Using methylation patterns for reconstructing cell
division dynamics: assessing validation experiments

Daniel J. Andrews, Andy G. Lynch and Simon Tavaré!

Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way,
Cambridge CB2 ORE, UK

Abstract

Methylation patterns present in a cell population can inform us about the way
the cells are organized and how the population is sustained. Methylation is in-
heritable through cell divisions but changes can occur as a result of methylation
replication errors. Hence, variation in methylation patterns in a cell population
at a given time captures information about the history of the cell population.
It is important that the observed methylation patterns are representative of
those in the cell population. However, bisulfite sequencing may introduce new
patterns and degradation may eliminate rare patterns. We investigate how
bisulfite degradation may be expected to affect the data, and how inference
could be made in light of this. A model for the data generation process makes it
possible to estimate the starting number of distinct methylation patterns more
accurately than simply counting the number of distinct patterns observed.
Keywords: polymerase chain reaction, lineage tracing, Markov chain Monte

Carlo,

1. Introduction

Understanding the lineage relationships among cells and the dynamics of
cell division is of great interest in developmental biology, cancer dynamics, stem

cell dynamics, immunology, neurobiology and reproductive medicine, to name
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just a few. The most celebrated success story is arguably the identification of
the complete cell lineage tree of the nematode C. elegans [I]. For reviews of
approaches for lineage tracing up to the end of the 20th century, see [2] 3] for
example. As might have been anticipated, it has proved technically difficult to
produce detailed lineage trees in higher organisms such as mouse and human. As
a result, evolutionary approaches for constructing and interpreting lineage trees,
which exploit changes in molecular markers during cell division as a surrogate
for direct observation, have become common in the last 15 years (reviewed in
[4, 5, [6] for example).

Several types of molecular marker have been used for this purpose. Mi-
crosatellite variability has been exploited in [7), [8] [9] [4) [10 [I1], mitochondrial
variation in [12], and variation in methylation status in [13| [14] 5] 16, 17]. In
this article we focus on the use of methylation markers, which we now describe

in more detail.

1.1. Using methylation patterns

The measurement of the methylation patterns present in a cell population
can inform us about the way the cells are organized and how the population
is sustained. Methylation is inheritable through cell divisions but changes can
occur as a result of methylation replication error. Hence, variation in methy-
lation patterns in a cell population at a given time captures information about
the history of the cell population.

An example of a cell population that has been studied in this way is the
human colon crypt. The colon crypt is found in the epithelium of the colon,
has a cylindrical shape and consists of about 2000 cells. Residing at the bottom
of the cylinder are stem cells from which originate the cell lineages of all the
other cells found in the crypt. When a stem cell divides it will usually produce
a daughter cell, which is committed to differentiation, as well as another stem
cell. More rarely the stem cell will divide symmetrically to produce either two
stem cells or two differentiating cells. Any cells committed to differentiation

will move up towards the top of the cylinder, differentiating as they go, until



they become mature epithelial cells.

The methylation data we obtain are typically composed of methylation pat-
terns obtained from bisulfite converted DNA sequenced at a small number of
CpG sites in an amplicon a few hundred basepairs in length. Such patterns can
be used to infer aspects of the dynamics of cells in the colon crypt by exploiting a
probabilistic model for the cell population organization and for the observation
process [I8]. The authors fit a full probabilistic model for the stem cell ge-
nealogy, the methylation/demethylation process and the sampling, and perform
inference using an MCMC algorithm. In [19] a cellular Potts model of crypt
evolution is used, while the inference about stem cell structure is performed us-
ing approximate Bayesian computation (ABC). As another example, [20] infer
the topological nature of the ancestral tree for tumour cells from methylation
patterns and spatial data. They simulate methylation patterns and also use an
ABC algorithm for the inference.

It is, of course, important that the observed methylation patterns are repre-
sentative of those patterns in the cell population. However, we know that bisul-
fite sequencing may introduce new patterns, and degradation may eliminate
rare patterns. Clearly, this is an occasion when studying the data generation
process in more detail may prove beneficial. Here we investigate how bisulfite
degradation may be expected to affect the data, and how inference could be

made in light of this.

1.2. Bisulfite treatment

The methylation states of CpG sites can be measured by encoding this in-
formation into the DNA sequence. This is achieved by treating the DNA with
bisulfite, which causes the complete deamination of cytosine to make uracil,
while leaving 5mC unchanged. Thus, from a number of CpG sites, some will be
indicated as methylated and others not; we call this the methylation pattern.
Bisulfite treatment is followed by PCR where uracil is converted to thymine.
These DNA molecules, with the methylation patterns encoded as substitutions,

can be prepared and sequenced in the usual way. The sequenced reads can be



compared to a reference sequence and the methylation patterns can be inferred.

