts that this form is
preserved by the change of measure from large deviation theory, provided
that U is also a weighted sum.

As in the discussion before Theorem 1, the weight function u, just like
the weight function w, can take values in R or R% In case the weights u
and hence the random variable U, takes values in R? with d> 1, we take
6>0 to mean that 8= (0,, .., 8,) € (0, ©)% and with U= (U, .., U,), 6
represents the product 6} ---6Y4

THEOREM 7. Let I be a finite set, and for ael, let C, and Z,
be Z, -valued random variables. Let w=(w(a)),c; and u=(u(a)),, be
deterministic weight functions on I, with real values for u, let T=w-Z,=
Saerw(@) Z,, and let U=u-C,. Let P be a probability measure and t be a
constant such that, under P the Z, are mutually independent, P(T=t)>0,
and C, (Z;,| T=1t). Let 0>0 be any constant such that the random
variable Y=0""%" has EY< 0. Let Py, restricted to the sigma-field
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generated by C,, be given by (103). Let Py, restricted to the sigma-field
generated by Z,, be given by

dP,_ ¥
dP EY’
so that the Z, are mutually independent under P, with

0u(rz)k

Po(Z,=k)= P(Z,=k), k=0 (104)

Ou(a) A

Then under P, C, (Z,| T=t), that is,
Po(C,=2)=Py(Z,=a | T=1), (105)
foraeZ’.
Proof. ForaeZ’,
Py(C,=a)=(E6")~! 6" "P(C,=a)
=(E6Y)"' 6" *P(Z,=a | T=1)
=(E6Y) 'P(T=1)"'0"*1(w-a=t)P(Z,=a). (106)
Now
Po(Z,=2a)=(EO" Z)~! 9" *P(Z,=a)
so that
Po(Z,=a | T=1)=(E6* Z) "' Py(T=1t)""'0"*1(w-a=t)P(Z,=a).
(107)
Comparing (106) and (107), we see both expressions are probability
densities on Z’, which are proportional to the same function of a, and
hence they are equal. From this it also follows that the normalizing
constants are equal, which is written below with the combinatorial

generating function on the left, and the three factors determined by
independent random variables on the right:

Po(T=1)

U=[Eu~Z,
EOU=EH TR

1 (108)

For the case U=XK,, the total number of components, the P, measure
corresponds to the following generalization of (11) through (13). For
assemblies, multisets, or selections, chosen with probability proportional to
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@#* components  C(n) £ (Zyy, .. Z,)| Z,+2Z,+ --- +nZ, =n) where the Z,
are mutually independent. With 8, x > 0, for assemblies we have

i

Z,is Poisson ('"fx), (109)

whereas for multisets we require x <1, fx <1 and then
Z, is negative binomial (m,, 6x°).
Finally, for selections

Z, is binomial (m,-, 1%%)
In the general case, where U=u-C(n) is a weighted sum of component
counts, so that the selection bias is 8" €™, each factor 8 in (109) above is
replaced by §“”. Furthermore, we observe that Theorems 3, 4, and 5 apply
to P, in place of P. For the refinements in Section 6, for assemblies, multi-
sets, and selections respectively, the distribution of Y is Poisson (8*x'/i!),

Geometric (8“9x%), or Bernoulli (8““x//(1 + 8“9x%)).
An example where such a bias is well known is the random graph model
%, ,; see Bollobas [10]. This corresponds to picking a labelled graph on n
vertices, where each of the ‘potential edges is independently taken with

probability p; the unbiased case with all 2(2) graphs equally likely is given
by p=1/2. We need something like the refined setup of Section 6 to be able
to keep track of components in terms of the number of edges in addition
to the number of vertices. Using the full refinement of Section 6, D; counts
the number of components on i vertices having the jth possible structure,
for j=1, .., m;, in some fixed enumeration of these. The weight function
should be u(i, j) = #edges in the jth possible structure on i vertices. With
0 =p/(1—p), the P, law of D(n) is a description of 4, ,. A more natural
refinement for this example, intermediate between C and D, would be the
process A with A, =3, i -« Dy, the number of components with i ver-
tices and k edges, for k=i—1, .., (;). As in (96) and (97), the total varia-
tion distances are insensitive to the amount of refining. Presumably there
are interesting results about random graphs that could easily be deduced
from estimates of the total variation distance in Theorem 5.

One form of the general large deviation heuristic is that for a process C,
conditioned on the event {U>u} where U is a functional of the process
and u> EU, the P-law of the conditioned process is nicely approximated
by the Py,-law of C, where 8 is chosen so that E,U =u. We are interested
in the special case where the functional U is a weighted sum, and the
distribution of C under P is that of an independent process Z conditioned
on the value of another weighted sum 7. In this case, Theorem 3 yields
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a direct quantitative handle on the quality of approximation by the
Pg-distribution of the independent process, provided we condition on the
event {U=u} instead of the event {U>u}.

