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ABSTRACT

Motivation: Identification of genomic regions of interest in ChIP-seq

data, commonly referred to as peak-calling, aims to find the locations

of transcription factor binding sites, modified histones or nucleoso-

mes. The BayesPeak algorithm was developed to model the data

structure using Bayesian statistical techniques and was shown to be

a reliable method, but did not have a full-genome implementation.

Results: In this note we present BayesPeak, an R package for

genome-wide peak-calling that provides a flexible implementation of

the BayesPeak algorithm and is compatible with downstream BioCon-

ductor packages. The BayesPeak package introduces a new method

for summarizing posterior probability output, along with methods for

handling over-fitting and support for parallel processing. We briefly

compare the package with other common peak-callers.

Availability: Available as part of BioConductor version 2.6. URL:

http://bioconductor.org/packages/release/bioc/html/BayesPeak.html

Contact: jonathan.cairns@cancer.org.uk

Supplementary information: Available at Bioinformatics online.

1 INTRODUCTION

Chromatin ImmunoPrecipitation (ChIP) experiments produce short

DNA fragments, preferentially selected to identify the locations of

protein binding sites, histone modifications or nucleosome positi-

ons. In the ChIP-seq protocol, as described in Robertson et al., 2007,

the 5′ end of one strand of each fragment is sequenced, obtaining a

“read”, and then aligned to a reference genome. These aligned reads

form “peaks” - localized regions of high read density - along the

genome. Determining the locations and magnitudes of these peaks

is an active area of research, and a number of tools exist for so-called

“peak-calling”, using a variety of methodologies.

The algorithm described in Spyrou et al., 2009 takes a Bayesian

approach to modelling aligned reads from ChIP-seq data. Many

peak-callers model read counts with the Poisson distribution, and

thus do not allow for the overdispersion seen in practice. BayesPeak

addresses this issue by using the negative binomial distribution.

The method optionally allows for the inclusion of a control sam-

ple, which enables us to mitigate the effect of experimental artefacts
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where protein binding is absent. Additionally, the algorithm was

shown (in Spyrou et al., 2009) to call merged peaks that are nar-

rower than regions identified by other callers and this, along with

inference from posterior probabilities, can improve the efficiency of

downstream processing, e.g. motif analysis.

We present the R package BayesPeak, which uses a modified

version of the algorithm in Spyrou et al., 2009 with a flexible

genome-wide implementation. As well as providing compatibility

with common input formats and downstream analyses, the Bayes-

Peak package adds additional methods for summarizing data, tools

for handling over-fitting, and support for parallel processing.

2 METHODS

The BayesPeak package, written in R and C, forms part of the BioConductor

release branch since version 2.6 (Gentleman et al., 2004).

The implementation of BayesPeak allows it to take advantage of paral-

lel processing, improving its efficiency. We provide optional parallelization

support using the multicore package (Urbanek, 2009) for Linux/Mac OS X.

BayesPeak can analyse a human genome in under 12 hours, when run in

parallel on an 8-core 2.5GHz machine. For a benchmark example in which

the treatment and control .bed files totalled 33 million reads (2.3GB of disk

space), BayesPeak required no more than 3GB of RAM (although larger .bed

files require more RAM). R version 2.11.0 or later is required.

The BayesPeak software package fits a hidden Markov model (HMM) to

the data (aligned reads) as follows: The genome is divided into “jobs”, i.e.

short regions on which the algorithm is run independently. By default, jobs

are of length 6Mb (numerical stability may be compromised in larger jobs),

and each job-region is expanded by 2Kb in each direction (to allow peaks

falling on the boundary between two jobs to be called).

Within a job, the region is divided into small bins (each of length 100

bases, by default) and reads are aggregated by the bin in which they start and

the strand on which they lie. A two-state HMM is fitted to these aggregate

counts. The HMM’s hidden states correspond to enrichment or unenrichment

for sites of interest. A hidden state produces two negative binomial emissi-

ons, each corresponding to a bin count (one on each strand), with enriched

states tending to emit larger values. The HMM is fitted through MCMC tech-

niques that sample from the posterior distributions of the parameters. The

analysis is performed a second time on the same job region, but with all bins

offset by half their width (the “offset” analysis) as illustrated in Figure 1.

Further details can be found in Spyrou et al., 2009.
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Fig. 1. A schematic of a hypothetical peak region, with bins labelled by

genomic order. Supposing that each bin has an associated PP value above

a threshold (by default 0.5), we would merge these 6 bins into a peak from

1100-1450, with an associated PP value as calculated in section 2.1.

