
Articles
https://doi.org/10.1038/s43018-020-0026-6

1Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland. 2CRUK Cambridge Institute, University of Cambridge, Cambridge, UK. 
3Cambridge Breast Unit, Addenbrooke’s Hospital, Cambridge University Hospital NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, 
Cambridge, UK. 4A list of members and affiliations appears at the end of the paper. 5Molecular Oncology, British Columbia Cancer Research Centre, 
Vancouver, British Columbia, Canada. 6These authors contributed equally: H. Raza Ali, Hartland Jackson. ✉e-mail: carlos.caldas@cruk.cam.ac.uk;  
bernd.bodenmiller@imls.uzh.ch

The heterogeneity of cancer remains an obstacle to effective 
clinical management. Efforts to understand this inter-tumor 
heterogeneity in breast cancer have identified tumor subtypes 

associated with distinct clinical behaviors1–3 and driver genomic 
alterations4–6. However, these classifications do not account for the 
cellular complexity of solid tumors, which comprise diverse cancer-
ous and non-cancerous cells in distinct spatial arrangements and 
in a variety of transitory states7. Genomic alterations within cancer 
cells likely determine the components and structures of these multi-
cellular ecosystems, which ultimately drive disease progression and 
treatment resistance. Thus, an understanding of how genomic alter-
ations shape tumor ecosystems should enable identification of bio-
markers and development of new treatments. Here we studied, in 
unprecedented detail, how genomic alterations shape breast tumor 
ecosystems by coupling imaging mass cytometry8 (IMC) to multi-
platform genomics. We quantified the abundances of 37 markers in 
483 breast tumor samples from the METABRIC cohort2,5,9, enabling 
a systematic ‘phenogenomic’ analysis of breast cancer.

Results
Spatially resolved phenotyping of breast tumor ecosystems by 
IMC. To study the cellular composition of breast tumors while 
preserving spatial context, we used IMC to detect 37 proteins in 
formalin-fixed, paraffin-embedded samples of 483 tumors from 
the METABRIC cohort. These tumors have undergone extensive 
genomic characterization, including copy number, transcriptomic 
and microRNA (miRNA) profiling and targeted sequencing of 
173 breast cancer-associated genes2,5,9 (Fig. 1a and Supplementary  
Table 1). Tissues were stained with a panel of isotope-labeled  

antibodies (Supplementary Table 2). Stained sections were laser 
ablated at subcellular resolution, and liberated isotopes were detected 
with a mass cytometer8 to yield images revealing the abundance and 
location of the 37 proteins of interest simultaneously (Fig. 1b).

We analyzed the resulting data by using an image processing 
pipeline adapted for IMC10–12. Briefly, we used random forest classi-
fication to segment single cells and then quantified the expression of 
proteins per cell and recorded the identities of adjacent cells13. The 
resulting multiplexed molecular tissue maps, taken together with 
extensive matched publicly available genomic data2,5,9,14, character-
ized these breast tumors with unprecedented depth, linking multi-
dimensional tumor phenotypes with somatic genomic alterations.

Data-driven derivation of cell phenotypes. To investigate cellular 
diversity and intercellular relationships in breast tumors, we ana-
lyzed IMC-derived single-cell expression data by using a combina-
tion of clustering approaches (Fig. 1c). The resulting cell phenotypes 
fell broadly into the categories of tumor, stromal and immune cells 
(Fig. 2a,b). Most cells were epithelial (Fig. 2c). We determined cell 
identities by comparison of lineage marker expression and inspec-
tion of cell morphology and location (Fig. 2d–f and Extended Data 
Fig. 1). There was diversity among cells categorized as fibroblasts or 
myofibroblasts. Myofibroblasts were distinguished from fibroblasts 
by greater expression of smooth muscle actin (SMA; Extended Data 
Fig. 2a). Levels of vimentin, SMA and fibronectin expression further 
distinguished fibroblasts and myofibroblasts. Four fibroblast pheno-
types expressed CD68 in the absence of CD45, in line with previous 
reports15. Comparable stromal diversity in breast cancer has recently 
been reported16. For epithelial phenotypes, key distinguishing  
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features included expression of hormone receptors (HRs); cytokera-
tin 5 (CK5), CK7 and CK19; human epidermal growth factor recep-
tor 2 (HER2); and carbonic anhydrase IX, a marker of hypoxia. We 
also identified T cells, B cells, macrophages, endothelial cells, myo-
epithelial cells and vascular smooth muscle cells (Fig. 2d).

Transcriptomic correlations corroborate cellular identities. To 
test the validity of the assigned cell phenotypes, we assessed corre-
lations between the proportions of cell phenotypes and bulk gene 
expression profiles in each tumor. The number of correlated genes 
varied substantially between cell phenotypes (Fig. 3a). We conducted 
comparative pathway analysis of the most positively correlated genes 
in each phenotype (Fig. 3b). This revealed three families of enriched 
pathways: (1) a group of related cell cycle pathways active in epi-
thelial cells, (2) genes necessary for formation of the extracellular 
matrix and collagen deposition, enriched among myofibroblasts, 
and (3) a group of genes related to antigen presentation, interferon-γ 
signaling and interactions between lymphoid and non-lymphoid 

cells that were associated with all four T cell phenotypes and B cells. 
Thus, transcriptomic correlations with cell phenotypes corroborated 
the cellular identities we assigned on the basis of IMC data.

miRNAs are critical regulators of cell phenotypes within 
tumors9,17. In contrast to gene expression, which was balanced for 
positive and negative correlations for a given cell phenotype, there 
was a trend toward positive correlations between miRNA levels and 
a subset of four stromal phenotypes (vascular smooth muscle cells 
and three myofibroblast phenotypes; Fig. 3c). Pathway analysis of 
the genes targeted by the miRNAs correlated with these phenotypes 
revealed extracellular matrix terms, including extracellular matrix 
organization and collagen biosynthesis, among the top pathways 
(Extended Data Fig. 2b). These observations suggest that miRNA-
mediated gene regulation is more important among stromal cells, 
including myofibroblasts, than in other cell phenotypes.

Genomic subtypes of breast cancer are characterized by diverse 
tumor ecosystems. We next compared cell phenotype distributions  
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Fig. 1 | Workflow to yield highly multiplexed molecular maps of METABRIC tumors by using IMC. a, Map of samples ordered by availability of data across 
platforms. The bar chart depicts the number of segmented cells per tumor. Samples comprising fewer than 100 cells (blue bars) were excluded from 
tumor-level analyses. Gexp, gene expression; Tseq, targeted sequencing. b, Experimental workflow for multiplexed IMC of 37 proteins in breast tumor 
tissues, with associated genomic annotation and clinical data. Tissue microarrays were labeled with isotope-tagged antibodies and subjected to IMC to 
quantify bound antibody abundance at 1-µm resolution. Resulting multidimensional images were processed, single cells were segmented and cellular 
neighborhoods were quantified. c, Schematic of the two-stage cell-clustering approach based on a self-organizing map (SOM) and Phenograph.
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Fig. 2 | Data-driven derivation of cellular identities reveals composition of tumor ecosystems. a, Two-dimensional t-SNE representation of multiplexed 
proteomic data highlighted by cell phenotype. Each dot represents one cell; 5% of cells per tumor were randomly selected for illustration (n = 24,003 
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and spatial features between breast cancer subtypes by linear regres-
sion. We focused on two widely used molecular taxonomies of 
breast cancer: the intrinsic molecular subtypes1, based on tumor 
transcriptomes, and the integrative clusters2, based on driver copy 
number aberrations (CNAs)2.