THEOREM 8. Assume the hypotheses and notation of Theorems 3 and 7
combined. For B I write Ug=3, . gu(2) Z,, so that U;=u-Z, Write %,
for distributions governed by P, so that the conclusion of Theorem T may be
written

L(C))=L(Z,| T=1),
and Theorem 3 states that for B< I
dry(%o(Cp), Zo(Zp)) =dry (Ze(Rp | T=1), y(R5)). (110)

Assume that u is such that P(U = u)> 0. Then under the further conditioning
on U=u,

drv(L(Cs | U=u), L5(Zg))
=dp (Ly((Up, Rp) | Uy=u, T=1), £((Up, Rp)))-  (111)
Proof. Observe first that .
L(C I U=u)=%(C,| U=u), (112)

so that it suffices to prove (111) with the subscript 8 appearing on all four
distributions, i.e.,

dry(ZLe(Ce | U=u), Z5(Zy))
=dr(L((Up, Rp) | Uy=u, T=1), £,((Up, Rp))).  (113)

Observe next that this is a special case of Theorem 3, but with two-compo-
nent weights w*(a) = (u(«), w(a)) in the role of w(x). For example, in the
usual combinatorial case, with I=[n] and w(i) =i, and further specialized
to U= K, = the total number of components, so that u(i) =1, we have that
w* takes values in R? with w*(i)=(1,i). |I

Discussion. The proof of the previous theorem helps make it clear that
the free parameter x, such that #((Z,, .., Z,) | T,=n) does not vary with
x, is analogous to the parameter 6, such that relation (112) holds. With this
perspective, the discussion of an appropriate choice of x in Section 4 and
Subsection 5.2 is simply giving details in some special cases of the general
large deviation heuristic. Note that T, is a sufficient statistic for x, while U
is a sufficient statistic for 6.

There are three distributions involved in the discussion above: the first
is Z(C;| U=u), corresponding to a combinatorial distribution condi-
tioned on the value of a weighted sum ‘U, the second is %,(C,), which is
a biased version of the combinatorial distribution, and the third is %(Z,),
which governs an independent process. Theorem 3, used with Theorem 7,
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compares the second and third of these; Theorem 8 above compares the
first and third of these; and the following theorem completes the triangle,
by comparing the first and second distributions.

THEOREM 9. ' In the setup of Theorem 8, for Bc I,
dry(L(Cp | U=u), Z4(Cp))
=dry(L((Ug, Rp) | Uy=u, T=1), £((Up, Rp) | T=1)).  (114)

Proof. By Theorem 7, together with (112), the left side of (114) is equal
to dry(Ly(Zg| Ur=u, T=1), %(Zy| T=1)). We modify the second proof
of Theorem 3 as follows: replace P by Py, use two-component weights,
replace the original conditioning T'=t by U,=w, and then further
condition on {T=t}. Explicitly, the functional # on Z% defined by
h(a)=Y,.5a(a){u(a), w(a)) is a sufficient statistic, and the sign of
PZz=a|U;=u,T=1t)—PyZy=a|T=1t) is equal -to the sign of
Po((Ug, Rg)=h(a) | U;=u, T=1t)—Py((Ug, Rzg)=h(a)| T=1), ie., the
sign depends on a only through the value of A(a). |

Observe that Theorem 8 contains Theorem 3 as a special case, by taking
weights u(«) =0 and target u =0, so that P, =P and the extra conditioning
event {U=u} has probability one.

8.2. Heuristics for Good Approximation of Conditioned Combinatorial
Structures

The following applies to weighted sums U in general, but to be concrete
we present the special case U=K,. Let K=K, be the total number of
components of some assembly, multiset, or selection of total weight n,
and let some deterministic target k = k(n) be given. The goal is to describe
an independent process to approximate C(n), conditioned on the event
{K>k}, in case k is large compared to EK; or conditioned on the event
{K<k}, in the opposite case; or more simply, conditioned on the event
{K=k}. We accomplish this by picking the frec parameters § and x in (109)
so that simultaneousty E(Z, + --- + Z,) is close to k and ET, is close to n.

For example, to study random permutations on n objects, conditional on
having at least 5logn cycles, or conditional on having exactly | Slogn |
cycles, or conditional on having at most 0.3 log n cycles, we propose using
x=1, and 8=5 or 0.3. The independent process with this choice of
parameter should be a good approximation for both the conditioned
random permutations and for the Ewens sampling formula. As a corollary,
the Ewens sampling formula should be a good approximation for the
conditioned permutations; see Arratia, Barbour, and Tovaré [6].

- For assemblies, multisets; and selections in the logarithmic class discussed
in Subsection 4.3, in which EZ;~ /i, biasing by 6% yields E,Z, ~ x0/i, so
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that the Ewens sampling formula with parameter 6 is a useful approxima-
tion for the biased measures. In particular, the heuristics (71) and (72)
should apply in the following form: for fixed B< [n], in the case k6 # 1,

| B g |Rg—EgR
dr(Ca), Z(Zg)~ 3 I~ 1) L Re= B Rel g5y
in the case k=1,
1
A LCa), ZiZa) = 5). (116)

For random permutations, for which k=1, with B={1,2,.., b} the
bound

b
dry(Lo(Cp)s Lo(Z5)) < () p

was established via a particular coupling in Arratia, Barbour, and Tavaré
[4], and the asymptotic relation (115) has been established by Arratia,
Stark, and Tavaré [7].