Bisulfite treatment introduces errors and biases, investigated by [21] and [22].
The method is based on the complete conversion of cytosine and the complete
non-conversion of 5-methyl-cytosine. If either of these does not happen, i.e. if a
cytosine fails to convert or a 5bmC does convert, then an incorrect methylation
pattern will be encoded, which may subsequently be sequenced.

DNA degradation is an undesired side-effect of bisulfite treatment; degraded
molecules will not be sequenced and hence the methylation patterns of these
will be absent from the read data. [2I] conclude that complete conversion of
cytosine can be achieved when the incubation of alkaline denatured DNA with
a saturated bisulfite solution is performed for 4h at 55°C. They estimate that
using these conditions between 84% and 96% of DNA is degraded. With such
a high fraction of molecules being degraded there is a high chance that some
of the more rare methylation patterns in the population may not be observed
at all. This would be particularly concerning if the diversity of methylation
patterns was of interest, because degradation is likely to decrease this diversity.

We consider a theoretical experiment where a single colon crypt, with ap-
proximately 2000 cells, is bisulfite-sequenced (using 454 sequencing technology).
We consider methylation patterns made up from 9 CpG sites contained in a sin-
gle amplicon sequence, numbers that are typical of real data (cf. [13}, 1814} [19]).
Specifically, we investigate how the measurement process affects inference of two
quantities: the number of haploid genomes (out of the total of 4000) that have
the most common pattern, and how many distinct patterns are present in the
entire population. While we consider a specific case for illustration, the reader

can generalise to other examples.

2. Errors, biases and uncertainty in bisulfite sequencing

To understand how the steps in the bisulfite sequencing protocol affect the
analysis of methylation patterns we start by describing a naive statistical method

for this type of data. Suppose we know that there are N genomes in our



sample and we observe k different patterns with counts yq,...,yx. Then the
naive estimator of the number of distinct patterns is & and the estimator of the
number of genomes with pattern i is N(©y; /Y, where Y = y; + --- 4y is the
total number of reads.

There are many ways that errors, biases and uncertainty can be introduced
in the course of bisulfite sequencing, and which may consequently result in these
estimators being biased or highly variable. For this study we limit the sources
of error and bias that we consider. We consider only those biases that result
from the loss of molecules from the experiment: e.g. by bisulfite degradation,
by sampling, by ligation, and by bead placement. We expect that the loss
of molecules from observation will affect estimates for the methylation pattern
frequencies as well as estimation of the total number of distinct methylation
patterns. In summary, we are focusing on the affect of losing molecules from
the experiment, and we assess how small the degradation probability can be

whilst still achieving small bias and variance in estimation.

3. Model for degradation and sampling

3.1. Modelling

We focus on the experimental steps of bisulfite degradation and other sam-
pling steps; the resultant protocol can be described as follows. Let b be the
number of CpGs at which the methylation status will be observed. Then there
are k = 2 possible patterns which wlog we can label 1,...,k. A quantitative

model for the protocol is as follows.

1. We start with a total of N(® molecules containing the CpG sites, and
with ngo) of pattern ¢ for e = 1,..., k; ngo) + -+ n;go) =N©O,

2. Bisulfite treatment causes the failure of a fraction (1 — p) of the molecules
leaving a total of N(!) molecules, which is N(©p on average, and nz(-l) with
pattern ¢ for i = 1,..., k.

3. PCR amplifies the number of each pattern by a constant factor M.



4. The number of reads Y will be smaller than M x N due to loss of
molecules during ligation, bead placement, and other sampling steps that

happen after PCR.

We can describe this model probabilistically as

&)

n;’ ~ Binomial(nz(-o)

,p) independently for i =1,...,k ,

)
)
3

Whether this model is accurate depends on the validity of a number of

yn™M Y ~ Multinomial(Y,q) where ¢; =

assumptions and approximations (beyond those made by ignoring the sources

of bias and error as described above). These are as follows:

(i) Each molecule independently, and with probability 1 — p, fails the bisulfite

treatment.

(ii) Each molecule which survives the bisulfite treatment is independently and
equally likely to be successfully read. With this assumption alone and supposing
we knew the probability of a molecule being read to be r, then the second part

of the model would be

Yi ~ Binomial(Mn(l), r) independently fori=1,...,k,

K3

However, the probability r is the product of the probabilities of several (as-
sumed) independent events: that a molecule has adapters successfully ligated
to it; that a molecule is successfully hybridized to a bead; that a molecule sur-
vives any other sampling steps; that a molecule is not adsorbed onto any of the
containers it is held in. Hence we will treat it as unknown. The natural way to
remove 1 from the likelihood is by conditioning on Y := y; + - - - + y, which is
observed, leaving
. MNO\ R ™

o= ("2 IL()

1)

In words, y is distributed as taking Y objects from an urn containing Mn;
balls of colour 4, without replacement (a multivariate hypergeometric random

variable).



