
Vol. 6/5, December 2006 17

beadarray: An R Package to Analyse
Illumina BeadArrays
by Mark Dunning*, Mike Smith*, Natalie Thorne, and
Simon Tavaré

Introduction

Illumina have created an alternative microarray tech-
nology based on randomly arranged beads, each of
which carries copies of a gene-specific probe (Kuhn
et al., 2004). Random sampling from an initial pool of
beads produces an array containing, on average, 30
randomly positioned replicates of each probe type.
A series of decoding hybridisations is used to iden-
tify each bead on an array (Gunderson et al., 2004).
The high degree of replication makes the gene ex-
pression levels obtained using BeadArrays more ro-
bust. Spatial effects do not have such a detrimental
effect as they do for conventional arrays that provide
little or no replication of probes over an array. Illu-
mina produce two distinct BeadArray technologies;
the SAM (Sentrix Array Matrix) and the BeadChip.
A SAM is a 96-well plate arrangement containing 96
uniquely prepared hexagonal BeadArrays, each con-
taining around 1500 bead types. The BeadChip tech-
nology comprises a series of rectangular strips on a
slide with each strip containing around 24,000 bead
types. The most commonly used BeadChip is the
HumanRef-6 BeadArray. These have 6 pairs of strips,
each pair having 24,000 RefSeq genes and 24,000 sup-
plemental genes.

Until now, analysis of BeadArray data has been
carried out by using Illumina’s own software pack-
age (BeadStudio) and therefore does not utilise the
wide range of bioinformatic tools already available
via Bioconductor (Gentleman et al., 2004), such as
limma (Smyth, 2005) and affy (Gautier et al., 2004).
Also, the data output from BeadStudio only gives a
single average for each bead type on an array. Thus
potentially interesting information about the repli-
cates is lost. The intention of this project is to create
an R package, beadarray, for the analysis of BeadAr-
ray data incorporating ideas from existing Biocon-
ductor packages. We aim to provide a flexible and
extendable means of analysing BeadArray data both
for our own research purposes and for the benefit of
other users of BeadArrays. The beadarray package
is able to read the full bead level data for both SAM
and BeadChip technologies as well as bead summary
data processed by BeadStudio. The package includes
an implementation of Illumina’s algorithms for im-
age processing, although local background correc-
tion and sharpening are optional.

At present, beadarray is a package for the analy-

sis of Illumina expression data only. For the analysis
of Illumina SNP data, see the beadarraySNP package
in Bioconductor.

Data Formats

1 TIFF Image + 1 Bead
Level csv file for each
array

BeadScan software

BeadStudio
GUI

Raw Data

QC Data

Sample Sheet

BeadLevelList ExpressionSetIllumina

~30 values per
bead type
Image processing
optional

1 value per bead
type
Pre-Processed data

limma, affy etc,….

beadarray

Figure 1: Diagram showing the interaction be-
tween beadarray and Illumina software. Various
functions from Bioconductor packages (eg., limma
and affy) may be used for the pre-processing
or downstream analysis of BeadLevelList or
ExpressionSetIllumina objects.

After hybridisation and washing, each SAM or
BeadChip is scanned by the BeadScan software to
produce a TIFF image for each array in an experi-
ment. The size of each TIFF image is around 6Mb and
80Mb for SAM and BeadChip arrays respectively.
BeadScan will also provide a text file describing the
identity and position of each bead on the array if re-
quested (version 3.1 and above of BeadScan only).
We call this the bead level data for an array. Note
that the bead level text file has to be produced when
the arrays are scanned and cannot be generated later
on. BeadStudio is able to read these raw data and
produce a single intensity value for each bead type
after outliers are excluded. These values are referred
to as bead summary data. The images are processed
using a local background correction and sharpening
transformation (Dunning et al., 2005). These steps
are not optional within the BeadStudio software. The
bead summary values calculated by BeadStudio can
be output directly with or without normalisation ap-
plied or used for further analysis within the appli-
cation. The output from BeadStudio also contains
information about the standard error of each bead
type, the number of beads and a detection score that

1These authors contributed equally to this work.

R News ISSN 1609-3631



Vol. 6/5, December 2006 18

measures the probablity that the bead type is ex-
pressed; this uses a model assumed by Illumina. All
analysis within BeadStudio is done on the unlogged
scale and using the bead summary values rather than
full replicate information for each bead type. Figure
1 gives an overview of the interaction between the
file formats and software involved in the analysis of
BeadArray data.