To show how the parameters x and 6 may interact, we consider random
permutations with k(n) further away from log n. Assume that k(n) is given
such that as n — oo,

k/logn— oo, k/n—0.
Then we would take

- ____k___ = — ,—08/n V
9=0(n)—log(n/k)’ x=x(n)=e" %" (117)

Observe that 8/n— 0, so that x » 1 and 1 —x~8/n, and § — oo, so that
x"=exp(—8)— 0. Hence

~n
X

IET,,=BZx"~6)Zx"=0 !
1 0 1-
and

lEK,,=BZxT~ —0log(l—x)~ 8 log (-g)~k.
1

With this choice of parameters 6 and x the independent Poisson process
(Zy,Z,,..) should, be a good approximation for random permutations,
conditioned either on having exactly k cycles, or on having at least k cycles.

9. THE GENERATING FUNCTION CONNECTION AND MOMENTS

In this section, we relate the .probabilistic technique to' the more
conventional one based on generating functions; Wilf [61]. One reason for
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this is to provide a simple method, based on an idea of Shepp and Lloyd
[52], for calculating moments of component counts for combinatorial
structures. A second reason is to provide a framework within which
detailed estimates and bounds for total variation distances can be obtained
by using the results of Theorem 3 and 8, together with analytic techniques
such as Darboux’s method or the transfer methods of Flajolet and Odlyzko
[20, 21].

Throughout, we let p(n, k) be the number of objects of weight » having
k components, so that p(n)=X7_, p(n, k) is the number of objects of
weight ». Finally, recall that m;, is the number of available structures for a
component of size i.

9.1. Assemblies
We form the exponential generating functions

B(s,0)=1+ i (Z p(n,k)O"):—';, (118)
n=1 \k=1 *
Bs)=1+ Y p(n)r%=ﬁ(s, 1), : (119)
and
Mi)= Y m;% (120)

For assemblies, (1) gives

p(n )=, Nin, 2) = Zmn(’f’_) 1

. jlj' a’

where 3, is over {aeZ" :Y ia;=n, Y a,=k}. It follows that

Bs0)=1+3 ¥ % H("’”) 'L

N
n=1 k=1 a j=1 aj‘

= [T exp (= )

J=1
= exp(OM(s)). (121)

Equation (121) is the well-known exponential generating function relation
for assemblies (cf. Foata [23]), which has as a special case the relationship

P(s) = exp(M(s)). (122)

Recall from Section 8 that in studying large deviations of K, the number
of components in the structure of total weight n, we were led to the
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measure P, corresponding to sampling with probability proportional to
6% Tt follows from (1) that there is a normalizing constant p,(n) such that

po(n) Po(C(n)=2)=06%" " *“N(n, a)

=rte (5 G (5 )

pem)='3. pln, k) 6*

for any x > 0. Clearly,

k=1
=n![s"] P(s, 6) (123)
= p(n) E(6%), | (124)

where E=E, denotes expectation with respect to the uniform measure
P=P,, corresponding to 8= 1.

Next we explore the connection with the probability generating function
(pef) of the random variable T,,=3]_, jZ;, where the Z; are independent
Poisson distributed random variables with mean

EoZ,

J' '
Recall that the pgf of a Poisson-distributed random variable Z with mean
Ais
Eos?= Y Po(Z=j)s’ =exp(— (1 —s5)),
j=0
so using the independence of the Z,,

no
|E0sTn = E0s2j=ljzj

~ 1 Es)

=exp (—0 Y Al —sj)>.
j=1
Thus
Po(T,=n)=[s"] EosT

=exp<—0

l,-) [s"] exp (0 i Ajsf>

j=1

1/1>[s"]exp<9 Y ls’) ,

J=1

INSE TM:

=exp<—9

.
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=exp (—0 i lj> [s™] exp(6M(sx))

j=1

=exp (-0 Z 1,) [5s"] B(sx, 6),

j=1

using (121) at the last step. Thus, via (123),
IP,,(T,,:n):exp( 9 Z A)XP"("), (125)

as can also be calculated from (24) and (108) for the special case U=K,,.
The next result gives a simple expression for the joint moments of the
component counts. We use the notation y,; to denote the falling factorial

Wy—1)---(y—n+1).

LEMMA 5. For (ry,..,r,)€Z% withm=r;+2r,+ --- + br,, we have

b ! — 5 0m.x'\"
B [] (C,n))py = Hm< ) x-m — 2o =) 1y ( ';’f'x> . (126)

j=1 pﬂ(n) (n_m)' j=1

Proof. The key step is the substitution of a,, ..., a, for a, —r,, .., a,—r,
in the third equality below. For m < n, we have

b n!
Eq Z (Cj(n))[r,]= Z Z (al)[r,] (ab)[r,,]
j=1 agzri,j=1,.,b apit, - an:Tjaj=n (n)
Om; xN\% 1
<11 () 5

() ey ()

xpo(n), 1 j=1

x———-—1 f] <enfij>ali
(aj—rj)!j=,,+1 J! a;!

n! n(()mx’)’fal 'y

xPo("),,,l .]' o Gt 2 J@j=n—m
Om; x’)"f 1
X H (
J=1 4 !