The output of each job is the posterior probability (PP) of each site being

enriched. The data are summarized to form the final peaks as follows. All

bins with PP values greater than a user-specified threshold (by default, 0.5)

are collected. Where two adjacent jobs call the exact same bin, the maximal

PP value is used - this is a rare occurrence under default settings.

2.1 Merging bins

Bins from both the “normal” and “offset” jobs that are adjacent or overlap

are merged to form contiguous peak regions.

The PP value of the peak can be calculated from the constituent bins

by either naively taking the maximal value, or by using the “lower bound”

method defined as follows: Assign the indices 1, ..., n to the n bins within

the peak, in order of genomic location (as in Figure 1). Note that bins with

adjacent indices overlap. Now let the PP value of bin i be πi, and define

qi = 1 − πi as the probability of no enrichment in bin i.

Let Sn be the set of all subsequences of {1, ..., n} such that I ∈ Sn ⇔ I

contains no consecutive integers ⇔ the bins with indices in I do not overlap.

Then, for each I ∈ Sn, a lower bound for the probability of enrichment in

at least one of the original n bins is F (I) = 1 −
Y

i∈I

qi.

The “best” (highest) lower bound for the probability of peak enrichment

is therefore the maximum of this quantity,

sup
I∈Sn

F (I) = 1 − Q(n), where Q(n) = inf
I∈Sn

Y

i∈I

qi.

We can find Q(n) by dynamic programming since, by conditioning on

whether i ∈ I , we have Q(i) = min(Q(i − 1), qiQ(i − 2)).

The advantage of using this method over taking the maximum PP value is

that it can give an appropriate score to sustained regions of only moderately

large PP values, which will be undervalued when taking the maximum.

We tested BayesPeak on the NRSF/REST ChIP-seq data set from Johnson

et al. (2007), in which a small subset of regions have been experimentally

validated, and we compared the findings against other common peak callers.

3 RESULTS

We present the peak-caller comparison results in the Supplemen-

tary Information. BayesPeak demonstrated a competitive sensitivity

and specificity on the genome-wide scale and showed a substantial

overlap with other peak-callers. The over-fitting correction greatly

improved the enrichment for true binding sites in BayesPeak’s data,

as did subsequent filtering by PP -value.

In its raw output, BayesPeak returns PP -values for each bin and,

for each job, the posterior mean of each estimated parameter (exclu-

ding half of the draws as burn-in). As of BayesPeak version 1.1.3,

MCMC samples of several key parameters are also present, permit-

ting convergence tests such as the Geweke diagnostic in the boa

(Smith, 2007) or coda (Plummer et al., 2010) packages.

Since the summarized output is in RangedData format, this allows

direct analysis of the peaks in any downstream package compatible

with IRanges (Pages et al., 2010), including those in BioConductor.

For example, ChIPpeakAnno (Zhu et al., 2010) can annotate the

output.

We have observed some phenomena that occur with lower qua-

lity data. For example, over-fitting can occur as follows: The model

assumes that for each job there are both enriched and unenriched

states. As such, when there are no peaks in a job or when the peaks

are extremely weak, these two states are used to explain the natural

variance present in the unenriched background. We identify over-fit

jobs from their low λ1 values (where λ1 is the expected number of

counts in an enriched bin), and from their PP values being spread

out over [0, 1] rather than tending to be 0 or 1. BayesPeak supports

identification and removal of these jobs, should this behaviour be

observed. (Supplementary Table 2 and Supplementary Figure 1.)

4 DISCUSSION

BayesPeak provides a Bayesian analysis, with advantages inclu-

ding allowance for overdispersion in read counts and a competitive

genome-wide specificity and sensitivity. By anticipating peak struc-

ture, BayesPeak does not call peaks based on sheer numbers of reads

without appropriate read formation.

Careful selection of job regions may improve the analysis. For

example, we can use prior knowledge to partition jobs in a manner

that avoids analysing the centromeres and telomeres, which usually

contain no reads. This will prevent unnecessary computation, and

may also improve results in the surrounding regions.

There is scope for adapting the BayesPeak approach to other

forms of peak-calling. For example, some histone mark data consist

of regions of enrichment containing many peaks and, in BrDU-seq

data, peaks are much broader than those in transcription factor data.
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