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ABSTRACT

Motivation: In metabolomics, the goal is to identify and measure the

concentrations of different metabolites (small molecules) in a cell or a

biological system. The metabolites form an important layer in the com-

plex metabolic network, and the interactions between different metab-

olites are often of interest. It is crucial to perform proper normalization

of metabolomics data, but current methods may not be applicable

when estimating interactions in the form of correlations between me-

tabolites. We propose a normalization approach based on a mixed

model, with simultaneous estimation of a correlation matrix. We also

investigate how the common use of a calibration standard in nuclear

magnetic resonance (NMR) experiments affects the estimation of

correlations.

Results: We show with both real and simulated data that our pro-

posed normalization method is robust and has good performance

when discovering true correlations between metabolites. The stand-

ardization of NMR data is shown in simulation studies to affect our abil-

ity to discover true correlations to a small extent. However, comparing

standardized and non-standardized real data does not result in any

large differences in correlation estimates.
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https://sourceforge.net/projects/metabnorm/
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1 INTRODUCTION

In metabolomics, the ultimate goal is to determine quantitatively

the levels of all metabolites (small molecules) in a biological

sample. At present, it is not possible to measure the complete

metabolome, and, depending on the purpose of the experiment,

the number of features measured can range from a handful to a

couple of thousands. Usually, in targeted experiments, a small

number of features are measured, and the metabolites are com-

pletely identified. In untargeted experiments, many more features

are quantified, but a majority of them cannot be identified as a

specific metabolite. Subsets of the metabolome are sometimes

referred to as metabolic profiles (Chung et al., 2003).

Several methods are at our disposal for metabolomic analyses,

e.g. nuclear magnetic resonance (NMR) spectroscopy or gas

chromatography coupled to mass spectrometry. In this article,

we focus on metabolomics data from NMR experiments. When

quantifying metabolite levels by using proton NMR, the protons

in a molecule give rise to a signal that appears as one or several

peaks in a spectrum. Because of spin-quantum effects, peaks split

in different ways and may overlap, but it is often possible to

assign and quantify peaks that belong to a single metabolite or

group of metabolites. Usually, the signal from a metabolite is

quantified by calculating the area of a peak that can be uniquely

assigned to it, although peak heights are also sometimes used.
To quantify the concentrations of the metabolites, it is

common practice to add a known amount of a certain compound

to each sample. When the compound is dissolved in the sample

itself, it is called an internal standard. In contrast, an external

standard would be either a solution of the compound in a capil-

lary or the compound run as a separate sample but with the same

experimental setup. The added calibration compound then gives

rise to a control peak in the spectrum of the sample. Compounds

commonly used as (internal) calibration standards in proton

NMR are trimethylsilyl propionate (TSP) and tetramethylsilane.
The following formula is used to calculate the concentration of

the metabolites using the calibration standard. Let Ci be the

concentration of metabolite i, and C0 the (known) concentration

of the control compound. Set

Ci¼C0 �
N0

Ni
�

Ai

A0
, i¼ 1, 2, :::, I ð1Þ

where N0 is the (known) number of protons in the control mol-

ecule, Ni is the (known) number of protons in metabolite i, Ai is

the measured peak area of metabolite i and A0 is the peak area of

the standard. Besides helping with quantification, a calibration

standard is useful for chemical shift calibration, which helps in

identifying the metabolites by using the chemical shift values in

the literature.
However, the use of the standard can be troublesome in some

scenarios, as we show in Appendix A in the Supplementary

Information. The fact that the standardization is done as a

ratio will induce apparent correlations between metabolites,

even if none exists in the first place.*To whom correspondence should be addressed.
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Metabolites in the cell participate in enzyme-catalyzed reac-
tions that form complex biochemical networks. There are often
interactions between metabolites (affecting their concentrations)

when they appear in the same biochemical sub-network, or path-
way. If, for instance, there is a rise in the cellular concentration of
a metabolite that is the substrate of an enzyme, then the cata-

lyzed reaction will usually proceed more rapidly so that the prod-
uct of the reaction will also tend to increase in concentration.
Thus, the concentrations of substrate and product would tend to

be positively correlated. In the same way, negative correlations
may occur when an increase in concentration of one metabolite
leads to the depletion of the second metabolite. An example