Bead Level Analysis

The readBeadLevelData function is used to read
bead level data. A targets object is used in a simi-
lar way to limma to define the location of the TIFF
images and text files. Both SAM and BeadChip data
can be read by readBeadLevelData. The default op-
tions for the function use the sharpening transforma-
tion recommended by Illumina and calculate a lo-
cal background value for each bead. The usage of
readBeadLevelData is:

> BLData = readBeadLevelData(targets,

+ imageManipulation="sharpen")

> slotNames(BLData)

[1] "G" "R" "Rb" "Gb"
[5] "GrnY" "GrnX" "ProbeID" "targets"

Even though the size of the TIFF images is rather
large, readBeadLevelData uses C code to read these
images quickly, taking around 2 seconds to process
each SAM array and 1 minute for each BeadChip
array on a 3Ghz Pentium c©IV machine with 3Gb
of RAM. An object of type BeadLevelList is re-
turned by readBeadLevelData. The design of this
class is similar to the RGList object used in limma.
Note that we store the foreground (G) and back-
ground (Gb) intensities of each bead separately so
that local background correction is optional using the
backgroundCorrect function. Each bead on the ar-
ray has a ProbeID that defines the bead type for that
bead. We order the rows in the matrix according to
the ProbeID of beads, making searching for beads
with a particular ProbeID more efficient. The GrnX
and GrnY matrices give the coordinates of each bead
centre on the original TIFF image. Note that the ran-
dom nature of BeadArrays means that the number of
replicates of a particular bead type will vary between
arrays and rows in the matrices will not always cor-
respond to the same bead type, unlike data objects
for other microarray technologies.

Typical quality control steps for conventional mi-
croarrays involve looking for systematic differences
between arrays in the same experiment and also for
large spatial effects on each array. The boxplot func-
tion can be easily applied to the foreground or back-
ground values to reveal possible defective arrays. We

also provide the function imageplot for investigat-
ing the variation in foreground and background in-
tensities over an array. This function is different from
the functionality available in limma because BeadAr-
rays do not have print-tip groups as found on con-
ventional spotted microarrays. Therefore we define a
grid of M × N rectangles, average over the log2 bead
intensities found inside each rectangle and call the
image function. In Figure 3 we can clearly see that the
top-right corner of an array has a marked difference
in intensity compared to the rest of the array, where
the variation in intensity appears to be random. Such
a spatial effect might be a cause for concern in con-
ventional microarrays where probes representing the
same gene appear in the same location on all arrays.
In BeadArrays however, the arrangement of beads is
random and hence spatial trends tend to have less
impact. Whilst BeadStudio provides functionality to
view the TIFF images, the resolution of the images is
too high to be able to identify overall trends across
an array. Also, the intensity levels between arrays
cannot be easily compared. The displayTIFFImage
function in beadarray allows users to view sections
of TIFF images in a similar manner to BeadStudio but
with the advantage of being able to see which beads
are outliers. See Figure 3 of Dunning et al. (2005).

10 20 30 40 50

10
20

30
40

50

1:51

1:
51

Figure 3: Plot showing the variation in log2 fore-
ground intensity for a BeadArray from a SAM.

The random nature of BeadArrays and high
replication rates allow for low level analysis that
is not possible for other microarray technologies.
For example, we can see where the replicates of
a particular bead type are located on an array
(plotBeadLocations) and view the intensities of the
replicates (plotBeadIntensities). Due to the large
number of bead types, in-depth analysis of each bead
type is impractical. However, we might be interested
in a subset of bead types, such as the controls used in
the experiment. The plotBeadIntensities function
produces a series of boxplots of log2 bead intensity
for a supplied vector of ProbeIDs and can therefore

R News ISSN 1609-3631



Vol. 6/5, December 2006 19

Figure 2: beadarray can be used to find spatial effects on arrays. On the left is a representation of the number
of outliers for each array (bright red indicates more outliers) and on the right is the location of outliers for a
particular array. Clicking on a hexagon on the left will change which array is displayed on the right. For this
figure, the array in the 7th column of the first row of the SAM was chosen.

be a useful diagnostic tool.
Another set of beads that are of interest are out-

liers. Illumina exclude outliers for a particular bead
type using a cut-off of 3 MADs from the unlogged
mean. This analysis can be repeated for all bead
types on an array using the findAllOutliers func-
tion. Users may specify a different cut-off as a multi-
ple of the MAD or use the log2 intensity of beads in
this function. Note that the outliers are not removed
from the analysis at this point. To find all the outliers
for every bead type on the first array we would use:

> o = findAllOutliers(BLData, array=1)

The result is a vector that indexes the rows of the
first array in BLData. The plotBeadLocations func-
tion can then be used to plot the location of the out-
liers on the array.