We first investigated which of the cell phenotypes were enriched 
among different tumor subtypes. Several observations were con-
sistent with prior knowledge, validating our approach. Epithelial 
cell phenotypes in particular showed distinctive enrichment pat-
terns consistent with the known biology of the genomic subtypes 
(Fig. 4). Luminal A tumors were enriched for HR+ epithelial cells 
(phenotypes 31, 48 and 53), whereas more proliferative luminal B 
tumors1 were enriched for both HR+ epithelial cells (phenotype 31)  
and HR+Ki67+ cells (phenotype 33). Basal-like tumors, which  
are mostly triple negative, showed enrichment of HR–Ki67+ cells 
(phenotype 57), epithelial cells expressing basal CKs (phenotype 
51) and the phenotype associated with hypoxia (phenotype 9). 
Similarly, HR+ cell phenotypes (31, 48 and 53) were enriched among 
the ER+ integrative clusters (IntClusts 3, 4+, 6, 7 and 8), whereas 
IntClust 10 tumors, which map to the basal-like subtype, showed a 
cell enrichment pattern nearly identical to that of basal-like tumors. 
As expected, epithelial cells characterized by high expression of 
HER2 (phenotype 16) were enriched among the HER2 subtype and 
IntClust 5 tumors, defined by ERBB2 amplification.

We also made several observations that highlight unexpected 
differences in the phenotypic composition of tumor subtypes. For 
instance, luminal subtypes were distinguished by their enrichment 
profiles for six key epithelial phenotypes (14, 28, 31, 46, 48 and 53) 
that varied in their expression of CKs and HRs (Fig. 4). Luminal  
B tumors were enriched for phenotypes 14 and 28, which had low 
HR and CK expression. IntClusts 2 and 6 also showed enrichment 
for cell phenotype 28. Cell phenotype 31, enriched in both luminal 
A and B tumors, also differed from phenotype 48 (only enriched  
in luminal A tumors) by lower expression of both HRs and CKs 
(Fig. 2f). This suggests that luminal B tumors have deviated fur-
ther from a prototypical luminal epithelial cell than have luminal 
A tumors.

IntClusts 3, 4+, 7 and 8 were all characterized by enrichment for 
cell phenotype 48; all show low-to-intermediate genomic instability. 
IntClusts 7 and 8 have loss of 16q in common. IntClusts 6 and 8 
were enriched for cell phenotype 31 despite their disparate genomic 
profiles (IntClust 6 tumors are characterized by the 8p12/ZNF703 
amplicon and IntClust 8 tumors by 1q gain/16q loss) and otherwise 
distinctive cell enrichment profiles. Cell phenotype 46, the only lumi-
nal cell phenotype to show high expression of both CK7 and CK19,  
was enriched among HER2 and IntClust 3 tumors. IntClust 3 tumors  
are characterized by few CNAs, frequent mutations of PIK3CA, CDH1  
and RUNX1, and the most favorable prognosis of all the IntClusts. 
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Enrichment for cell phenotype 46, which showed a highly distinc-
tive expression profile, may indicate that the founding cell of these 
tumors occupies a different place in the mammary epithelial devel-
opmental lineage18 than the founders of other IntClust tumor types.

We observed distinct patterns of stromal cell enrichment in dif-
ferent cancer subtypes (Fig. 4). Fibroblasts that expressed CD68 
were enriched among estrogen receptor (ER)+ luminal B tumors 
with poorer prognosis. Myofibroblasts were enriched in indolent 
ER+ tumors (luminal A and IntClusts 3 and 4+), which are char-
acterized by favorable prognosis but distinct genomic landscapes. 
Myofibroblasts were also enriched in IntClust 1 tumors, which are 
defined by the 17q23 amplicon. The enrichment patterns differed: 
IntClust 3 tumors, which harbor few CNAs but frequent mutations 
of PIK3CA and CDH1, were enriched for myofibroblast pheno-
type 38 and vascular smooth muscle cell phenotype 6. IntClust 4+ 
tumors, defined by few genomic aberrations, were enriched for cells 
of myofibroblast phenotype 55. Fibroblast phenotypes also showed 
distinct enrichment patterns among indolent ER+ tumors: luminal 
A tumors were enriched for three fibroblast phenotypes (21, 24 and 
35), whereas IntClust 3 and 4+ tumors shared enrichment of fibro-
blast phenotype 21. Myofibroblast cell phenotype 32 and fibroblast 
phenotypes 29 and 30 were enriched in both basal-like and IntClust 
10 tumors, which often have TP53 mutations. In summary, these 
findings indicate that genomically defined breast cancer subtypes 
contain distinct stromal cell repertoires.

We noted both T  cell and macrophage enrichment among 
basal-like and IntClust 10 tumors. This may be related to the high 
mutational burden, genomic instability and frequent TP53 muta-
tions associated with IntClust 10 tumors5. Luminal B tumors of 
the IntClust 9 group were the only ER+ subtype characterized by 

both macrophage and T  cell enrichment. IntClust 9 tumors have 
intermediate-to-poor prognosis, are characterized by 8q amplifica-
tion and have the highest proportion of TP53 mutations among ER+ 
tumors2, which may be a factor in eliciting an immune response. We 
evaluated the robustness of our overall findings to potential biases 
or errors in the analytical methods and found that cell enrichment 
patterns among tumor subtypes were not adversely affected by sig-
nal bleed-through or choice of clustering method used to identify 
cell phenotypes (Extended Data Figs. 3–5a).

Genomic tumor subtypes were also characterized by differ-
ent cell–cell interactions. We used permutation testing to identify 
interactions between the 57 cell phenotypes that occurred more 
or less frequently than expected by chance19 and then investigated 
which of these were significantly enriched among tumor subtypes. 
We distinguished between interactions involving cells of the same 
cell phenotype (homotypic neighbors) and interactions involving 
cells of different phenotypes (heterotypic neighbors). Subtypes sig-
nificantly enriched for interactions included HER2, basal-like and 
IntClust 10 (Extended Data Fig. 5b). In basal-like and IntClust 10 
tumors, we observed abundant homotypic relationships among 
both epithelial and stromal cells. These tumors are, therefore, dis-
tinguished from other subtypes by a starker separation between 
compartments. We evaluated this further by comparing the aver-
age number of homotypic neighbors per cell phenotype and across 
molecular subtypes (Extended Data Fig. 6). Basal-like and IntClust 
10 tumors were associated with more homotypic interactions, also 
suggestive of a ‘separation phenotype’. Collectively, our findings 
reveal that breast cancer genomic subtypes have diverse cellular 
compositions, including marked differences in stromal phenotypes 
and in patterns of cellular interaction.