might be an enzyme that is subject to allosteric inhibition: a
rise in the cellular concentration of the inhibitor metabolite
would then tend to reduce the cellular concentration of the en-

zyme’s product. Thus, the inhibitor and the product would be
negatively correlated.
Analysis of the positive and negative correlations between

metabolites can be performed by preparing a large number (typ-
ically 30–50) of apparently identical samples of, for instance,
cultured cells. Although the measured concentrations of cellular

metabolites in the individual samples will be identical within bio-
logical variation, that uniformity is achieved by numerous
homeostatic mechanisms that will give rise to positive and nega-

tive correlations between metabolite concentrations. This type of
analysis is often referred to as metabolite–metabolite correlation
analysis (MMCA) (Fiehn and Weckwerth, 2003; Kose et al.,

2001; Steuer, 2006). The terms MMCA, correlation analysis
and estimation of correlation maps will be used interchangeably
in this article.

Commonly, Pearson correlations are used to estimate the
interactions between metabolites. The use of mutual information
has also been suggested as a dependency measure, as it captures

more than linear relationships between metabolites (Numata
et al., 2008). However, as metabolomics data generally are
quite skewed, even after transformation with a standard as in

Equation 1, the Pearson coefficient may not be a good estimate
of the correlations (see further discussion below). A transform-
ation of the data may therefore be needed before further analysis.

Estimating interactions with mutual information can also benefit
from such transformations (Kraskov et al., 2004).
The need for normalization for metabolomics data is crucial,

just as with other types of omics data. NMR samples are affected
by technical artifacts and may exhibit inflated between-sample
variation owing to batch effects. For correlation analysis, these

batch effects, together with effects from standardization, will
result in large positive correlations, as illustrated in Figure 1.
A few normalization methods for metabolomics data have

been suggested in the literature. The NOMIS method (Sysi-
Aho et al., 2007) is based on the presence of multiple internal
standards in each sample. The optimal combination of standards

is selected and used to remove systematic error. Also dependent
on multiple internal standards is the CCMN method (Redestig
et al., 2009), which is mainly aimed at mass spectrometry-based

metabolomics data. A recent addition to the field is the RUV-2
method, which is shown to be powerful for removal of unwanted
variability while not being dependent on internal standards (De

Livera et al., 2012). However, RUV-2 is not a global normaliza-
tion method in the sense that it does not produce a complete

normalized dataset, but rather a compressed set suitable for

detecting differentially abundant metabolites. Hence, RUV-2 is

not recommended in connection to classification, clustering

problems or MMCA.
In situations when these metabolomics normalization methods

are not appropriate, normalization methods adapted from the

single-channel microarray literature are commonly used.

However, the nature of some common single-channel methods,

e.g. quantile normalization (Boes and Neuhäuser, 2005; Bolstad

et al., 2003), renders them inappropriate to use on the smaller

datasets that are usually produced in metabolomics. In quantile

normalization, the idea is to give each sample the same distribu-

tion over features (e.g. metabolites). This is achieved by sorting

the values in each sample, calculating a mean quantile over the

samples and substituting the value of the data item in the original

dataset with the mean (followed by a re-sort of each sample).

This can be problematic for features in the tails of the distribu-

tion, as it is possible that a feature could receive the same value

across all samples. The result of this is that, as happens with our

dataset described in Section 2, some correlations between metab-

olites cannot be calculated. The median centering normalization

also proves to be relatively non-robust if the number of metab-

olites is small (see discussion below).
In this article, we investigate how the use of a calibration

standard for quantitation affects the reliable estimation of cor-

relation maps. We argue that log transformations are reasonable

for metabolomics data, and we suggest a global normalization

method, suitable for smaller (targeted) metabolomics datasets,

that is robust in connection to MMCA. The purpose of this

normalization is to remove variation due to sources other than

homeostatic changes. The proposed global normalization

method is intended to be a complement to existing methods de-

pendent on multiple internal standards and methods that only

function in differential expression settings.