S H("’”"’)"" poln—rm) g

T x Po(”), L\ ! (n—m)!
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Remark. 1f {Z;} are mutually independent Poisson random variables
with E,Z,=60m,x'/i!, then the product term on the right of Eq. (126) is
precisely Eq T/, (Z))r,3-

Remark. In the special case of permutations, in which m,= (i—1)! and
p(n)=n!, the normalizing constant py(n) is given by py(n)=0(0+1)---
(6 +nrn—1), and Eq. (126) reduces to

b b+n—m—1\+n—1\"" L 70\"
E C,(n)y=1(m<n ( )( ) (—_),
0,-1;[1( (1)) =1( ) n—m " ,I=Il ]

a result of Watterson [58, 59].

9.2. Multisets
For multisets, the (ordinary) generating functions are

P(s,0)=1+ i (Z p(n,k)0k> s (127)
n=1 \k=1
P(s)=1+ i p(n) s"=P(s, 1), (128)
and
M(s)= i (129)

In this case, using (2) gives

p(n, k)= N(n, ) = zfl('"*“ 1),

a j=1 J

the sum Y, being over {aeZ":Y ia;=n, Y a,=k}. It follows that

Ps,0)=1+3 T T H(m +‘f )(osf)a.-

n=1 k=1 a i=1 a;

]
':]8

1—@s7)~m (130)
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See Flajolet and Soria [22], for example.
Under the measure Py, there is a normalizing constant py(n) such that

pol) Po(C(r) =2)= TT (™72~ 1) 621 ( 3 1a,=n)
i=1 : =1

—x [T =6x'y= ]

i=1

(mi+ai— 1>
a;

I=1
x (1 —6x'y™ (6x')%1 ( Y la,=n),

=1

for any 0 < x < 1. Indeed,
Ppo(n)=p(n) E4(8°) =[s"] P(s, 0), (132)

where p,(0)=1.
In this case, the relevant Z; are independent negative binomial random
variables with parameters m; and 6x' and pgf
1—0x"\™
Eps%i= .
o <1 - 0x’s>

Using the independence of the Z; once more, the pfg of T, may be found

as
Eps™ =[] Eo(s)*

1 ()
) f[ (1 —0(xs))—™.

i=1

(H (1—6x")™ (133)

=1

Using (130), we see that
Po(T,=n)=[s"] Egs™

= ( [T (1= 6xtym

i=1

) [s"] exp (—ié m; log(1 — 0(xs)")>

- ( I1a- ex")'"") [s"] exp (— .-i m; log(1 — G(xs)‘>)

i=1

= (H (1- ex")"") [s”] P(sx, 9),

=1



INDEPENDENT PROCESS APPROXIMATIONS 139

so that

PT,=n)= ( IT1a- 6x’)""'> x"pg(n). (134)
i=1

Equation (134) can also be calculated from (24) and (108) for the special

case U=K,,.

In order to calculate moments of the component counts C(n), it is
convenient to use a variant on a theme of Shepp and Lloyd [52]. We
assume that. M(s) has positive radius of convergence, R. As above, let
Z,,Z,,.. be mutually independent negative binomial random variables,
Z, having parameters m; and 6x’, where 0<x<min{R, 1,07 '}. Let
T,=3Y>,iZ, Note that T, is almost surely finite, because
> imOx'  Ox

= M .
EoT o Ell—()x’ l—OxM(x)<OO

The distribution of T,, follows from (130), (133), and monotone
convergence since

P(sx, 6)
Tx =
Egs P(x,0)"
Hence
Po(T.,, =n)=x"pg(n)/P(x, 9), n=0,1, .. (135)

Further, for ae 2" and Z(n)=(Z,, .., Z,)

P,(C(n)=a)=Py(Z(n)=a| T, =n). (136)
This follows from the statement (109) that |

Po(Cln)=a)=Py(Z(n)=a | T,=n),
and the observation that

_Py(Z(n)=3,T,=n)

PoZim)=al T, =n) Po(T,=n)
; _Po(Z(n)=a,T,,=n)[|3’0(zn:1=zn+2=._'___0)
B Po(T,=n)Po(Z,1=Z,,,="---=0)
_Py(Z(n)=a, T, =n) :
T PolTo=n)

=P,(Z(n)=a| T., =n).
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Now let @:Z%7 - R, and set C,=(C,(n),.,C,(n),0,0,..) with
Co=(0,0,..). The aim is to find an easy way to compute Ej(P)=E,P(C,).
It is convenient to use the notation E, 4 to denote expectations computed
under the independent negative binomial measure with parameters x and 6.
Shepp and Lloyd’s method in the present context is the observation, based
on (135) and (136), that E, (® | T, =n)=Ej(P), so that

IEx, 9(¢)= Z IEx, 0(¢ | Too =n) Po(‘TOO =n)

n=0

= Y. E5(®) x"po(n)/P(x, 6). (137)
n=0
This leads to the result that
[x"] E, ¢(P) P(x, 0)
Pe(n)

E3(®) = (138)

For r>=1, jr<n, we use this method to calculate the falling factorial
moments Eq(C;(n)),. This determines all moments, since C;(n);,;=0 if
Jr>n. In this case ®(x,, x,, ..) = (x;),7, and

[Ex, e(¢) = [Ex, o(Zj)[r]

_T(m+r)/ 6x7 Y
=" I(m) (1—exf)'