t-SNE 1

t-
S

N
E

 2

44

53

43
11

31

35

17
2

2124

6
38

48

34

n = 141

Luminal A

14

27

3133
28

13

n = 100

Luminal B

16

32

46
33

n = 32

HER2

32

30

51

9

29
57
16

13

n = 57

Basal

21

23

4
53

n = 60

Normal

42

% ER+: 96.0
% HER2+: 24.0

n = 25

IntClust 1

28
31

36

% ER+: 94.7
% HER2+: 10.5

n = 19

IntClust 2

53

38
6

48

21
54 46

% ER+: 96.4
% HER2+: 5.4

n = 56

IntClust 3

53
21

55

48

% ER+: 100
% HER2+: 8.8

n = 57

IntClust 4+

23

51

57
16

% ER+: 0
% HER2+: 51.9

n = 27

IntClust 4–

36
16

n = 30

IntClust 5

28
31

n = 22

IntClust 6

4831

n = 35

IntClust 7

20 31 48

n = 48

IntClust 8

33
5

50
31

13
19

37

n = 31

IntClust 9

9

32

30

13

16

51

295 57

n = 40

IntClust 10

1

2

3

4

5

6

7

8
9

11

12

13

14

15

16

17

18

19

20

21
22

23

24

26

27

2829

30
31

32

33

34

35

36

37

38

39

40

41

42

43
44

45

46

47

48

49

50

51

52

5354

55

56

57

1,000 20,000 60,000

n cells

Hypoxia
Macrophages Vim+Slug–

HER2+

Macrophages Vim+Slug+

T cells

Fibroblasts CD68+

HRlowCKlow

HR+CK7–Ki67+

B cells

Fibroblasts

Myofibroblasts

HR–CK7+

HR+CK7–

Endothelial

HR+CK7–Slug+

Basal CKlow

HR–CK7–HR– Ki67+

HR–CKlowCK5+

Vascular SMA+

Macrophages Vim+CD45low

Myoepithelial

Median survival:
% 5 year: 78.3

% 10 year: 64.9

Median survival:
% 5 year: 66.9

% 10 year: 60.2

Median survival:
% 5 year: 92.3

% 10 year: 85.2

Median survival:
% 5 year: 98.0

% 10 year: 87.1

Median survival:
% 5 year: 73.4

% 10 year: 68.2

Median survival:
% 5 year: 70.4

% 10 year: 60.0

% ER+: 53.3
% HER2+: 100

Median survival:
% 5 year: 81.3

% 10 year: 74.5

% ER+: 100
% HER2+: 4.5

Median survival:
% 5 year: 85.1

% 10 year: 80.6

% ER+: 97.1
% HER2+: 0

Median survival:
% 5 year: 88.9

% 10 year: 78.2

% ER+: 100
% HER2+: 4.2

Median survival:
% 5 year: 60.6

% 10 year: 60.6

% ER+: 87.1
% HER2+: 9.7

Median survival:
% 5 year: 73.2

% 10 year: 70.3

% ER+: 20.0
% HER2+: 17.5

Fig. 4 | Phenotype enrichment in genomic breast cancer subtypes. Enriched phenotypes in each indicated genomic subtype are illustrated as two-
dimensional t-SNE maps. The schematic map (right) indicates position by cell phenotype. Depicted associations were identified by linear regression, are 
limited to positive associations and are restricted to those associated at P < 0.05 (two-sided, adjusted for multiple comparisons per subtype by Benjamini–
Hochberg correction). The dark gray background is proportional to the model coefficient, providing an indication of the strength of the association.

Nature Cancer | VOL 1 | February 2020 | 163–175 | www.nature.com/natcancer 167

http://www.nature.com/natcancer


Articles NATuRE CAncER

Impact of somatic genomic alterations on breast tumor ecosys-
tems. We next investigated associations between cell phenotype and 
somatic alterations in key driver genes20. We compared cell pheno-
type proportions between tumors with and without a particular 
alteration by linear regression (Fig. 5). We recovered relationships 
consistent with known breast cancer biology and also made several 
unexpected observations. For example, gains of ERBB2 were associ-
ated with HER2+ cell phenotype 16 (ref. 21). Similarly, TP53 muta-
tion is known to occur more frequently among ER− tumors than in 
other types of breast cancer5, and indeed we found that ER− basal 
cells (phenotype 51), hypoxia-associated epithelial cells (phenotype 
9) and HR−Ki67+ epithelial cells (phenotype 57) were all positively 
associated with TP53 mutations. In contrast, HR+CK7− cells (phe-
notypes 31 and 48) were negatively associated with TP53 mutations. 
For PIK3CA, the most frequently mutated oncogene in ER+ breast 
cancer5, this pattern was reversed: HR+CK7− (phenotype 48) epithe-
lial cells were positively associated with PIK3CA mutations, whereas 
HR−Ki67+ cells (phenotype 57) showed a negative association.

Cell phenotypes 28 (epithelial HRlowCKlow), 31 (epithelial 
HR+; lower CK and HR expression) and 48 (epithelial HR+CK7−)  
were differentially enriched among luminal A and B tumors  
and were associated with distinct genomic events. Cell phenotype 
48 was characterized by associations with more mutations than any 
other phenotype; these included mutations in PIK3CA, GATA3, 
MAP3K1, CBFB, MAP2K4, CTCF and MEN1. In contrast, cell phe-
notypes 28 and 31 were not associated with mutations, although 
these phenotypes were associated with CNAs including gains of 
CCND1 and TUBD1 and with ATM loss. These findings suggest that 
these ER+ epithelial cell phenotypes are separated into those driven 
by mutations (phenotype 48) and those driven by CNAs (pheno-
types 28 and 31).

The relationships that we uncovered in our analysis were not 
restricted to epithelial phenotypes. We found that fibroblast phe-
notypes 30 and 37 and myofibroblast phenotype 32 were associated 

with TP53 mutations. Loss of PTEN was also associated with fibro-
blast phenotype 30 as well as myofibroblast phenotype 12. Other 
myofibroblast phenotypes showed negative associations with TP53 
and RB1 mutations.

Next, we investigated associations between cell phenotypes and 
mutations in genes associated with immune cytolytic activity22 to 
assess possible genomic selection for evasion of immune attack  
(Fig. 5). Epithelial cells that expressed carbonic anhydrase IX 
(phenotype 9), a marker of hypoxia, were associated with gains of 
CD274, which encodes PD-L1, and with heterozygous deletions 
of B2M, which encodes β2-microglobulin. This was the only cell 
phenotype positively associated with both of these alterations. This 
suggests that tumor cell hypoxia may enable selection of genomic 
alterations that facilitate immune evasion and supports the previ-
ously reported link between tumor hypoxia and an immune-toler-
ant microenvironment23.

The genomic landscape of breast cancer is dominated by copy 
number events4; hence, we tested for associations between cell phe-
notype proportions and genome-wide CNAs (Extended Data Fig. 7).  
This analysis highlighted marked differences between cell pheno-
types that would not be apparent without single-cell phenotypic 
data. For example, two luminal epithelial phenotypes, phenotypes 
31 and 48, were both associated with gains of 16p. Phenotype 31, but 
not phenotype 48, was also correlated with loss of 11q. Despite the 
fact that both phenotypes 9 (hypoxia associated) and 57 (ER−Ki67+) 
were enriched among basal-like/IntClust 10 tumors, their CNA 
association profiles diverged substantially. Loss of 5q, a trans gene 
expression module specific to basal-like tumors that encodes key 
cell cycle and DNA repair genes24, was a clear hallmark of pheno-
type 9, whereas gain of 10p, also characteristic of basal-like/IntClust 
10 tumors, was a hallmark of phenotype 57.

We also assessed the relationship between cell phenotype abun-
dance and genomic instability, calculated as the proportion of the 
genome affected by CNAs (Extended Data Fig. 8). This analysis 

ER positive, median proportion

ER negative, median proportion

Gain

Amplification

Nonsynonymous mutation

Depleted cluster

Enriched cluster

Adjusted P  value < 0.05

Heterozygous deletion

Homozygous deletion

Mutations Amplifications Deletions

A
lteration

frequency

0

50

100

150

200

250

T cells (5)
Macrophages Vim+Slug– (13)

Fibroblasts (37)
HER2+ (16)

HR–Ki67+ (57)
Fibroblasts (30)
Basal CKlow (51)

Hypoxia (9)
HR–CKlowCK5+ (18)

Macrophages Vim+CD45low (47)
Myofibroblasts (32)
Myofibroblasts (12)

Myoepithelial (23)
Myofibroblasts (38)

HR+CK7– (53)
HR–CK7– (54)
HR–CK7+ (46)

Myofibroblasts (34)
Myofibroblasts (17)
Myofibroblasts (11)

Fibroblasts (24)
Fibroblasts (35)
Fibroblasts (21)
HRlowCKlow (28)

HR+CK7– (31)
HR+CK7– (48)

A
R

ID
1A

A
T

M

A
P

O
B

E
C

3B

B
R

C
A

1

C
D

K
N

2A

P
B

R
M

1

B
2M

P
T

E
N

M
ed

ia
n 

pr
op

or
tio

n

A
T

L2

K
LF

11

U
S

P
25

M
R

P
S

18
A

B
Y

S
L

D
N

T
T

IP
2

H
E

Y
L

IN
A

D
L

P
R

D
M

1

S
A

M
D

8

B
C

L2

T
N

F
R

S
F

1A

B
4G

A
LN

T
3

C
C

N
E

1

C
D

27
4

M
Y

B

IG
F

1R

P
R

K
C

I

P
IK

3C
A

F
B

X
L1

8

N
U

P
L2

F
K

B
P

9

P
LE

K
H

A
6

A
R

ID
4B

Z
N

F
21

7

E
R

B
B

2

T
R

P
S

1

M
Y

C

M
R

C
2

T
U

B
D

1

Z
N

F
65

2

C
C

N
D

1

R
S

F
1

C
B

F
B

M
A

P
3K

1

P
IK

3C
A

M
A

P
2K

4

G
A

T
A

3

C
T

C
F

M
E

N
1

A
H

N
A

K
2

T
H

A
D

A

M
LL

2

N
O

T
C

H
1

C
O

L6
A

3

R
P

G
R

T
P

53

R
B

1

Gene

Fig. 5 | Somatic genomic alterations influence cell phenotypes. Patterns of association between cell phenotype proportions and driver somatic genomic 
alterations. Only phenotypes with at least one significant association at adjusted P < 0.05 are included. Associations were tested by linear regression (n = 390 
tumors for CNAs and n = 372 tumors for mutations, two-sided tests). The gray background is proportional to the model coefficient, providing an indication of 
the strength of the association. Rows were ordered by hierarchical clustering of model coefficients; columns were ordered by hierarchical clustering of model 
coefficients within each aberration type (mutation, amplification or deletion). Bar charts depict the number of tumors with the corresponding alteration. Sizes 
of the leftmost markers labeled ‘median proportion’ are weighted by the median proportion of each cell phenotype by ER status.

