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For Paul Erdos on his 80th birthday 
The Erdos-Turan law gives a normal approximation for the order of a randomly chosen 
permutation of n objects. In this paper, we provide a sharp error estimate for the 
approximation, showing that, if the mean of the approximating normal distribution is 
slightly adjusted, the error is of order n. 

1. Introduction 

Let a denote a permutation of n objects, and O(a) its order. Landau [13] proved that 
max,log O(a) - {n log n}1/2. In contrast, if u is a single cycle of length n, log O(a) = log n, 
such cycles constituting a fraction l /n of all possible u’s. In view of the wide discrepancy 
between these extremes, the lovely theorem of Erdos and Turan (1967) comes as something 
of a surprise: that, for any x, 

1 
- # {u: logO(~)  < ;log2n+x{;l~g3n)1’2} - @(x), 
n! 

where @ denotes the standard normal distribution function. In probabilistic terms, their 
result is expressed as 

~ [ { g  log3 t11-1’2 (log o(a) -; log2 n) < XI aq~), (1.1) 

with a now thought of as a permutation chosen at random, each of the n! possibilities being 
equally likely. They remark that 

‘Our proof is a direct one and rather long; but ajirsr proof can be as long as it wants to be. It would 
be however of interest to deduce it from the general principles of probability theory.’ 

’ 
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They also entertain hopes of finding a sharp remainder for their approximation. 
Shorter probabilistic proofs of (1.1) are given by [5], [6] and [l], the last exploiting the 

Feller coupling to a record value process. Stein (unpublished) gives another coupling proof, 
with an error estimate of order l~g-'/~n{Iog logn}'l2, which he describes as 'rather poor'. 
In fact, [16] sharpens the approach of Erdos and Turan, showing that the first correction 
to (1.1) is a mean. shift of -log n log log n, and that the error then remaining is of order at 
most 0 n log log log n).  Nicolas also conjectures that the iterated logarithm in the 
error is superfluous. Our birthday present is to show this, by probabilistic means, not only 
for the uniform distribution on the set of permutations, but also under any Ewens sampling 
distribution. Since many combinatorial structures are, in a suitable sense, very closely 
approximated by one of the Ewens sampling distributions (see [4]), the result carries over 
easily to many other contexts. A typical example is the 1.c.m. of the degrees of the factors 
of a random polynomial over the finite field with q elements, thus improving upon a 
theorem of [15]. 

Consider the probability measure ,ue on the permutations of n objects determined by 

where k(c)  is the number of cycles in cr, 8 > 0 is a parameter that can be chosen at will, and 
where rising factorials are denoted by 

x(nb  = x(x+ 1) ... ( x + n -  l), x ( ~ )  = 1. 

If 0 = 1, the uniform distribution is recovered. Under pe, the probability of the set of 
permutations having aj cycles of length j ,  1 < j d n,  is given by 

as may be verified by multiplying the probability (1.2) by the number of permutations that 
have the given cycle index. 

The joint distribution of cycle counts given by (1.3) is known as the Ewens sampling 
formula with parameter 8. It was derived by Ewens [8] in the context of population genetics. 
Ewens [9] provides an account of this theory that is accessible to mathematicians. 

Under the Ewens sampling formula, the joint distribution of the cycle counts converges 
to that of independent Poisson random variables with mean 8 / i  as n + co. Indeed, using the 
Feller coupling, the cycle counts for all values of n can be linked simultaneously on a 
common probability space with a single set of independent Poisson random variables 
with the appropriate means. The following precise statement of this fact comes essentially 
from [2]. 

Proposition 1.1. 
sat is fy ing 

Let {Ej, j 2 l} be a sequence of independent Bernoulli random variables 

e 
8 + j -  1 P[Cj = 11 = 
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necessary quantities are estimated in Proposition 2.4, from inequality (2. l), for which (2.2) 
and Lemma 2.5 already provide a bound, and from the next mean correction, which 
requires a more careful asymptotic evaluation following (2.4). 

A process variant of Theorem 1.2 can also be formulated. Let W, be the random element 
of D[O, 11 defined by 

Theorem 1.3. 
probability space, in such a way that 

It is possible to construct C(") and a standard Brownian motion W o n  the same 

2. Proofs 

As previously indicated, the proof of Theorem 1.2 consists of showing that log O,(C(fl)) is 
close enough to log 0,(Z), which in turn is close enough to log P,(Z) - 8 log n log log n. The 
Berry-EssCen theorem then gives the normal approximation for log Pn(Z). 

For vectors a and b, define (a  - bl = xi la, - b,l. Since O,(a) < O,(b) nib-"' whenever a and 
b are vectors with a d b, it follows from (1.7) that 

(2.1) log 0,(Z) - (Y,  + 1 )  log n < log O,(C(n)) < log 0,(Z) + log n, 

where Y, = xy'lZjn is independent o f  Cn), and 

E Y n = i  c ( e )( e ),E( ) 
j - l , , n  B+i-l  8+i+j- l  l-i+l e+l-1 

d e l i  x (A)(-) 1 82. 
j - l i , n  1-1 i+j-1 

Inequality (2.1) combined with (2.2) is enough for the closeness of logO,(C(")) and 

Next, we can compute the difference between log O,(Z) and log P,(Z) using a formula 
log O,(Z). 

of [5] and [14]: 

log P,(Z) -log 0, ( Z )  = z' x (DnP8 - 1)' logp,  (2.3) 
P 8 3 1  

where E' and x" denote sums over prime indices, and 

D,, = z Zj. 
j Q n : k [ i  

Considering first its expectation, observe that, since (d-  1)' = d -  1 + I {d  = 0}, 

E(D,, - 1)' = ED,, - 1 + P[D,, = 01 
= A,, - 1 + e-Ank < (A,, A $I:,), (2.4) 
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Hence 

Cov ((Dl - l)+, (D, - 1)+) = eE{ 1 -PA’ - + e-e(A1+A 2 - 01 < e[, 

proving the lemma. 