Hence we have

Ex(®) = D) [ay px, ) (—‘-”;—x)

Pe(")r(mj) 1-—

0r(m+r) _ . > <r+l—l> 1
=l 7] P(x, 8 0'x’
pa) Ty X" APEO Ly )0
_H’F(mj+r)L”/fJ"<r+l—1
" peln) T(my) [, I

_ I(m;+r) Wil fm—1 o ‘
_mh,(r—l)“’ﬂ(" Jm). (139)

) 0'p4(n —jr —ji)

Remark. See Hansen [31] for related material. The Shepp and Lloyd
method can also be used in the context of assemblies, for which (135) holds
with '

PoTo=n)=Zpoln) B, 0), | n=0, 1. (140)
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This provides another proof of Lemma 5. See Hansen [29] for the case of
random mappings, and Hansen [307] for the case of the Ewens sampling
formula. ;

9.3. Selections

The details for the case of selections are similar to those for multisets.
Most follow by replacing 6 and m,; by —6 and —m,, respectively, in the
formulas for multisets. First, we have from (3)

pin, k)= ZNn,a) ZH( )

a j=1

the sum 3, being over {a€Z”,:Y ia;=n, Y a,=k}. Therefore

Ps0=1+3 F ¥ I1(7) s

n=1 k=1 a i=1
= H (1+ 857y (141)
=exp( }E (;-U;liM(s")), (142)

the last following just as (131) followed from (130). See Flajolet and Soria
[22], for example.
Under the measure P, there is a normalizing constant p,(n) such that

pe(n) P(C(n)= a)-—ﬁ( )0“’1(Iéla,=n>

n.

=x"" H (1+6x"y" 1] ('Z’) (14 6x")=m (Bx")*
=1 i

i=1
1 (Z la,=n>,
=1

for any x> 0; ps(n) is given in (132) once more. In this case, the Z; are
mdependent binomial random variables with pgf

1+ Oxis\™
Zi=
Eos (:1_+9xi) ’ (143)

and the pgf of T, is

Egs™ = ( e ex")“”") IT (1 +6(xs))™ (144)

i=1 i=1
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It follows from (130) that

PoT,=n)= ( ﬁ 1+ 0x’)‘""'> [s”] P(sx, 6),

i=1
so that

Pg(T,,=n)=<H (1 +9xi)"”‘> x"po(n). (145)
i=1

The joint moments of the counts can be calculated using the Shepp and
Lioyd construction once more. In particular, Egs. (135) and (136) hold,
and we can apply (138) with E, ,(®) denoting expectation with respect
to independent binomial random variables Z,, Z,, .. with distribution
determined by (143).

As an example, we use this method to calculate Eq(C;(n)),q for r>1,
Jjr < n. Since

[Ex, 0(¢) = [Ex, O(Zj)[r]

0x’ \"
=(m;)r 60

I L I Ox’
£50) = 288 [x7] P, ) (7 ex,.)

(m; )[r] < ) _ \
(=)o~ — jm). 146
= 5 (")) o ot (40
94. Recurrence Relations and Numerical Methods

We saw in Theorems 3 and 8 that for any B< [n], the total variation
distance between C and Z 5 can be expressed in terms of the distributions
of random variables S, and R, defined by

from (138) we have

Sp= Z iz, (147)
ie[n]—B
and
RB= Z IZ,E S["]_B. (148)
ieB
Specifically,

dr (LACa), LZ5) =5 PRy >n)

+l zn: Po(Ry=r) Po(Sp=n—r)

—1]. 149
2,5, Po(T,=n) (149)
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A direct attack on estimation of d,, (Z(Cp), %(Zz)) can be based on
a generating function approach to the asymptotics (for large ») of the terms
in (149). In the setting of assemblies, this uses the result before (125) for
Py¢(T,=n), and the fact that for k>0

Po(Sg=n—k)=[s""*Jexp <—9 Y A ——s‘))

ie(n]J—B

___exp<_0 5 /1,.>[sn—k]exp(6 ) lis‘+9Z/1is’>

ie[n]—B ie[n]—B i>n

=exp(—0 Y /1,-) [s" %] P(sx, 0)exp<—0 Y Ais">.
ie[n]—B ieB :
(150)

For applications of this technique, see Arratia, Stark, and Tavaré [7] and
Stark [55].

It is also useful to have a recursive method for calculating the
distribution of Ry for any B & [n]. Clearly, for assemblies

Egs®2=exp <— y 0/1,-) exp ( Y 61,~s‘>. (151)
ieB ieB
Write

Gp(s)= ) 04,

ie B
and
Fp(s)=exp Gp(s)= Z qg(k) 5%,
k=0

with ¢z(0)=1. Differentiating with respect to s shows that sFj(s)=
sG(s) Fy(s) (cf. Pourahmadi [50]), and equating coefficients of s* gives

k
kqp(k)= Z gs(i) qplk —1i), k=1,2,.,

i=1

where

gs(i)=0ii,1(ie B). (152)



144 ARRATIA AND TAVARE

Since pg(k)=Po(Rp=k)=exp(—Gp(1)) gp(k), we find that
k
kps(k)= Y. gali)pslk—1i), k=12, .. (153)
i=1

with pg(0) =exp(—Gp(1)). The relation (153) has been exploited in the
case of uniform permutations (6 =1, A;=1/i) by Arratia and Tavaré [2].
For multisets, the analog of (150) is