(iii) If the PCR is successful then M is large; for example, if PCR has 20-30
rounds with replication probability in 0.7-1.0, then M is between 4.1 x 10* and
1.1 x 10°. We shall hence assume that M x N is many times larger than
Y. Taking the limit as M — oo, y becomes distributed as above but with

replacement (a multinomial random variable).
(Y)Y, n{ )y
plylnM,Y) = V! ——
H yi!

i=1

Assuming that r is unknown weakens our ability to make inference about
N However, for application to tissues such as colon crypts this is acceptable

because the range of plausible values of N(®) is known in advance..

3.2. Simulation study: effects of degradation

Now that we have a model for the bisulfite sequencing protocol we can in-
vestigate by simulation the consequences of degradation by bisulfite treatment.

In Figure [I] we investigate the affect of the bisulfite survival probability p on
the bias of the naive estimator of the starting number of distinct patterns. The
more patterns that were present in the starting population (and hence the more
rare patterns that are present) the more bias the estimator will have. This is
because the fewer molecules that have a given pattern the more likely it is that
all of them will be degraded. When p = 0.25 the bias is quite small, but it is
very large for p = 0.05 and p = 0.01; the estimates being over 10 times too small
in the latter case when there were more that 100 patterns present originally.

In Figure [2] we investigate the affect of p on the variance of the observed
pattern count for a pattern originally present in 2000 out of the 4000 haploid
genomes. When p > 0.1 this variance changes little, but as p decreases below
this level the variance increases rapidly.

The consequences for estimation are that when p is small we expect large
uncertainty about the frequency of any pattern and vary large uncertainty about
the number of distinct patterns, especially when more than 100 patterns are

observed.
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Figure 1: For 5 different starting pattern populations with number of distinct patterns,
3,22,111,237,337 (out of a total of 29 = 512), and for different degradation probabilities
p = 0.01,0.05,0.25, the data y were sampled 100 times according to the model with Y = 10%.
The naive estimate of the number of distinct patterns is more biased for smaller p. (The

starting populations are realisations of the prior discussed later in the article, with « € (0, 1)).

4. Statistical inference method

We have seen that the naive estimator for the starting number of distinct
patterns is biased. We now present a Bayesian approach to inference, and
develop an MCMC algorithm to generate samples that we will treat as being

samples from the posterior.

Choice of non-informative prior We need to specify a prior for (ngo), ey n,go)).
Considering this inference problem in isolation from everything known about
the evolutionary process that created the population of methylation patterns, a

simple three level prior would be

(n(o))le ~ Multinomial(N, (¢;)%_,),  (¢:)®_, ~ Dirichlet(a1;), and o ~ T,

2

where 1j is a k-vector of ones, and 7 is a density function on (0,00) that is

yvet to be decided. The priors in this family satisfy the sensible property of
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Figure 2: For an initial population n(%®) such that the most frequent pattern was present in
50% of genomes, the data y were simulated 100 times, with Y = 10%, and each for a range of
p in (0,0.5). The observed number of this pattern has very large variation, but is unbiased,

when p is small.

being exchangeable in n(?); that is, ]P’(ngo) = x1,... ,n,go) =) = P(nfro()l) =
Tlyee- ,ng_o()k) = zy,) for any permutation o € Si. Equivalently, our prior knowl-

edge is invariant to the way the patterns are labelled. Simulations from

1

—2/3
BT FUBRECEEIC)

m(a)

show that this prior is less informative for the number of distinct methylation

patterns; see Chapter 2 of [23] for further details.

Algorithm development Figure|3|show a directed acyclic graph (DAG) represen-
tation of the model, including the prior and observation model. We shall show

how n(9) and ¢ can be integrated out.
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Figure 3: A directed acyclic graph (DAG) representation of the model. The circular nodes are

those that are not observed; the square nodes are observed; the diamond nodes are assumed
known. The arrows represent the conditional relationships: the conditional density of a node
given all its ancestors is only a function of said node and its parent nodes. The nodes in
the plate exist in k copies; two nodes in different plates are independent conditional on the

parents of the plate-nodes.