2 APPROACH

We use two versions of a real NMR dataset for our investiga-

tions and to illustrate our methods. The dataset stems from six

cohorts of IMR90 human diploid fibroblasts (HDFs). For each

Fig. 1. Correlation analysis on a real NMR dataset. The metabolite–

metabolite correlations in the left panel are deduced using non-

normalized data, whereas the right panel illustrates the correlation

estimates when using normalized data. The dataset used is the standar-

dized log-transformed HDF set (see Section 2) and the normalization

method is our proposed mixed model (see Section 3). Technical artifacts

like batch effects and the use of a calibration standard lead to large

positive correlations in the non-normalized data
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cohort, a number of batches were extracted, which in turn gave

rise to a number of samples (52 in total). The design is illustrated

in Figure 2. Cells from each sample were harvested (and further

processed), and 10�L of 10mM TSP was added as an internal

standard. Proton NMR spectroscopy data were acquired on a

600MHz Bruker Avance NMR spectrometer by using a water

pre-saturation pulse sequence. Preprocessing of the time-domain

data included exponential multiplication (line broadening

0.3Hz), Fourier transformation and zero and first order phase

correction as well as log2 transformation.
In one version of this dataset, which we refer to as standardized

(std), TSP was used for chemical shift calibration and metabolite

quantitation. In total, 28 metabolites were uniquely character-

ized. In the other version of the dataset, called raw, TSP was not

used for quantitation. In this set, 26 spectral features could be

identified, of which some features are sums of signals for several

metabolites. The two datasets are not directly comparable, as, in

addition to the issues involving standardization, the same metab-

olite might not correspond to the same peaks in both sets.

We also use simulated datasets to compare the performance of

different normalization techniques. The structure of the variation

modeled for the simulated datasets is similar to that in the real

dataset as we include artifacts like cohort, batch and sample

effects.

3 MATERIALS AND METHODS

3.1 Transformation of data

In Supplementary Figure S1 (Appendix B in the Supplementary

Information), we show the distribution of the samples in the standardized

HDF dataset without any normalization or transformation. The data

exhibit skewness, with many large outliers. In such situations, the

Spearman rank correlation coefficient may give a better estimate of the

interactions than the Pearson coefficient. However, not only MMCA but

also different types of normalization are performed on the data. These

methods are not always suited for highly skewed data, so instead we

argue that the data should be transformed to achieve more balanced

distributions for each sample. One such transformation is the log trans-

formation, which we use throughout this article.

3.2 Raw versus standardized peak areas

When normalizing the type of NMR data we described in the previous

sections, we argue that log-transformed data should be used. Apart from

the choice of using a transformation or not, we can also choose between

normalizing standardized intensities ðCi or logðCiÞÞ or the raw peak areas

ðAi or logðAiÞÞ. As indicated above, a TSP-normalized dataset has better

resolution of individual metabolites, but the additional scaling can cause

artificial correlations. Normalizing the raw peak areas has a natural

appeal, as we remain close to the original data. If a correlation map is

the end goal, then we can use the peak areas directly, because the scaling

with proton number will cancel out. Let Ai=Ni be the peak area for

metabolite i scaled by proton number, then we have the following

equation:

CorrðAi=Ni, Aj=NjÞ ¼
CovðAi=Ni, Aj=NjÞ

DðAi=NiÞDðAj=NjÞ

¼
CovðAi=AjÞ= ðNi �NjÞ

DðAiÞ=Ni � DðAjÞ=Nj
¼ CorrðAi,AjÞ

ð2Þ

and, as logðAi=NiÞ ¼ logðAiÞ � logðNiÞ, we get

CorrðlogðAi=NiÞ, logðAj=NjÞÞ ¼ CorrðlogðAiÞ, logðAjÞÞ ð3Þ

where Dð � Þ denotes standard deviation.

3.3 ANOVA approach to normalization

Fixed effects models to normalize microarray data have been suggested in

several papers (Kerr and Churchill, 2001a, b). We adapt the microarray

approach as a comparison to correct for effects from the different co-

horts, batches and samples. This ANOVA (Analysis of variance) model

can be adapted for either raw peak areas or standardized areas. We have

i ¼ 1, : : : , I metabolites, j ¼ 1, : : : , J cohorts, k ¼ 1, : : : , K

batches and l ¼ 1, : : : , L samples. Let Yijkl denote the log-transformed

peak area/concentration for metabolite i in cohort j, batch k and sample l

as follows:

Yijkl ¼ � þ �i þ �j þ �k þ �l þ "ijkl ð4Þ

where �i is the metabolite effect, �j a cohort effect, �k a batch effect, �l a

sample effect and "ijkl � Nð0, �2Þ is a random error term. When no

cohorts are defined, the model reduces to having only a metabolite,

batch and sample effect.