Lemma 2.2. For 1 < s < t ,  

cov ( (D, ,~  - I)+, (Dnpt  - I)+) G ep-yi + iogn). 

Proof. The argument runs as for Lemma 2.1, with A, defined as before, but now with 

n 

I$ = A, = I-’ <p-“1 +logn). 
1-1 
Ptll 

The computations now yield 

Cov (D,, D,) = eI$; Cov (D,, I[D, = 01) = - €@-eA2; Cov (alll = 01, D,) = -Oh, 

and 

Cov (IIDl = 01, I[D, = 01) = 1 - e-*’,), 

and thus 

Cov ((Dl - l)+, (D, - I)-) = e&( 1 - e-*/\,) + e-*’,( 1 - e-eAa - Oh,) < e& 1 - < et. 
The two lemmas enable us to control the difference between log O n @ )  and log P J Z )  as 

follows. 

Proposition 2.3. For any K > 0, 

P[ [log P J Z )  -log 0 , ( Z )  -/&I > Klog n] = 0 ((lO;;gognn’l) 

Proof. Write 

log ~ , (z )  - log o,(z) = ( + ) pnP - I)+ iogp + (Dnp8 - 1)+ 1ogp 
p < log2 n p > loga n P a 2 2  

= vl+ v,+ 5, 
say. Lemmas 2.1 and 2.2 give 

= 0 (log n (log log n)”; 

it follows from (2.4) that 

e 2  
EL!. 6 2 E’ p-2logp(l +logn)Z = O(1); 

p > log’n 
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and Lemmas 2.1 and 2.2 imply that 

= 0 (logn). e( 1 + log n) + E" logPlog9 c e(i + l o p )  Var 5 < E'log2p 
P 8 . t  2 2 PSVt P * P  8 .  t 2 2 P*qt 

Thus, by Chebyshev's inequality, 

P[IV1-EV,J > fKlogn] = O(log-'n(loglogn)2); 
P[ I v, - E V21 > 5 Klog n] = 0 (log-' n), 

and 
P[Il+EvJ > fKlogn] = O(l0g-In), 

proving the proposition. 

prove Theorem 1.2. To do so, we introduce the standardized random variables 
We now use the closeness of the quantities log O n ( P ) ,  log 0,(Z) and log Pn(Z) -pn to 

e log 0JZ)  + pn -- log2 n 
S 1 n  = ; 5'2, = 9 

e 
2 

log PJZ) - 3 log2 n 

and 
e log On( C'"') + pn - - log2 n 2 

S3n = J$L 9 

whose distributions we shall successively approximate. Since the quantity log Pn(Z) can be 
written in the form c3n,lZjlogj as a weighted sum of independent Poisson random 
variables, the normal approximation for S,, follows easily from the Berry-EssCen theorem. 

Proposition 2.4. There exists a constant c,  = cl(e) such that 

sup IP[S1" < x] - @ ( X ) l  < c,  log-1'2 n. 
2 

Proof. It is enough to note that 

that 

and that 
n 

IE lz, - wjl3 10g3j = o (log4 n) : 
3- 1 
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indeed, for j b 8, 
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e 283 e 
J J" j 

[E 12, - EzJ = + - < - [ 1 + 2e-'], 

and hence, for 8 < 2, 

In order to show that S,, and S,, have almost the same distribution as Sln, because of 
Proposition 2.3 and (2.1), one further lemma is required. 

Lemma 2.5. Let U and X be random variables with sup, IP[ U Q x] -@(x)l Q q. Then, for 
any E > 0, 

(2.6) 
E suplP[U+XQ XI-@(x)( Q q+-+P[IXl> E ] .  

2 fi 
If W and Y are independent random variables with IEY < co, and if1 W -  UI Q Y, then 

suplP[WQ x]-@(x)lQ 3 q+- 
2 { Z}. 

Proof. The first part is standard. For the second, let al/ = P[W < y]--@(y) and set 
A = supv Write p = 3 E Y  and p = P [ Y  > p ] ,  so that p < 1/3. Then, since, for any x, 
{ U Q x} =) { W +  Y < x}, it follows that 

P[U Q x] > 1 P[WQ -x-y]Fy(dy) 
LO, co) 

> ( 1  -p) P[ W < x-p] +I @(x-y) Fy(dy)-pA, 
(p. 03) 

where Fy denotes the distribution function of Y. Hence, comparing as much as possible to 
@(x-p), it follows that 

implying that 

A similar argument starting from { U Q x }  c { W -  Y Q x} then gives, 

41E Y 
fi -(1 -p)8,+, Q q+-+pA. 
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s [ d ~ n ( s ) - d ~ ( s ) ~ l =  l t [ ~ n ( t ) - ~ ( t ) ~ -  {Bn(s)-B(s)} ds 
0 s, 
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< 2 sup I B,(t)-B(t)l,  
O S t S 1  

can be realized as 

using a Poisson process P with unit rate. Also, since 

PI 
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[71 
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I61 

I81 

I101 
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1131 
1141 

~ 5 1  
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