Pg(SB=n~—k)=< I (1—ex")m-'>[s"-k] [T (1-08(xs))=

ie[n]—-B ie[n}—B

=( 1 (1—6x) )[s” T A-6s)™

ie(n}—8B ie{n]—-B

x [T (1—8(xs)))~™

=< I a- 0x‘)""') [s"~%] P(sx, 8) [ (1 — B(xs)')™
ie[(n]—B ieB
(154)

To develop a recursion for pg(k)=P4(Rz=k), we can use logarithmic
differentiation; cf. Apostol [1, Theorem 14.8]. First, we have

Es®z=[T (1 —6x")™ [] (1 —6x's)~"™. (155)
ieB ieB
Define
Gy(s)=Y ms’,
ieB
and

Fy(s)=] (1 —bx's) ™= Z qs(k) s,

ieB =

with ¢5(0)= 1. Then

® g/ )
log F(s)= Z 7 G p((xs)).

j=1

Differentiating with respect to s and simplifying shows that

sFa5)=( T £al0)') Falo)

izl
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where

gsli)=x'Y km0"1(k € B). (156)

ki

Equating coefficients of s* gives

) k
kagk)=Y gs(i)gslk—i), k=12, ..

i=1

Since pg(k) =Py(Rg=k)=T1,. 5 (1 — O0x')™ g 4(k), it follows that

k
kpglk) =3 gz(i) pplk —i), k=1,2,.. (157}
i=1
with p(0) =TT,c 5 (1 —Ox)™
For selections, we have the following identity, valid for £ = 0:

PO(SB=n—k)=< M (1+0xf)—'"f> [s"=%1 P(sx, ) [] (1 + 6(xs))) =™

ie(n]—B icB

If we define py(k)=P4(Rp=k), then we obtain

kpg(k) = z gs(i) pplk —1i), k=1,2,.., (158)

i=1

where

gs(i)=—x"Y km,(—6)" (ke B),

k|i

and
ps(0)= H (14 6xH~™,

ieB

10. PROOFS BY OVERPOWERING THE CONDITIONING

The basic strategy for making the relation C, < (Z,;| T=1) into a useful
approximation is to pick the free parameter x in the distribution of Z, so
that the conditioning is not severe, i.e., so that P(T=¢) is not too small.
It is sometimes possible to get useful upper bounds on events involving the
combinatorial process C; by combining upper bounds on the probability of
the same event for the independent process, together with lower bounds for
P(T=1). The formal descrlptlon of this strategy is given by the following
lemma.
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LEMMA 6. Assume that C, (Z,| T=1t) and that h is a nonnegative
Sfunctional of these processes, i.e.,

h:Z', > R,.
Then
EA(Z))
< .
EA(C)) P(T=1) (159)
Proof. ‘

ERZ)UT=1) EKZ,)

EA(C.) = P(T=1) _P(T=t)

10.1. Example: Partitions of a Set
Recall that partitions of a set is the assembly with m;=1 for all i
Following the discussion in Subsection 5.3 we take x=x(n)=logn—
loglogn+ --- to be the solution of xe*=n, so that for i=1,2,..,n, Z;is
Poisson distributed, with mean and variance A;=x'/i!. With this choice
of x, we have
ET,=Y, id;~xe*=n
1
and
ol=var(T,)=Y i*\;,~nlogn. (160)
1

By combining (24) with the asymptotics for the Bell numbers given in
Moser and Wyman [46], and simplifying, we see that

P(T,=n)~

(161)

1 1
V2nn logn~\/2_1ra,,’

which is easy to remember, since it agrees with what one would guess from
the local central limit heuristic.

Write U, Zl +Z,+ --- +Z,, so that the total number of blocks K,
satisfies K, = (U | T, —n) Harper [32] proved that K, is asymptotically
normal with mean n/x and variance n/x%. We observe that this contrasts
with the unconditional behavior: U, is asymptotically normal with mean
n/x, like K,, and variance n/x, unlike X,,. Since U, is Poisson, it has equal
mean and variance. Harper’s result says that conditioning on T,=n
reduces the variance of U, by a factor asymptotic to log n.
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Note that Z, is Poisson with parameter x~Ilogn, and hence the
distribution of Z, is asymptotically normal with mean and variance log n.
Note also that the Poisson parameters i,=x'/i! are themselves propor-
tional to P(Z, =1i); in fact for i> 1

A,=eP(Z, =) =:’—C P(Z,=1i).
We can use the normal approximation for Z, to see that, for fixed a < b,
as n— oo,

\ n b1
R e
a.J/logn<i-logn<b./logn logn a 2r

Informally, the relatively large values of A; occur for i within a few (/log n
of log n.

_ u2/2 du

10.1.1. The Size of a Randomly Selected Block

A result similar to the following appears as Corollary 3.3 in DeLaurentis
and Pittel [12]. The size D= D, of “a randomly selected component” of a
random assembly on n elements is defined by a two step procedure: first
pick a random assembly, then pick one of its K, components, each with
probability 1/K,. The same definition applies to the case of random multi-
sets or selections of weight n.