3.4 Mixed model approach to normalization

Owing to the structure of the experimental data, the cohorts can be re-

garded as coming from a larger pool of HDF cohorts, a reasoning that

also applies to the batches and samples. A mixed effects model is there-

fore a more appealing alternative to model the variation than a fixed

effects model. Again, either log-transformed raw peak areas or standar-

dized metabolite levels can be used as input. A suitable mixed model can

be formulated as follows:

Yijkl ¼ � þ �i þ bjþbjkþbjklþ"ijkl ð5Þ

where bj � Nð0, �21 Þ is a cohort effect, bjk � Nð0, �22Þ is a batch within

cohort effect and bjkl � Nð0, �23Þ represents a sample within batch within

cohort effect.

As we are interested in estimating the correlation matrix for the me-

tabolites, we can estimate this at the same time as the fixed and random

effects by adopting an iterative procedure.

To achieve this, we reformulate the model in Equation 5 into a matrix

form:

Yl¼Xl�þZluþ"l, ð6Þ

where Yl is the signal for sample l, which is a vector of length I (the

number of metabolites). The vector � contains the fixed effects and u is

a vector of the random effects. The matrices Xl and Zl are the sample-

specific regressor matrices. The random error term "l is a vector with

a N ð0, �Þ distribution where � is the I � I metabolite covariance

matrix. The random effects u have variance-covariance matrix

Fig. 2. Design for the real NMR dataset. The samples of HDFs originate

from six cohorts (level I), which are divided into 10 batches (level II, A-J).

From each batch, a number of different samples are cultured (level III).

The total number of samples is 52
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G ¼ diagð�21 , : : : , �
2
1 , �

2
2 , : : : , �

2
2 , �

2
3 , : : : , �

2
3Þ. The iterative proced-

ure is as follows [cf. Meng and Rubin (1993)]:

0. Initialize �, e.g. with a diagonal unit matrix.

1. Update the fitted values. (Fitted values are obtained by adding

the fitted values from the fixed effects and the estimated contri-

butions of the random effects on the highest level of grouping.)

Calculate the matrix square root of the inverse of �: B ¼ ��1=2

(by using, e.g. diagonalization). Transform Yl,Xl,Zl so that

Y0l ¼ BYl, Z
0
l ¼ BZl and X0l ¼ BXl. Fit the model in Equation 6

with the transformed matrices for each sample l. Calculate the

fitted values FV0l and residuals RV0l. Inverse transform the

residuals and fitted values by FVl ¼ B�1FV0l andRVl ¼ B�1RV0l.

2. Update �.

Estimate � by using 1
L

PL
l¼1 RVlRV

T
l .

3. Go to 1 and repeat the procedure until convergence.

When no cohorts are defined, the model will include a fixed metabolite

effect, a random batch effect and a random sample within batch effect.

We fit this model with the open source software R (R Core Team,

2012) using the hglm package (Ronnegard et al., 2010).

3.5 Simulation of data

Samples were simulated from a normal distribution with a metabolite-

specific mean and under a fixed covariance matrix (of varying size) to

mimic log-transformed real data. Levels for a control metabolite, with a

small interaction to the other metabolites and with half the variance of

the other metabolites, were also generated. Random effects for cohorts,

batches and samples were added to the log-transformed data. To mimic

the real data, scaling with the control metabolite was done on the non-log

scale.

3.6 Comparisons with other methods of normalization

We mainly compare (in addition to the ANOVA approach) our proposed

method with three global single-channel normalization methods that are

not dependent on the presence of internal standards and are implemented

in readily available R packages: first, a loess smoother, implemented as

normalize.loess in the affy package (Gautier et al., 2004); second,

a median centering method where the median of each sample is sub-

tracted. This normalization will re-center the values, but this has no

effect when correlation estimates are concerned; and finally, we use a

sum scaling method, which is based on scaling each sample with the

total signal of that sample.