Nature Cancer | VOL 1 | February 2020 | 163–175 | www.nature.com/natcancer168

http://www.nature.com/natcancer


ArticlesNATuRE CAncER

showed that myofibroblast cell phenotypes 11 and 44 were inversely 
associated with genomic instability. In contrast, the proportions  
of CD68+ fibroblasts (phenotype 8), proliferative epithelial cells 
(phenotypes 33 and 57), macrophages (phenotype 13) and T cells 
(phenotype 5) increased with genomic instability. Therefore, tumors 
with high genomic instability contain more proliferative cells and 
have distinctive stromal and immune populations.

To determine the overall contribution of different types of genomic 
information to cell phenotype composition, we investigated how 
much of the variance in cell phenotype proportions was explained by 
mutations, CNAs, and gene and miRNA expression. We addressed 
this by fitting a series of four linear models, each incremented by 
another data type (Extended Data Fig. 9). The explained variance 
for most cell phenotype proportions was substantially improved 
upon addition of gene expression data to mutation and CNA data 
but was not further improved upon addition of miRNA data. A set of 
stromal cells was an exception to this trend: for these cells, addition 
of miRNA data resulted in improvements in the explained variance 
for myofibroblasts (phenotypes 17, 34, 39 and 43), providing further 
support for the idea that miRNAs are more critical in regulation of 
gene expression in stromal cells than in other cell types in the tumor 
ecosystem. T cell abundance across all four T cell phenotypes was 
best explained by gene expression data, with little contribution from 
genomic alterations, in line with recent work25.

Taken together, our systematic phenogenomic analysis indicates 
that somatic genomic aberrations exert influence over the cellular 
composition of both tumor cells and cells of the tumor microen-
vironment. We saw evidence for selective pressure of the immune 
response, and our data suggest that phenotypic features of tumor 
ecosystems, including hypoxia, are driven by a specific repertoire of 
large underlying genomic events that span genomic subtypes.

The prognostic impact of cell phenotypes depends on their 
genomic context. We examined whether the cell phenotypes and 
neighborhoods that we identified were predictive of clinical outcome 
and whether their prognostic effect differed among the IntClust 
subtypes. We conducted Cox regression analysis of cell phenotype 
proportions adjusted for ER status and plotted hazard ratios in rank 
order (Fig. 6a). To account for the compositional nature of the pre-
dictors (cell phenotype proportions), variables were modeled as log 
ratios taking myoepithelial and endothelial cells as referents for epi-
thelial and non-epithelial cell phenotypes, respectively. As expected, 
cell phenotypes that expressed Ki67 (phenotypes 33 and 57) and 
HER2 (phenotype 16) were associated with poor outcome, as was 
the cell phenotype indicative of hypoxia (phenotype 9). Cells within 
the tumor microenvironment were also prognostic. Macrophages 
(phenotype 13) were indicative of poorer outcome, whereas vascu-
lar smooth muscle cells (phenotype 6) were associated with favor-
able prognosis. Phenotype 6 cells were enriched among luminal A 
and IntClust 3 tumors (Fig. 4).

To assess whether the spatial information in our dataset had 
prognostic relevance, we first investigated the correlations between 
cell phenotypes across all images (Fig. 6b). We annotated a cor-
relation matrix of cell phenotypes with cell–cell interactions that 
occurred in at least 10% of images and used permutation testing19 
to distinguish whether cells were in contact more often (cell–cell 
interaction) or less often (cell–cell separation) with other cell phe-
notypes than expected by chance (Fig. 6b). The majority of inter-
actions occurred between epithelial cells, either of the same or 
of different phenotypes. Cells of epithelial phenotypes 31 and 48 
had negative interactions with fibroblasts and myofibroblasts. We 
observed patterns indicative of tumor microenvironment structure 
defined by both correlations (statistical sense) and interactions in 
an image (physical sense) between cell phenotypes26.

Fibroblasts and myofibroblasts made distinctive contributions 
to tumor microenvironment structure. For example, one group on 

the heat map (Fig. 6b, square 1) showed correlations among T cells, 
macrophages and endothelial cells and an interaction between 
T cells and macrophages, but no stromal cells were involved in cor-
relations or interactions. A stromal–lymphoid group, in contrast, 
involved correlations among fibroblasts, T  cells and B cells and 
homotypic interactions among T cells (Fig. 6b, square 2). A third 
group composed of myofibroblasts and lacking an immune com-
ponent involved both homotypic and heterotypic interactions (Fig. 
6b, square 3). These patterns are suggestive of a spectrum of tumor 
microenvironments in breast cancer: at one end of the spectrum 
is a microenvironment characterized by diverse immune cells and 
endothelial cells; there is an intermediate microenvironment of 
lymphocytes and stromal cells; and, at the other end of the spec-
trum, there is an immune-depleted microenvironment dominated 
by myofibroblasts.

Next, we investigated the prognostic impact of cell neighbor-
hoods, where a cell neighborhood was defined as the cells in con-
tact with a given index cell. We used the mean of the number of 
homo- or heterotypic cell neighbors per cell phenotype per tumor, 
normalized to the number of neighboring cells, for survival analy-
ses (Fig. 6c). Both homo- and heterotypic neighborhoods showed 
prognostic associations similar to those for the corresponding 
cell proportion predictor. An exception to this trend was the het-
erotypic neighborhood of myofibroblasts of phenotype 12 that 
was significantly associated with poor outcome; the proportion of 
this cell phenotype was not significantly associated with outcome. 
Finally, we evaluated the combined contributions of cell phenotypes 
and their neighborhoods to outcome prediction by fitting a multi-
variable Cox regression model by penalized maximum-likelihood 
estimation. Predictors selected by the model included homo- and 
heterotypic neighbors in addition to cell proportions (Fig. 6d,e 
and Supplementary Table 3), suggesting that spatial statistics  
such as neighborhoods may improve outcome prediction based on 
cell composition.

Finally, we investigated whether the prognostic effect of cell phe-
notypes significantly differed between IntClust subtypes (Fig. 6f).  
We identified three cell phenotypes, of which only one was of epi-
thelial lineage (HR+CK7−, phenotype 48), that showed a signifi-
cantly different prognostic effect within specific IntClust subtypes. 
Myofibroblasts of phenotype 55 were associated with favorable 
outcome among IntClust 1 tumors but not among other subtypes. 
These findings support a model of cancer-associated stroma as a 
constraint on tumor progression and suggest that this may be related 
to non-cell-autonomous effects of specific genomic alterations.

Cell phenotype 48, characterized by high CK and HR expression, 
was associated with favorable outcome among IntClust 6 tumors 
but not others. Notably, most IntClust 6 tumors, which are driven 
by 8p12 amplification, were enriched for tumor cell phenotypes 
with low CK and HR expression (phenotypes 28 and 31; Fig. 4). 
Phenotype 48 cells were characterized by associations with several 
mutations but not with CNAs, in contrast to phenotypes 28 and 31, 
which showed associations with CNAs but not with mutations (Fig. 
5). Therefore, the subtype-specific prognostic effect of cell pheno-
type 48 may be related to intratumoral genetic heterogeneity among 
IntClust 6 tumors.