Given 1<b<n, consider the functional 4: Z", — [0, 1] defined by

o=(Z,2)/(£.2)

with A(0, 0, ..., 0) defined to be 1. The distribution of the size of a randomly
selected component is determined by

P(D, < b)=Eh(C(n)).
Define U,=2Z,+ --- + Z,, so that h(Z,, .., Z,)=U,/U, and

T,,=n).

g=P(Z,<b)e(2,1-2] = (162)

P(D,<b)=Eh((Z,, ... Z,) | Ty=n)=E (%

n

Let e>0 and p > 1 be given. Let 1 <b < r such that

Now for all n>n(e, p) we have EU,>e¢enflogn and EU,/EU, € [q/p, gp].
Large deviation theory says that for p > 1 there is a constant c=c(p)>0
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such that if Y is Poisson with parameter A, then P(Y/A< 1/p) <exp(—Ac)
and P(Y/A>=p)<exp(—Ac). (In fact, the optimal ¢ is given by c(p)=
min(l+plogp—p, 1 —p~tlogp—p~"'), with the two terms in the mini-
mum corresponding respectively to large deviations above the mean and
below the mean.) Putting these together, using the large deviation bounds
once with U, as Y and a second time with U, as Y, we have for n > n(e, p)

U
p (7"¢ Lo, q,,s]) <2 exp(—c(p) enjlog ).

Since the functional A takes values in [0, 1], this proves, for n > n(e, p),
IP(D,<b)—ql<q(p>—1)+2exp(—c(p) enflog n)/P(T,=n). (163)

In terms of Lemma 6, the above argument involves the functional A*
defined by h*(a)=1(h(a)¢ [q/p> gp’]). The inequality (163) not only
proves that D, is asymptotically normal with mean and variance log n, but
also provides an upper bound on the Prohorov distance between the
distributions of D, and Z,.

10.1.2. The Size of the Block Containing a Given Element

In the case of assemblies, it is possible that someone describing “a
randomly selected component” has in mind the component containing a
randomly selected element, where the element and the assembly are chosen
independently. This includes, for example, the case where the element is
deterministically chosen, say it is always 1. Let D¥ be the size of the
component containing 1, in a random assembly on the set [n].

The two notions of “a randomly selected component” can be very
far apart. For example, with random permutations, DY is uniformly
distributed over {1, 2, .., n}, while the size D, of a randomly cycle is such
that log D,/log n is approximately uniformly distributed over [0, 1]. For
random partitions of a set, the argument below proves that D, and D} are
close in distribution, because both distributions are close to Poisson with
parameter x, where xe*=n. ’

Given 1 < b <n, consider the functional g: Z”, — [0, 1] defined by

1 .
g(a)=- Z ia;.
nich

The distribution of the size of the component containing a given element
is determined by

P(D}¥ < b)=Eg(C(n)).
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Deﬁne Rb=Zl+2Z2+ s +be, SO that g(Zl, ey Z,,)=Rb/n and
P(DY<b)=Eg((Z,, ... Z,)| T,=n)=E(Ry/n| T,,=n).

With ¢, p, b, n, and ¢ as above in (162), and with the same ¢(p) as above
but with a different n(e, p), for ali n=n(e, p) we have EU, > en/log n and
ER,/ne[q/p, qp]. Large deviation theory says that, with A=EU, as the
mean of an unweighted sum of independent Poissons, the weighted sum
Y= R, satisfies P(Y/EY < 1/p)<exp(—4ic) and P(Y/EY = p) <exp(—Aic).
Putting these together, we have for n = n(e, p)

P <%¢ La/p?, qu]) <2exp(—c(p)enflog n).

Since the functional g takes values in [0, 1], this proves, for n = n(e, p),
IP(D¥<h)—q| <q(p®—1)+2exp(—c(p)enflog n)/P(T,=n). (164)

10.1.3. The Number of Distinct Block Sizes

Odlyzko and Richmond [48] prove that the number J, of distinct block
sizes in a random partition of the set [n] is asymptotic to elogn in
expectation and in probability. A stronger result can easily be proved by
overwhelming the conditioning.

Informally, our argument is that for 1<i<(e—¢)logn, the Poisson
parameter A;= x'/i! is large, so that P(Z,=0) is very small, in fact small
enough to overwhelm the conditioning on {T,=n}, so that P(C,(n)=0)
is also very small, and we can conclude P(C;(n)=0 for any
i< (e—¢)logn)—0. This accounts for at least (e —¢) log n distinct block
sizes. On the other side, X, (., ¢)10g» EZ; 18 small, hence for some k = k(e),
P(Z,> 0 for at least k values of i > (e +¢) log n) is very small, in fact small
enough to overwhelm the conditioning (using roughly k=1/(2¢).) We
conclude P(C;(n)> 0 for at least k values i = (e + ¢) log n) —» 0. Our result,
that for any ¢>0, P(C,(n)=0 for any i< (e—¢)logn, or C,(n)>0 for at
least k values i > (e + ¢) log n) = 0, implies but is not implied by the result
that J,/logn —e in probability. Furthermore, the bounds supplied by
Theorem 10 below imply that J,/logn—e in the rth mean for every
1 <r< 0. The result that P(C,(n)=0)— 0 was proved in Sachkov [51].