The full conditional for (n(%), q) is

k (0)
n; n( RO
p(n®,qln'V, a,y) o H (nm) =2 Hoga <o)
k n,o)
0) 4q; '
x N 'Hn {O<n(0)} (>, nV=NO}
=1
k afl
X H <a<yyl{x; ¢=1}>
which is proportional (in n(?) and ¢) to
& n<0> n(»
p(n®,gn® ay) = (VO =3 7ni) 'H a AL, 1@ o) L <n®)
j=1 3 )
k " k (1)+a 1
x F(Z " +O‘k)H M l{OSqiél}l{Zj a;=1}
j=1 STy 7 +a)
Hence &
n® — n(1)|n(1)7 q,y ~ Multinomial(N(O) — ZnEl), q)
j=1
and

glnM, o,y ~ Dirichlet(n® 4 aly).
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Dividing p(n(O),n(l),q,a\y) by p(n(0)7q|n(1),a,y) this leaves the joint pos-
terior for n™), o
n{M ©_353 n()
N(O)lij i (1 p)N Y, .
(N© — >, gl N, (1)) {Zj n(V<N©)}

nIT(ak) F (1) ) v
y (ZJ i) a)H I'(n! +a) -
LT (a 5, n“) {o<ni"y

p(n®,aly)

which cannot obviously be written in terms of simpler distributions.

The fact that the posterior distribution can be decomposed in this way
suggests a program for sampling using an MCMC algorithm: get a sample
from n(®), aly, then sample directly from the exact conditional distributions of
q|n(1)7 @, y, and then n(® \n(l), q,y. This should be better than sampling all the
variables in a MCMC scheme, due to decreased correlation between samples.

The full conditionals for the random variables «, n(l) . ,ng) are

(3, n{) T (k) 0 I +a
P +ak) i (n))0(e)

plajn™,y) o m(a)

and
(77/51) _’_S(_l))'l—\(ak) F(ngl) +C¥) n£1)yz

T(n{" + s_py +ak) ()T(@) (8 +50))Y
N(O)!p"51)+5<—i> (1- P)N(O)_”El)—s<—z‘>
(NO — ) — s N0 + 50!

p(ngl) |S(—i)7 «, y)

x Lictn®<no s,y

where s(_; =2, n;-l).

One iteration of the MCMC algorithm proceeds as

1. update nY) by k Metropolis-Hastings steps:

for each ¢ = 1,...,k update nl(-l)

given s_; and «;
2. update a by a Metropolis-Hastings step;
3. sample ¢ given n) and «;

4. sample n(9) given n, ¢ and a.

11



There is one issue with this scheme that would prevent it working well in
certain cases: if Y is large then the posterior for n(®) has local modes at vectors
approximately integer multiples of the truth. If the algorithm is initialized near
to a local mode then it will not converge to the true posterior.

Rather than altering the algorithm to get around this problem we set the

initial n® to be sampled from

m \*
nM ~ Multinomial N(O)p, {nl(l)}
J n] 1=1

to have a good chance of convergence to the true posterior around the global

mode.

5. Simulation study: Bayesian inference

We investigate how our Bayesian inference method performs under different

circumstances.

Investigating frequency estimates. For a given starting population of patterns
{n{9}512 we simulate the observation process 100 times, with ¥ = 10%, each
time computing the MAP estimate of the starting number of genomes with the
truly most frequent pattern; this pattern is originally present with count 779
out of 4000. This we repeat with values of p = 0.01,0.05,0.1,0.25.

Figure [] shows that for small p the MAP estimator is biased downwards
and highly variable. Both the bias and variance of this estimator decrease as p
increases. The naive estimator seems to be much less biased than the MAP for
smaller p, and performs equally well for larger p. The bias in the MAP estimate

is due to the prior. The smaller p is, the more the posterior is more influenced

by the prior, and the estimator is more biased.

Investigating diversity inference. Figure [p|shows the result of a simulation study
investigating the performance of the Bayesian MAP estimator of the number of
distinct patterns. When a log,, transformation is taken of the estimates it seems

that the variance is stabilised; this means that the coefficient of variation of the

12



estimate does not depend on the true number of distinct patterns. The estimator
variance is larger when p = 0.01 than when p = 0.05. It seems like the estimator

is more-or-less unbiased, unlike the naive estimator that underestimates.

6. Discussion

We have seen in this article that degradation caused by bisulfite treatment
has the potential to make the observed methylation patterns very unrepresen-
tative of those present in the cell population. We developed a Bayesian MCMC
method to infer the methylation patterns present in the cell population. We
showed that the method allows us to accurately infer the number of distinct
patterns originally present. However, when p is small, this method performs
worse than the naive method at estimating the original count of a given pat-
tern.