The only immune cell phenotype to demonstrate a subtype-
specific prognostic effect was phenotype 13 (vimentin+Slug− mac-
rophages), which was associated with a favorable outcome among 
IntClust 7 tumors but with a poorer outcome among other subtypes. 
IntClust 7 tumors are characterized by 16p gain, 16q loss and muta-
tions in MAP3K1 and CTCF and were enriched for cell phenotype 
48 (HR+CK7−). This supports previous observations of subtype-
specific prognostic effects of immune cells such as macrophages in 
breast cancer27,28. These data show that IMC-derived cell phenotypes 
are linked to clinical outcome, illustrate the potential for identifying 
multiparametric tissue biomarkers by integrating multidimensional 
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single-cell data and quantitative spatial features, and reveal prog-
nostic effects dependent on genomic context.

Discussion
We have conducted a phenogenomic analysis of cancer by integrat-
ing multidimensional breast tumor tissue imaging using IMC with 
multi-platform genomic data to investigate the impact of somatic 
alterations on tumor ecosystems at cellular spatial resolution. The 
tumor samples we studied were from the METABRIC cohort; these 
samples have been extensively characterized at the genomic level 
and are linked to long-term patient follow-up data2,5,9,14. We quanti-
fied the abundance of 37 epitope markers in each sample and used 
a data-driven approach to phenotypically classify cells and quantify 
cellular neighborhoods, revealing diverse tissue phenotypes that 
paralleled the genomic heterogeneity of breast cancer.

There was a separation of luminal epithelial cells into those 
associated with driver gene mutations but not CNAs (epithelial 
HR+CK7− cells of phenotype 48) and those associated with CNAs 
but few mutations (epithelial HRlowCKlow cells of phenotype 28 and 
epithelial HR+CK7− cells of phenotype 31). Cells of phenotype 48 
were enriched among ER+ tumors with favorable prognosis (lumi-
nal A and IntClusts 3 and 4+) and were characterized by higher 
CK and HR expression than cells of phenotypes 28 and 31, which 
were enriched among luminal tumors of poor prognosis (luminal B 
and IntClust 6). Most luminal tumors were composed of a mixture 
of cell phenotypes rather than a single dominant population. This 
agrees with the observation that there is a continuum of prolifera-
tion rates among luminal tumors rather than a multimodal distri-
bution7,29. Diverse transcriptional programs regulated by ER lead 
to the phenotypic diversity in luminal tumors30,31. Taken together 
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least 10% of images. c, Scatterplots comparing hazard ratios of cell neighborhoods and cell proportions (Cox regression, n = 448 patients). Those with a 
cell neighborhood P < 0.05 but a cell proportion P > 0.05 are highlighted. d, Phenotypes and neighborhoods selected by a multivariable model as predictors 
of disease-specific survival (regularized Cox regression, n = 448 patients). Colored markers represent features selected by the model, with red indicating 
an association with poorer outcome (greater hazard) and blue indicating an association with better outcome (lesser hazard); precise hazard ratios are 
provided in Supplementary Table 3. e, Survival plot by quartile of values (hazard ratios) predicted with the multivariable model depicted in d. f, Hazard 
ratio within one IntClust subgroup compared to the hazard ratio for all other IntClust subgroups combined for specified cell types. Depicted are those 
associated at P < 0.05 for interaction between cell phenotype and IntClust subtype (derived from a Cox regression model adjusted for ER status, n = 390 
patients, P values adjusted for multiple comparisons).
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with our findings, this suggests that the phenotypic compositions 
of luminal tumors are largely due to the interplay between somatic 
alterations and transcriptional programs induced by ER. Past work 
has suggested phenotypic expansion of minority cell populations 
under the pressure of endocrine treatment in luminal breast can-
cer31. This suggests that quantitative molecular mapping of cancer 
tissues, particularly longitudinal tracking of cell composition, may 
enable improved clinical decision-making.

IntClust 10 tumors, which are basal-like, had distinctive micro-
environments defined by hypoxia and enrichment of T cells, macro-
phages and several stromal cell types. Of these, hypoxia-associated 
epithelial cells of phenotype 9 were associated with gains of CD274 
and loss of B2M, linking hypoxia to immune escape. Hypoxia has 
previously been linked to immune suppression23,32. The hypoxic 
environment may directly facilitate clonal diversity, possibly 
through impaired DNA-damage repair33, or it may be a character-
istic of tumors with high cell turnover and therefore more rapid 
clonal selection. As immune escape has been implicated in resis-
tance to immune checkpoint blockade34, markers of hypoxia may 
aid in identifying patients with de novo resistance or those likely to 
develop resistance to these agents.

Analysis of multidimensional tissue imaging data has challenges. 
Among them is how to accurately segment cells. Cancer tissues 
often contain areas of crowded cells such that it can be problematic 
to accurately separate one cell from another, and this may lead to 
mixing of signal between closely associated cells. We investigated 
the impact of different cell segmentation strategies by comparing 
whole-cell segmentation to a highly conservative annular approach 
that limited segmentation to a distance of up to three pixels from the 
nuclear edge. Cell phenotypic profiles were highly similar between 
these two approaches (Extended Data Fig. 3) but were not identical. 
Similarly, we compared different cell clustering strategies (Extended 
Data Fig. 4) and found largely concordant, but not identical, results. 
Our systematic investigation of these effects revealed that some 
variation in cell profiles and phenotypes can arise depending on 
which approach is adopted. Notably, the key findings were robust 
to these choices.

We uncovered unexpected diversity among stromal cells. Cancer-
associated fibroblasts (CAFs) are typically described as expressing 
SMA, giving rise to the term myofibroblasts35. We observed these 
cells across tumors of all genomic subtypes, but they were most 
highly enriched in ER+ tumors with low genomic instability. Survival 
analysis was suggestive of association of these cells with favorable 
outcome (Fig. 6a), in apparent disagreement with the putative pro-
tumoral role of CAFs. Myofibroblast phenotype 32 was an excep-
tion, as these cells were enriched in IntClust 10 tumors and were 
associated with high levels of genomic instability, more consistent 
with the prevailing CAF paradigm. There is, however, evidence to 
support our finding of CAF enrichment in tumors with favorable 
prognosis: The probable histopathological correlate of activated 
fibroblasts is stromal desmoplasia35, a feature exemplified by pancre-
atic carcinomas, which are associated with a dismal prognosis, but 
for which CAFs have been implicated as cellular restraints of tumor 
progression36,37. In contrast, tubular carcinomas of the breast are also 
defined by marked stromal desmoplasia but have excellent progno-
sis38. A recent review of the METABRIC study revealed that tubular 
carcinomas belong to the IntClust 3 subtype39, which was associated 
with enrichment of myofibroblast phenotype 38 in our analysis. Our 
findings therefore indicate that a subset of luminal breast tumors of 
favorable prognosis are characterized by fibroblast activation.

The cardinal features of the multicellular ecosystems of solid 
tumors have only begun to be explored. Here, by integrating mul-
tidimensional tissue imaging and multi-platform genomics data, 
we identified cellular phenotypic correlates of somatic genomic 
alterations and demonstrated their variable influence on tumor 
ecosystems. Our findings suggest that somatic genomic alterations  

collectively manifest as characteristic tumor ecosystems. 
Characterization of these ecosystems will further understanding 
of tumor evolution and will potentially enable identification of fea-
tures that can be used to stratify patients and that can serve as tar-
gets for development of novel therapies.

Methods
Study population and genomic assays. We analyzed breast tumor samples from 
patients enrolled in the METABRIC study2. These patients were diagnosed with 
primary invasive carcinoma and treated in Cambridge, UK, between 1985 and 
2005. Appropriate ethical approval from the institutional review board was obtained 
for the use of biospecimens with linked pseudo-anonymized clinical data. Extensive 
details of specimen handling, nucleic acid extraction, microarray hybridization, 
targeted sequencing and quality-control procedures have been described 
previously2,5,9. Briefly, nucleic acids were extracted from 30-µm sections from fresh 
frozen tissues with the DNeasy Blood and Tissue kit and the miRNeasy kit (Qiagen) 
on the QIAcube (Qiagen) according to the manufacturer’s instructions. Genotyping 
and copy number analysis were conducted on Affymetrix SNP 6.0 arrays, and 
transcriptional profiling was conducted with the Illumina HT-12 v3 platform. 
Segmentation and copy number calls were made with circular binary segmentation, 
and gene expression data were normalized with the beadarray40 R package. miRNA 
profiling was conducted on a custom Agilent microarray on which putative and 
known miRNA sequences were represented. For targeted sequencing, libraries were 
prepared with the Nextera Custom Target Enrichment kit (Illumina). Enrichment 
probes for 173 breast cancer driver genes were used to enrich for all exons. Samples 
were sequenced on an Illumina HiSeq 2000.