Quantile normalization (QN) (Bolstad et al., 2003) and variance sta-

bilizing normalization (VSN) (Huber et al., 2002) are not applicable

to the HDF dataset, but are used as a comparison for simulated

datasets of larger dimensions. The implementations used are the

normalizeQuantiles and normalizeVSN methods in the R pack-

age limma (Smyth, 2005). The limma package calls the vsn package to

perform the normalization for VSN. All normalization methods are

applied on log-transformed real data and on simulated data without

transformation.

4 RESULTS

4.1 Robustness of different normalization methods

To compare the robustness of the different normalization meth-

ods when estimating correlations, we used the HDF dataset

(both raw and standardized versions). Ideally, correlations be-

tween a subset of the metabolites should remain the same if we

remove one or several other metabolites from the set and redo

the normalization and estimation. However, if the number of

features is relatively small, the normalization methods will be

highly dependent on the levels of some metabolites.
In Figure 3, results from such an experiment are presented. We

removed from one up to five of the metabolites with (i) highest

variance (left panel), (ii) the lowest variance (mid-left panel), (iii)

median closest to the overall dataset median (mid-right panel) and

finally (iv) the metabolites with the highest mean (right panel). The

dataset used is the standardized HDF set. Similar plots for the raw

HDF set (Supplementary Fig. S1) and for both the raw and

Fig. 3. Robustness of normalization methods with regard to correlations. Changes to correlation estimates when removing one, two, and up to five of

the metabolites with the highest variance (left panel), the lowest variance (mid-left panel), median closest to the overall dataset median (mid-right panel)

and finally the metabolites with the highest mean (right panel). The correlation estimates between the retained metabolites are compared when using the

full dataset and the reduced sets. The maximum (solid line, black) and mean (dashed line, grey) of the absolute difference in correlation estimates are

shown. The dataset used is the standardized log-transformed HDF set
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standardized sets when random metabolites are removed

(Supplementary Figs S2–S4) are given in Appendix C in the

Supplementary Information. For each new dataset, we normalized

using the ANOVAmodel, our proposed mixed model, sum scaling

and median centering. A loess smoother was also included when

applicable. We then compared how large the differences were in

the estimated correlations for the retained metabolites in each

dataset. We calculated the maximum and mean absolute differ-

ences in correlation estimates.

The median centering performs poorly in most scenarios

(although the effects are not as dramatic when using the raw

HDF set), whereas the sum scaling suffers most when removing

high intensity metabolites. The ANOVAmodel and mixed model

perform similarly, with a slight edge to the mixed model.

4.2 Reconstruction of correlation maps

A simulation study was performed to assess the different nor-

malization methods concerning discovery of true correlations,

as well as comparing raw and standardized data. A number of

scenarios were simulated as described in Section 3. The number

of metabolites was varied between 12 and 48, whereas the

number of batches and samples was evaluated using two levels

each, with the number of cohorts fixed to two throughout the

simulations. Two different basic correlation matrices in a block-

diagonal form were used to define the dependencies between

metabolites in the different scenarios (details in Appendix D of

the Supplementary Information).
One set of results is given in Figure 4. Using 50 replicates of

each scenario, we evaluated the correlation estimates by dedu-

cing estimates of the true positive rate (TPR) and false positive

rate (FPR) for a subset of the normalization methods in the

robustness study. The TPR and FPR form the basis (using a

range of cut offs for correlation) for calculating the area under

the receiver-operating characteristic curve (AUC).
Based on both raw and standardized data, the mixed and

ANOVA models outperform the median normalization method

in all scenarios [difference in AUC, paired t-test with all P-values

5 0:001]. The sum scaling performs well on the raw data, but

deteriorates on the standardized dataset. The mixed model and

ANOVA normalization have a comparable performance, al-

though the mixed model outperforms ANOVA on the datasets

with smaller number of metabolites (p5 0:005). The mixed and

ANOVA models perform marginally better on the raw data than

on the standardized counterpart. Results for the second set of

correlation matrices are presented in Supplementary Figure S4

(Appendix D of the Supplementary Information).