In a little more detail, observe that P(Z, =0)=exp(—4,)=e *=x/n~
log n/n, which is smaller than the conditioning probability, given by (161),
by a factor on the order of \/;/(log n)*?2, The preceding argument is given
in Sachkov [51]. The Poisson parameters increase rapidly, so P(Z,=0)=
exp(—4,) =exp(—x%2)=(x/n)"?, which decays faster than any power
of n. ‘ '

For a more careful analysis of the boundary where the Poisson
parameter A, changes from large to small, write i=(x+d)e, where
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d=o0(x). Recall x~logn. Using Stirling’s formula, and writing ~ for
logarithmically asymptotic, we have 4;= x'/i! ~ (xe/i)"/\/Z—ni = (x/(x+d))Y

2ni ~ exp(—id/x — log \/;)zexp(—ed—- (1/2)loglogn), so that the
critical boundary for i, corresponding to d= —(1/2e)loglogn, is at
c(n)=xe—(1/2)loglog n. On the left side of this boundary the argument
via overwhelming the conditioning shows that P(C,(n)=0 for any
i<ex—(3/2+¢)loglogn) — 0. The argument is very asymmetric between
left and right: on the left, where 1, is large, we use P(Z;=0)=exp(—4,),
gaining the use of an exponential; while on the right, where A, is small, we
use P(Z;>0)< 1,. Thus in Theorem 10, the left boundary a is an extra
(1+¢)loglogn below c¢(n), while the right boundary b is an extra elogn
above ¢(n).

The results of the above discussion are summarized by the following

THEOREM 10. For partitions of a set of size n, for >0, there are
with high probability blocks of every size i<(e—z¢)logn, and not many
blocks of size iz (e+¢)logn. More precisely, for any r < oo there exists
k=k(e, r)<oo so that, as n—» o0,

P(C,(n) =0) = O((log n)**/\/n),
while for a=ex—(3/2+¢)loglogn

P(C;(n)=0forany2< i<a)<m§e—ii=o(n—r)’

and

p( Y ci(n)>k>=o<mj=—ns<z ;.,.)k)=o(}r’),

izb=(e+s¢)logn i>bv
where xe* =n, A,=x'/i!, and P(T,=n) satisfies (161).

Proof. Most of the proof is contained in the informal discussion before
the theorem. For the second statement, it remains to check that
>5exp(—4;)=o(n~") for any r, which follows from an upper bound on the
first and last terms of the sum, which has at most »n terms, together with
the observation that the A, <A;< .- <4, ;> -+ Z4,,. For the third
statement, we are merely using the estimate, for ¥=3,,, Z,, which is
Poisson with small parameter A, that P(Y > k)= O(A*) as 1 — 0. Note that
EYREZ py=Arp % (xe/b)P~ (1 +5/e) P <n™* |

The above argument by overwhelming the conditioning is crude but easy
to use because it gives away a factor of P(T, =n), when in fact the event
{T,=n} is approximately independent of the events involving {Z;>0}
for large i. An eflective way to quantify and handle this approximate
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independence is the total variation method outlined in Sections 3 and 4.
Sachkov [51] analyzed the size L, of the largest block of a random parti-
tion, and gave its approximate distribution. Writing L, = h(C(n)) where
h(a, .., a,) =max(i: a;>0), Sachkov’s result can be paraphrased as
drv(L,, (Z,)) = 0. Note that the number J, of distinct block sizes satisfies
J,<L, always. Using B={i<n:i>ex—2loglogn}, for example, it
should be possible to prove that d, (Cz, Zz) — 0. Then, by comparison of
J,=h(C(n)) with n(Z,,..,Z,)=3 1(Z,>0), it would follow that, with
centering constants c(n)=ex —(1/2¢)loglogn, the family of random
variable {J,—c(n)} is tight, and the family {L,—J,} is tight; and for each
family, along a subsequence n(k) there is convergence in distribution if and
only if the ¢(n(k)) mod 1 converge.

11. DEPENDENT PROCESS APPROXIMATIONS

For the logarithmic class of structures discussed in Subsections 4.3, 5.1,
and 5.2, we have seen that the Ewens sampling formula (ESF) plays a
crucial role. In the counting process for large components of logarithmic
combinatorial structures, there is substantial dependence; an appropriate
comparison object is the dependent process of large components in the
ESF. For example, in Arratia, Barbour, and Tavaré [5] it is shown that
the process of counts of factors of large degree in a random polynomial
over a finite field is close in total variation to the process of counts of large
cycles in a random permutation, corresponding to the ESF with parameter
#=1. In Arratia, Barbour, and Tavaré [6], Stein’s method is used to
establish an analogous result for all the logarithmic class, and somewhat
more generally. The basic technique involving Stein’s method specialized to
the compound Poisson is described in Barbour, Holst, and Jansoa [9,
Chap. 10].

Once such bounds are available, it is a simple matter to establish
approximation results, with bounds, for other interesting functionals of the
large component counts of the combinatorial process. For example, the
Poisson-Dirichlet and GEM limits for random polynomials are established
with metric bounds in Arratia, Barbour, and Tavaré [5]. Potisson—Dirichlet
limits for the logarithmic class are also discussed by Hansen [31].
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