Tissue microarray construction and assessment of sampling error. Areas of 
invasive carcinoma suitable for in situ molecular analysis were identified on 
hematoxylin and eosin-stained slides by a breast pathologist (E.P.). Cores of 0.6 mm 
in diameter corresponding to marked areas were then removed and processed 
as previously described41. Of the 483 tumors included in this analysis, 463 were 
represented by one core, 19 were represented by two cores and 1 was represented 
by three cores. Where tumors were represented by more than one core, data from 
all cores were used to compute cell numbers and cell phenotype proportions. We 
used the subset of tumors represented by more than one core to assess whether 
sampling error was likely to prove problematic for our analysis (Extended Data 
Fig. 10). Our comparison was restricted to cores that contained at least 200 cells. 
We compared the cell phenotype composition of paired cores by hierarchical 
clustering. For 7 of the 15 samples with more than one core tested and containing 
at least 200 cells, the matched cores clustered together, indicating greater similarity 
between cores from the same tumor than between those from different tumors. 
Where cores from a tumor did not cluster together, this was often because the 
tissue content differed between them, for example, where one contained mostly 
stromal cells and the other contained mostly tumor cells. Therefore, although the 
study was not free of sampling error, these observations suggest that sampling error 
did not represent a major impediment.

Antibody conjugation. Descriptions of antibodies, isotope tags and concentrations 
used for staining are provided in Supplementary Table 2. Antibody–metal 
conjugation was conducted with the Maxpar labeling kit (Fluidigm). Following 
conjugation, the concentration was assessed with a NanoDrop (Thermo Scientific) 
and was adjusted to between 100 and 500 µg ml–1. Antibodies were stored in 
Candor Antibody Stabilizer (Candor Bioscience) at 4 °C. The cloud-based platform 
AirLab was used for all antibody management and panel construction42. Antibody 
concentration and specificity were evaluated by visual inspection of IMC images of 
a variety of control tissues, including normal breast and invasive carcinoma.

Tissue antibody labeling. Slides were stained as previously described19. Briefly, 
slides were deparaffinized in xylene and rehydrated in a graded alcohol series. 
Antigen retrieval was conducted with Tris-EDTA (pH 9) buffer at 95 °C in a NxGen 
decloaking chamber (Biocare Medical). Following cooling, slides were blocked with 
3% BSA in TBS for 1 h. Slides were then incubated with metal-tagged antibodies 
overnight at 4 °C with the exception of anti-ERα antibodies, which were detected with 
a metal-tagged anti-rabbit secondary antibody to increase signal (Supplementary 
Table 2). Following incubation, slides were washed with TBS. Finally, samples were 
incubated with 0.5 μM Cell-ID Intercalator-Ir (Fluidigm, 201192B) for detection of 
DNA. After 5 min, slides were rinsed with TBS and then air dried.

Imaging mass cytometry. The abundance of bound antibody was quantified with a 
Hyperion Imaging Mass Cytometer (Fluidigm). Tissue was laser ablated at 200 Hz. 
Ablated tissue aerosol was transported to a CyTOF mass cytometer (Fluidigm) for 
quantification, as previously described8.

Image processing, single-cell signal quantification and identification of cell 
neighborhoods. Count data were converted to tiff image stacks and analyzed 
with a bespoke image processing pipeline (https://github.com/BodenmillerGroup/
imctools). Briefly, random 125 × 125 µm2 crops of images were generated and 
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upscaled by a factor of 2 for pixel classification with the pixel-classification tool 
ilastik. Pixels were manually labeled as nuclear, cytoplasmic or background 
to train a random forest classifier in ilastik. The trained classifier was used to 
attribute probabilities to the remaining pixels, generating probability maps as 
RGB tiff files. We identified images where the pixel classifier was performing most 
poorly by quantifying the uncertainty of the classifier on each image; we then 
extended the training set with pixels from these images and repeated the process 
until improvement in model performance plateaued (four iterations). Probability 
maps were analyzed with CellProfiler12. Nuclei were detected as primary objects, 
and cytoplasm and cell membrane were identified by expanding primary objects 
to the border between the cell cytoplasm/membrane and background with the 
propagation method. Single-cell regions identified in this way formed a cell mask 
used for signal quantification and derivation of neighborhood relationships. 
Single-cell protein abundance estimates corresponded to the mean ion count of 
all pixels encompassed by a cell area. We adjusted for hot aggregates of antibody/
metal in a manner similar to that previously described43. Briefly, we trained a pixel 
classifier to identify affected areas with ilastik, generated a corresponding mask and 
removed affected cells from analyses. We found that the majority of cells from the 
two rare phenotypes, phenotypes 10 and 25, were affected by hot pixel aggregates; 
hence, cells assigned to these were removed from analyses. We identified tissue 
showing ‘edge effect’ (a gradient of ion counts identifiable at the periphery of 
tissue spots) by manual inspection and isolated affected peripheral cells by using 
iterations of convex hulls to varying depth, as appropriate. Affected cells were 
removed from analyses.

Cell clustering. Single-cell expression data were arcsinh transformed with 0.8 as a 
cofactor before analysis. On the basis of protein distribution values across all cells, 
data were clipped at the 99th centile, and cells were included in clustering. Markers 
used for clustering were limited to the most informative in distinguishing cell 
populations and those deemed to have an acceptable signal-to-noise profile: CK8/
CK18, CK19, CK5, CD68, CD3, CD20, ER, PR, CD45, GATA3, CK7, Ki67, SMA, 
HER2, pan-CK, EGFR, TP53, β-catenin, vWF/CD31, CAIX, Slug and vimentin. 
We analyzed data in two stages. First, we clustered cells into 225 groups with a 
self-organizing map44 (15 × 15) implemented in the FlowSOM package44, and 
then, by using the mean expression values within each of these clusters for each 
image, we conducted a second round of clustering with the community detection 
algorithm Phenograph45, resulting in 57 clusters (of which 2 were removed 
following adjustment for hot pixel aggregates). These clusters were mapped back 
to single cells. To give these phenotypes descriptive labels, we used the average 
protein expression profile for each cluster to determine cell lineage on the basis 
of markers of epithelial (pan-CK, CK7, CK8/CK18, CK19), stromal (vimentin, 
fibronectin, SMA) and immune (CD45, CD3, CD20, CD68) cell types. Where 
average expression profiles were ambiguous with respect to these markers, images 
were also inspected to determine the most appropriate cell label on the basis of cell 
location and morphology.

Cell–cell interactions and cell neighborhoods. We used a previously described 
permutation testing approach19 to determine whether interactions between cell 
phenotypes were observed more frequently than expected by chance. Briefly, the 
immediate neighbors of each cell as defined in the ‘Object Relationships’ table 
created with the CellProfiler pipeline were used to generate a null distribution of 
cell interaction frequencies by permuting cell labels 1,000 times for each image. 
The observed frequency of each interaction phenotype was compared to this null 
distribution. A P value was computed as the proportion of permuted frequencies 
with a value equal to or greater than the observed frequency, adding 1 to each side 
of the equation to avoid spurious P values of zero46. Whether a cell–cell relationship 
was deemed significant separation or interaction was determined by whether 
the observed frequency fell on the lower or upper tail of the null distribution, 
respectively. Adjustment for multiple testing was conducted for each image with 
the Benjamini–Hochberg method47,48. Cell neighborhood statistics were computed 
for each tumor as the average number of adjacent homo- or heterotypic neighbors 
per cell, adjusted for the number of neighbors. Homotypic neighborhood statistics 
were computed as the average number of cell neighbors that were of the same cell 
phenotype, and heterotypic neighborhood statistics were computed as the average 
number of cell neighbors that were of a different phenotype.