Another way to evaluate the normalization methods is to clus-

ter the metabolites using the normalized data. The blocks defined

in the correlation matrix, as described briefly above, form nat-

ural clusters of metabolites. To compare the clustering from each

method with the true groupings of metabolites, we use the ad-

justed Rand index [a measure in the range (0, 1), where 1 indi-

cates perfect match]. As the division into groups is based on

correlations, not differing metabolite levels, a distance measure

for the clustering must be correlation based. By using 1� cij
�
�
�
�,

where cij is the correlation between two metabolites i and j, we

see that a clustering is simply a different approach to assess the

correlation matrix estimates. Supplementary Tables S1 and S2 in

Appendix D in the Supplementary Information show the average

Rand index over 50 replicated simulations for the same data as

presented in Figure 4 and Supplementary Figure S5. The mixed

model edges the other approaches in most of the scenarios using

this evaluation technique.

4.3 Raw versus standardized data

To further investigate the comparability of raw and standardized

NMR data, we identified five metabolites in our HDF dataset

with signals originating from exactly the same peaks in both the

raw and standardized log-transformed versions (i.e. chemical

shift calibration has no effect). Both versions of the data were

normalized (using the complete sets of features; 26 in raw and 28

in standardized) with median centering, sum scaling and our

mixed model. The 10 metabolite–metabolite correlations were

then compared for the different versions of the data (raw or

standardized) for the three normalization methods, including

no normalization at all, as depicted in Figure 5.
For non-normalized data, the correlations are all close to zero

or positive, which most likely is caused by artifacts like batch

effects that induce correlations. It should also be noted that a

subset of the metabolites exhibit strong positive correlations in

the standardized data, with more modest positive correlations in

the raw version, which indicates that the calibration standard

affects the signal. However, for the normalized data the correl-

ation estimates are more comparable (close to the diagonal line),

(a) (b) (c) (d)

Fig. 4. AUC values for discovery of true correlations for different scenarios when varying the number of metabolites, batches and samples. The number

of metabolites is 12 in panel (a), 24 in panel (b), 36 in panel (c) and 48 in panel (d). The number of samples was alternated between 48 and 96, whereas the

number of batches was either 4 or 8. The AUC values given are the averages over 50 simulated datasets
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although the sum scaling produces some outliers. The mixed
model results in the most comparable correlations.

4.4 Low- to high-dimensional data

The simulation studies presented in the previous section indicate
that model-based approaches outperform approaches based on

median centering and sum scaling when normalizing datasets in

the size range 10–50 features. When the number of features in-

creases further, single-channel methods adapted from the micro-
array literature can be used. We compared how our mixed model

performed in comparison with QN and VSN in identifying cor-

relations for increasing numbers of metabolites (20, 40, 80, 160,

320 and 640 features). The number of samples was fixed and the

correlation matrices estimated using a shrinkage approach
(Schäfer and Strimmer, 2005). More details are given in

Appendix E in the Supplementary Information.
Table 1 contains the average AUC values for each method

over 50 replicates for each dataset size. The quantile normaliza-

tion clearly has problems for small numbers of features, while the

variance stabilizing normalization, by following the recommen-
dations for usage, is not recommended for the simulations with

the two smallest sizes. VSN eventually catches up to the mixed

model in the normalization, whereas interestingly enough, QN

does not, although the differences in AUC are not big. The fact

that QN has a worse performance than VSN in the setting of
correlation estimation between features can be because of the

properties reported by Lim et al. (2007). Although QN works

well in the differential expression settings, correlation artifacts in

the data are also introduced. When the number of features
exceeds 100–150, these results indicate that variance stabilizing

normalization can be used with similar performance to a model-

based approach, while quantile normalization would be less

preferable to VSN.

5 DISCUSSION

The purpose of this article is two-fold; first we propose a global

normalization method intended for use with smaller metabolo-

mics datasets, and second, we investigate how well correlations

can be discovered when we have the option of using NMR data

calibrated using a standard, or not.
When comparing raw and standardized metabolite levels

(peak areas/concentration) for the real HDF dataset, we

observed large positive correlations in the non-normalized

data. Such large correlations are not biologically reasonable, as

we expect both negative and positive correlations to be present,

and we argue that they are caused by batch effects and the cali-

bration standard (Fig. 1). The positive correlations were more

pronounced for the standardized data, which is a cause for con-

cern. However, after normalization, both the raw and standar-

dized data exhibited better correspondence, and large differences

in estimated correlations could not be found. Most likely, the

influence of the calibration standard is (at least partly) removed

by the inclusion of a random sample effect in our normalization

model.