In this experiment it would seem that 99% degradation is too small to achieve
accurate and precise estimation. This equates to an average of 40 molecules
not being degraded. When degradation is this high the uncertainty about the
original pattern counts is high and cannot be reduced by using methods based

on models of the data generation process.

6.1. Different experiments

This limited study has been concerned with a particular experiment when
the number of starting molecules is N(©) = 4000, the number of CpG sites is
b = 9, and the number of reads is Y = 10*. The question remains as to how

things would be different if these experimental parameters were different.

Concerning N(©© . We expect that increasing N(©) and keeping the number of
distinct patterns constant will have a very similar effect to increasing p, that is,
more accurate inference of the pattern frequencies. If the pattern diversity also
increases then there may be little improvement in the precision in estimating
the starting number of distinct patterns, as the number of rare patterns may

not change.
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Concerning Y. The variance in the estimate of the proportion of molecules
with pattern ¢ comes from two sources: the variance in sampling nl(-l) and the
variance in sampling y;. Increasing Y will reduce the latter variance but not

the former. Hence, there will be diminishing returns from increasing Y.

Concerning k. In this study we considered methylation patterns made up from
9 CpG sites, equivalently 512 possible patterns. If a different number of CpGs
were used then it is likely that the prior would need to change in order to keep
it uninformative for the number of distinct patterns. The number of possible
patterns is k = 2° where b is the number of CpG sites. The MCMC algorithm
is O(2%) and hence will become very slow for moderate b. This method would

need to be adapted in that case.

6.2. Opportunities

In this study we rejected the uniform prior on the starting pattern counts
as it was very informative for the number of patterns with non-zero count.
We manufactured a prior that appeared uninformative for this function of the
starting patterns, which we used for subsequent analysis. This prior is not
entirely satisfactory as it biases inference of pattern frequency for small values
of p; see Figure [l Clearly this prior is informative for the marginal count of a
given pattern, and may be informative for any function of the starting patterns
other than the one we have considered.

We have made the assumption that N(® and p are known “exactly”. In
practice they will have been estimated and there will be some associated un-
certainty. Clearly, the more uncertainty there is about these parameters, the
higher the posterior variance will be in inference about starting pattern counts
and pattern diversity. It would be easy to include the uncertainty about N(©
and p within the Bayesian analysis by simply specifying appropriate priors and
including updating steps in the MCMC algorithm.

Our simulation study in Section 5 aimed to demonstrate the inference method

we had developed. As we had no suitable real data we had to simulate data,
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which we did from the prior. By simulating from the prior we ignore the possi-
bility that our model is misspecified.

We limited the scope of this study to exclude the possibility that new pat-
terns might arise by bisulifite conversion, PCR or sequencing errors. However,
it is clear that the presence of these errors will affect the ability of our method
to infer the starting patterns. In particular, as under the model described in
this article every observed pattern must have been present originally, every ob-
served error pattern will at least shift the posterior distribution of the starting
number of distinct patterns up by one. It is likely to have a greater effect than
this, as error patterns will mostly be observed only a few times. The model
will interpret seeing a few rare patterns as meaning the starting population had
many rare patterns, some of which were lost to degradation, hence amplifying

the bias.

6.3. Conclusions

In the introduction we claimed that understanding the data generation pro-
cess would provide benefits. Have we seen any in this case? We now know that
it is important that the probability of degradation (1 — p) is small. Given a
real experiment with some N (9, we could simulate the data generation process
and investigate when p will be too small. Having a model for the data genera-
tion process has also made it possible for us to estimate the starting number of

distinct patterns in a more accurate way.
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frequency of pattern

Figure 4: A starting population was simulated from the prior with a = 0.3, resulting in
a most frequent pattern of 779 out of 4000 and a total of 88 distinct patterns. For values
of p = 0.01,0.05,0.1,0.5, 100 sets of observed patterns were simulated from the model with
Y = 10%. For each of these datasets the MCMC algorithm produced MAP estimators of the
frequency of the most frequent pattern. Also shown are box-plots of the naive estimates for

the pattern count. For small p the MAP estimator is biased with a median of around 450.
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The bias and variance of the MAP estimator decreases with increasing p.
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boxplot of MAP estimates for the number of patterns
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Figure 5: A range of starting populations was sampled from the prior with values of o such
that 0 < a < 0.3. For each population 100 sets of observed patterns were simulated from the
model with Y = 10%. For each dataset our MCMC algorithm was run and the MAP estimate
of the starting number of distinct patterns was computed. Shown are boxplots of log;, of

these estimates when p = 0.01, and p = 0.05.
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