Statistics and reproducibility. Cell phenotypes were treated as proportions. 
Spearman rank correlations were computed on the basis of the proportion of a 
cell phenotype compared to all of the cells in a tumor. For comparison to genomic 
and clinical data, cell phenotype proportions were computed separately according 
to whether a cell was epithelial or not epithelial. Adjustments for multiple testing 
were conducted with the Benjamini–Hochberg method47,48. No statistical method 
was used to predetermine sample size. Samples comprising fewer than 100 cells 
were removed from tumor-level analyses. Cells affected by staining artifacts were 
removed from analyses. The experiments were not randomized. The investigators 
were not blinded to allocation during experiments and outcome assessment.

Molecular subtypes. Intrinsic tumor subtypes were determined with the PAM50 
method as previously described2,49. IntClust subtype was based on the original 

designation2. Enrichment of cell phenotypes by molecular subtype was tested 
separately for each subtype with a linear model. Logit-transformed cell type 
proportion (logit(proportion + 0.001)) was taken as the dependent variable with 
the subtype of interest represented by an indicator variable. Association between 
cell–cell interactions detected by permutation testing and molecular subtypes was 
conducted with logistic regression by taking a given cell–cell interaction as the 
dependent variable. Adjustment for multiple testing was conducted for each subtype.

Sensitivity analyses: cell segmentation. It was possible that stromal cell 
enrichment among tumor subtypes was related to signal bleed from tumor cells 
into adjacent stromal cells in closely packed areas, where cell segmentation can be 
problematic. We therefore examined the composition of all neighboring cells for 
each cell phenotype (Extended Data Fig. 7a,b). This showed that most neighboring 
cells tended to be of the same cell phenotype or the same cell lineage. Although this 
was the case for most stromal cell phenotypes, some showed a higher proportion 
of epithelial or immune cell neighbors than others (Extended Data Fig. 7a). 
When we compared the composition of neighboring cells separately for genomic 
subtypes of breast cancer, we did not find that those identified as enriched were 
neighbored by a greater proportion of epithelial cells than those that were not 
significantly enriched (Extended Data Fig. 7b). Stromal cell enrichment patterns 
among tumor subtypes were not, therefore, due to inappropriate attribution of 
tumor cell signal to adjacent stromal cells. We further tested for the influence of 
signal bleed by systematic comparison of two cell segmentation strategies. The 
first strategy was the propagation method, used for the analyses described in the 
main text, where cell perimeters depend on a combination of the distance to the 
nearest nucleus and changes in the gradient of probability generated by machine 
learning-based pixel classification. In the second strategy, a mask was drawn 
around each nucleus up to a maximum distance of three pixels, not including 
background, resulting in a shrunken mask for each cell. We then compared the 
expression profiles of stromal cell phenotypes based on whole-cell and three-pixel 
segmentation limited to cells that mapped unambiguously. A clustered heat map 
(Extended Data Fig. 7c) revealed that stromal phenotype expression profiles based 
on whole-cell segmentation clustered together with three-pixel counterparts with 
only one exception (phenotype 3), which was separated by phenotype 30 with a 
highly similar profile. This showed that molecular profiles were robust to the cell 
segmentation strategy and corroborated our conclusion that cell phenotypes were 
not adversely affected by signal bleed from adjacent cells.

Sensitivity analyses: cell clustering. To determine whether associations between cell 
phenotypes and tumor subtypes were robust to the cell clustering method used to 
identify cell phenotypes, we used FlowSOM rather than the clustering strategy with 
Phenograph to cluster cells into 100 groups. We then mapped these groups to each of 
the 55 cell phenotypes identified by our original method on the basis of the similarity 
of their expression profiles (Extended Data Fig. 8a). Finally, we tested for associations 
between these mapped cell phenotypes and tumor subtypes to compare patterns of 
association between the original cell phenotypes and their mapped counterparts. 
To account for random initialization in the clustering algorithm, this process was 
repeated 100 times. The distribution of mapped groups was reflected in the total cell 
count per phenotype and most phenotypes were successfully recovered (Extended 
Data Fig. 8b). There was excellent concordance for associations with genomic 
tumor subtypes between the original cell phenotypes and the newly mapped groups 
(Extended Data Fig. 8b). In sum, these findings showed that patterns of association 
with tumor subtypes were robust to choice of clustering strategy.

We also investigated whether combining all cells belonging to cell phenotypes 
with the same descriptive label (for example, fibroblasts) would lead to a 
meaningful loss of information. We combined cell phenotypes with the same 
descriptive label and tested for enrichment patterns among tumor subtypes 
(Extended Data Fig. 9). Major enrichment patterns were reproduced, including 
those of most epithelial, stromal and macrophage cell phenotypes; however, this 
simplification came at the cost of resolution. For example, differential enrichment 
between cell phenotypes 31 and 48 among luminal tumors, distinct stromal cell 
phenotype enrichment profiles and T cell enrichment patterns were lost when 
cells were combined into coarser groupings. This demonstrated the advantage of 
retaining all cell phenotypes in accurately mapping the complexity of the distinct 
tumor ecosystems of different tumor subtypes.

Correlation of cell phenotype with gene or miRNA expression. Gene expression 
and miRNA data, processed and normalized as previously described2,9, were used 
for these analyses. Where more than one probe mapped to a gene, the probe with 
the greatest variance across the dataset was selected. Cell phenotype correlations 
with gene expression and miRNAs were estimated by linear regression following 
logit transformation of the cell proportions. Cell phenotype was used as the 
dependent variable and expression as the independent variable. Significant 
correlations were identified following adjustment for multiple testing. Enrichment 
analysis of Reactome pathways was conducted with the ReactomePA50 and 
ClusterProfiler51 packages. For gene expression, these analyses included up to the 
top 300 positively correlated genes per cluster. For pathway analysis of miRNAs 
enriched among myofibroblasts, probable gene targets were first identified. This 
was conducted with a data-driven approach. Genes were considered likely targets 
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of miRNAs if more than 5% of expression variance was explained by the miRNA 
based on the results of a generalized additive model fit to the entire METABRIC 
cohort, as previously described9. Pathways enriched among the resulting targets 
were identified as for the gene expression analyses.

Correlation of cell phenotype with genomic variation. Data processing and 
normalization were conducted as previously described2,5. Genomic instability was 
computed as the proportion of the non-diploid genome on the basis of ASCAT 
integer copy number calls52. Kruskal–Wallis tests were used to test for association 
between cell phenotypes and quartiles of genomic instability. Associations between 
cell phenotypes and CNAs were tested separately for gains/amplifications and 
heterozygous/homozygous deletions where tumors were coded as either positive or 
negative for a given CNA. A similar strategy was used to analyze associations with 
mutations. Tumors were deemed either positive or negative for a given mutation 
encompassing all nonsynonymous mutations; genes with fewer than five mutations 
observed were excluded from association analyses on the basis of data contained in 
Supplementary Table 4 of ref. 5. A given CNA or mutation was tested for association 
with a cell phenotype by using a linear model, taking the logit-transformed cell 
proportion as the dependent variable. Tests for association with CNAs were 
adjusted for the total number of amplified or deleted genes per tumor and the total 
number of copy number events per tumor. These features were represented by 
three rank-transformed covariates, as previously described22. Tests for association 
with mutations were adjusted for the total number of detected mutations, also 
represented as a rank-transformed covariate. Tests for association with copy 
number status were limited to genes previously identified as likely amplicon 
drivers20, those associated with immune cytolytic activity22 and those designated 
as ‘large deletions’ in breast cancer within the COSMIC database53. Analyses of 
these genes were limited to either increased or decreased copy number status as 
appropriate. Adjustment was made for multiple testing for each alteration type.

Explained variation of cell phenotypes by genomic data. The degree to which cell 
phenotype abundance was explained by each genomic data type was investigated 
with a linear model, taking logit-transformed cell phenotype proportion as the 
response variable. We fit a series of four models, each incremented by an additional 
data type (mutations, CNAs, gene expression and miRNA expression), represented 
by their first 20 principal components such that the full model contained 80 
predictors. To account for the variable number of predictors, we used the adjusted 
R2 statistic as an indicator of explained variance.