Our simulation study on the discovery of true metabolite-

metabolite correlations included cohort, batch and sample effects

in the simulated data, as well as a simulated calibration com-

pound. Although true NMR data are more complex, and the

calibration standard affects the data in a more intricate way

than by simple scaling, we think the study gives some pointers

concerning performance of different normalization methods, and

how the power is affected when we use either raw or standardized

data. In summary, our simulations show that using raw data

compared with standardized data has a slight edge when it

comes to performance (measured as average AUC). However,

the loss in power using standardized data compared with raw

data is small and the added advantages of better metabolite

quantitation and chemical shift calibration render standardized

data a feasible choice when estimating correlations.

In our correlation-robustness study (based on real data), we

investigate how stable the correlations are when removing one or

several metabolites from the set, and re-normalizing without the

removed metabolites. The study shows that methods developed

for high-dimensional datasets, like the loess smoother, perform

poorly for smaller datasets, if at all applicable. The commonly

Fig. 5. Raw NMR data compared with the standardized counterpart.

The inter-metabolite correlations for five metabolites (alanine, choline,

glutamate, glycine and valine) are compared in raw and standardized

data for three normalization methods and non-normalized data in the

HDF dataset

Table 1. AUC values for estimating correlations with varying number of

metabolites (20–640)

Dataset size Mixed QN VSN

m¼ 20 0.769 (0.04) 0.662 (0.05) NA

m¼ 40 0.795 (0.03) 0.737 (0.03) NA

m¼ 80 0.793 (0.02) 0.761 (0.03) 0.788 (0.02)

m¼ 160 0.795 (0.02) 0.781 (0.01) 0.792 (0.02)

m¼ 320 0.796 (0.01) 0.790 (0.01) 0.795 (0.01)

m¼ 640 0.797 (0.01) 0.793 (0.01) 0.797 (0.01)

Note: The columns represent the different methods used; mixed model, quantile

normalization (QN) and variance stabilizing normalization (VSN). The average

AUC value of 50 repeats of each scenario is given, with the standard deviation in

parenthesis. A graphical representation of the results is provided in Appendix E

(Supplementary Fig. S6).
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used median normalization is also problematic when removing
certain sets of metabolites, and the same trend can be seen for the
sum scaling method. The mixed model we propose is a robust
choice.

In this article, we focus on low-dimensional metabolomics
datasets for two main reasons. First, the normalization methods
adopted from the microarray community (e.g. quantile normal-

ization) are usually not applicable to these sets, and as current
methods for metabolomics data have restrictions (either demand-
ing presence of multiple standards or intended for differential

analysis), customized methods are needed. Second, in MMCA,
the focus is usually to unravel metabolite–metabolite correlations
for a smaller set of metabolites, and targeted datasets are mainly

used for this. When evaluating our mixed model for larger data-
sets (varying size between 20–640 features), contrasting it with
quantile and variance stabilizing normalization (VSN), we con-
clude that a model-based approach is to prefer for datasets with

less than �100 features. For larger sets, the variance stabilizing
approach performs equally well as a mixed model and better
than quantile normalization. As mixed models are hard to

adapt for large-scale sets, VSN is a good alternative.
The real data we use in this article have a complex structure

with cohorts, batches and samples. The normalization method

based on the mixed model can also be applied to simpler designs,
e.g. when the nesting consists of samples within batches, making
it applicable to many scenarios.
The estimation of the fixed and random effects in the mixed

model is coupled to an iterative procedure to estimate the cor-
relation matrix of the metabolites simultaneously. However, it is
also possible to apply the method for just one iteration, and

ignore the estimation of the correlation matrix in the first step,
as we do in one of the simulation studies. This is a feasible option
when the purpose is only to normalize the data, in e.g. a p 4 n

(more metabolites than samples) setting.

6 CONCLUSION

We present a mixed model approach to normalization of low-

dimensional metabolomics datasets. We show that this method
performs well compared with competing methods with respect to
robustness and discovery of true correlations. We also use real

and simulated data to infer how standardization with a calibra-
tion compound affects the estimation of correlations. Although
the performance for non-standardized data is slightly better than
for standardized data, the benefits of chemical shift calibration in

identifying metabolites as well as in quantitation of metabolite
concentrations motivate the use of a calibration standard in
NMR experiments.
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