Survival analyses. Analyses were based on updated clinical data available in ref. 14.  
To account for the compositional nature of the cell phenotype data, we took 
myoepithelial and endothelial cells as referents for epithelial and stromal cells, 
respectively, to compute log ratios that were then used as explanatory variables 
in Cox regression models54. Analyses were adjusted for ER status. To account for 
known violations of the proportional-hazards assumption by ER55, it was modeled 
as a time-varying covariate: an additional term was included in the model that 
was allowed to vary with the logarithm of time. To determine whether prognostic 
effects significantly differed between IntClust subtypes, we extended these models 
to include an indicator variable for IntClust subtype and an interaction term 
between cell phenotype and IntClust subtype. P values for the interaction term 
were adjusted by Benjamini–Hochberg correction. Evaluation of all log ratios and 
neighborhoods (163 predictors) in a multivariate model was conducted with a 
penalized maximum-likelihood estimated Cox regression model implemented in 
the R package glmnet56. Lambda was selected by cross-validation. All analyses were 
conducted with Stata SE version 14.2 and R57.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
IMC data, including cell masks and processed single-cell data, have been deposited 
to the Image Data Resource (https://idr.openmicroscopy.org/) under accession 
code idr0076 (see https://idr.openmicroscopy.org/about/download.html). 
Previously published METABRIC copy number, gene expression, miRNA and 
targeted sequencing data that were reanalyzed here are available under accession 
codes EGAS00000000083, EGAS00000000122 and EGAS00001001753 at the 
European Genome–Phenome Archive (http://www.ebi.ac.uk/ega/). Updated 
METABRIC clinical data analyzed here are available as part of the supplementary 
information in ref. 14. All other data supporting the findings of this study are 
available from the corresponding authors upon reasonable request.

Code availability
In-house image preprocessing scripts are available at https://github.com/
BodenmillerGroup/imctools. Other analysis code is available from the authors 
upon request.
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Extended Data Fig. 1 | Spatial distribution of cell types. Representative cell masks annotated by protein expression levels (left) and by inferred cell 
identities separated by tumour versus stroma (right). For protein expression levels, mean counts per cell were normalised relative to all cells analysed. 
White scale bars (top left) represent 100 µm.
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Extended Data Fig. 2 | Definition of myofibroblasts and miRNA-related pathway enrichment. a, Box-and-whisker plot of the distribution of SMA 
expression by stromal cell types (n = 141, 818 cells). Boxes represent the interquartile range. Lines dividing boxes indicate the median, and vertical lines 
represent range of expression from the 1st to 99th percentile. b, Pathway enrichment analysis of genes (hypergeometric test; adjusted for multiple 
comparisons) linked to miRNAs positively correlated with myofibroblast and vascular smooth muscle cell proportions (n = 371 tumours; related to Fig. 4).
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Extended Data Fig. 3 | Cell neighbours depend on cell phenotype. a, Stacked bar plot depicting phenotypic composition of cell neighbours separately by 
each cell phenotype for all tumours. b, Stacked bar plots depicting the phenotypic composition of cells neighbouring all stromal phenotypes separately 
by IntClust subtype, illustrating patterns of stromal cell enrichment among IntClust subtypes (related to Fig. 4). c, Heatmap of median expression values 
for stromal cells based on both whole-cell and 3-pixel annular segmentation methods; rows and columns ordered by hierarchical clustering using Ward’s 
method.
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Extended Data Fig. 4 | Robustness of cell phenotype associations with tumour subtypes. a, Example heatmap of Spearman’s correlation statistics 
between 100 FlowSOM groups and Phenograph clusters based on median protein expression values, to illustrate the methodology for mapping FlowSOM 
groups to cell phenotypes assigned using Phenograph. Solid squares indicate largest positive correlations. Rows and columns are ordered by hierarchical 
clustering using Ward’s method (comparison based on n = 479, 844 cells). b, Bar chart on the left shows the number of cells assigned to the Phenograph 
cell phenotypes. Bar chart on the right depicts frequency of FlowSOM groups mapped to each Phenograph-clustered phenotypes, arising from 100 runs 
of FlowSOM each generating 100 groups (10,000 groups mapped in total). This illustrates that most phenotypes were assigned by both methods and 
that the frequency of mapped groups was related to the number of cells represented by each phenotype. c, Bar charts comparing patterns of association 
(tested using linear regression) with breast cancer molecular subtypes between mapped cell phenotypes (from 100 runs of FlowSOM each generating 
100 groups as in panel b) and the Phenograph-assigned phenotypes. Green and red bars distinguish between enrichment and depletion of a given cell 
phenotype for each molecular subtype. ‘Original’ on the x-axis indicates associations based on the Phenograph clustering methodology.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Patterns of cell phenotype and cell-cell interaction enrichment among breast cancer molecular subtypes. a, Patterns of 
enrichment among metaclusters defined by combining subsets of Phenograph-assigned cell types by descriptive label (for example, fibroblasts, 
myofibroblasts, T cells). tSNE map on the right indicates position by cell identity (median values for 22 metaclusters computed based on n = 479, 844 
cells). Coloured markers indicate significant enrichment. Depicted associations derived from linear regression (n = 390 tumours; two-sided tests; adjusted 
for multiple comparisons), restricted to those with an adjusted p-value < 0.05, were identified by linear models where the dark grey background is 
proportional to the derived point estimate, providing an indication of the relative strength of the association. b, Co-occurrence plots of cell-cell interactions 
identified by permutation testing and found to be significantly enriched (p-value < 0.05 after adjustment for multiple comparisons) among the molecular 
subtypes indicated (limited to samples that contain both cells for a given interaction; range of n between 86 and 361 tumours for depicted associations). 
Rows and columns correspond to cell types in the same order as labelled on the y-axis.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Distribution of cell neighbourhoods by molecular subtypes of breast cancer. tSNE reference maps representing cell types as light 
grey makers (tSNE map based on median marker expression values derived from n = 479, 844 cells). Neighbourhood enrichment for each cell type within 
tumour molecular subtypes was determined by fitting a linear model taking mean neighbourhood values as the dependent variable and tumour molecular 
subtype as independent variable. Coloured markers indicate those significantly enriched within a given subtype (p-value < 0.05). Dark grey background is 
proportional to the point estimate from the linear model, providing an indication of the strength (size) of the association.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Associations between cell phenotypes and genome-wide copy number aberrations. Scatter plots depicting adjusted p-values 
derived from linear models testing for associations between cell phenotype and genomic alterations (n = 390 tumours; two-sided; adjusted for multiple 
comparisons). Coloured points represent significant associations (red, gains; blue, losses). Depicted points are restricted to those associated with positive 
coefficients. Shown are cell phenotypes most affected by copy-number aberrations.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Relationship between genomic instability and cell type. Box and whisker plots of the distributions of cell types as proportions 
versus quartiles of genomic instability. Boxes represent the interquartile range. Lines dividing boxes indicate the median, and vertical lines represent range 
of expression from the 1st to 99th percentile. The p-values were derived from two-sided Kruskal-Wallis tests; depicted are those cell phenotypes with a 
p-value < 0.05 (adjusted for multiple comparisons; n = 404 tumours).
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Extended Data Fig. 9 | Cell type abundance explained variance by genomic data. Explained variances (right y-axis) for each of a series of four linear 
models are depicted as connected circles (n = 357 tumours). Distributions of cell type proportions per tumour (left y-axis) depicted as boxes and whiskers. 
Boxes represent the interquartile range. Lines dividing boxes indicate the median, and vertical lines represent range of expression from the 1st to 99th 
percentile.
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Extended Data Fig. 10 | Influence of tissue sampling on cell phenotype estimates. Stacked bar plot depicting cell phenotype composition per tissue-
microarray spot for a subset of fifteen tumours represented by at least two spots. The order of columns was determined using single-linkage hierarchical 
clustering. Patient IDs are on the x axis. Grey bars highlight where two tissue spots from the same tumour cluster together.
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