> plotBeadLocations(BLData, array=1,

BeadIDs=o)

Typically, we find that 5% of beads on arrays are
outliers and this can be used as an ad-hoc criterion
for quality control. Figure 2 shows one of the inter-
active features available within beadarray. The left
side of the screen gives an overview of all arrays on
a SAM or BeadChip. In this example, each array is
coloured according to the number of outliers and im-
mediately we can see which arrays on the SAM have
a larger number of outliers (shown in bright red).

By clicking on a particular array in the graphic dis-
play, the location of all outliers on that array will be
displayed on the right of the screen. This example
shows the same array seen in Figure 3. As one might
expect, many of the outliers in Figure 2 correspond to
areas of higher foreground intensity visible in Figure
3.

Alternatively, the foreground or background in-
tensities of arrays may be used to colour the ar-
rays in the left screen and imageplots such as Fig-
ure 3 can be displayed when individual arrays are
clicked. This interactive functionality is available for
both SAM and BeadChip bead level data and can
be started by the SAMSummary and BeadChipSummary
functions respectively with the BeadLevelList cre-
ated by readBeadLevelData passed as a parameter.

The createBeadSummaryData function creates
bead summary data for each array by removing out-
liers for a particular bead type and then taking an av-
erage of the remaining beads. The findAllOutliers
function is used by default and the result is an
ExpressionSetIllumina object which can be anal-
ysed using different functionality within beadarray.

Reading Pre-Processed Bead Sum-
mary Data

Bead Summary data processed by BeadStudio
can be read into beadarray using the function
readBeadSummaryData. Three separate input files are

R News ISSN 1609-3631



Vol. 6/5, December 2006 20

required by the function, the location of which can be
specified by a targets text file. The first two files are
automatically created by BeadStudio by selecting the
Gene Analysis option whereas the third file must be
created by the user.

• Raw Data file - This contains the raw, non-
normalised bead summary values as output by
BeadStudio. Inside the file are several lines
of header information followed by a data ma-
trix. Each row is a different probe in the ex-
periment and the columns give different mea-
surements for the probes. For each array,
we record the summarised expression level
(AVG_Signal), standard error of the bead repli-
cates (BEAD_ST_DEV), Number of beads used
(Avg_NBEADS) and a Detection score which
estimates the probability of a gene being de-
tected above the background. Note that whilst
this data has not been normalised, it has been
subjected to local background correction at the
bead level prior to summarising.

• QC Info - Gives the summarised expression
values for each of the controls that Illumina
place on arrays and hence is useful for diagnos-
tic purposes. Each row in the file is a different
array and the columns give average expression,
standard error and detection for various con-
trols on the array. See Illumina documentation
for descriptions of control types.

• Sample Sheet - Gives a unique identifier to
each array and defines which samples were hy-
bridised to each array.

An example Bead Summary data set is included
with the beadarray package and can be found as a
zipped folder in the beadarray download. These
data were obtained as part of a pilot study into
BeadArray technology and comprises 3 HumanRef-6
BeadChips with various tumour and normal samples
hybridised. The following code can be used to read
the example data into R.

> targets <-

readBeadSummaryTargets("targets.txt")

> BSData <- readBeadSummaryData(targets)

> BSData

Instance of ExpressionSetIllumina

assayData
Storage mode: list
Dimensions:

BeadStDev Detection exprs NoBeads
Features 47293 47293 47293 47293
Samples 18 18 18 18

phenoData

rowNames: I.1, IC.1,..., Norm.2, (18 total)
varLabels and descriptions:

featureData
featureNames: GI_10047089-S,...(47293 total)
varLabels and descriptions:

Experiment data
Experimenter name:
Laboratory:
Contact information:
Title:
URL:
PMIDs:
No abstract available.

Annotation [1] "Illumina"
QC Information
Available Slots: Signal StDev Detection
featureNames: 1475542110_F,...1475542113_F
sampleNames: Biotin, ..negative

The output of readBeadSumamryData is an object
of type ExpressionSetIllumina which is an exten-
sion of the ExpressionSet class developed by the Bio-
core team used as a container for high-throughput
assays. The data from the raw data file has been
written to the assayData slot of the object, whereas
the phenoData slot contains information from sam-
ple sheet and the QC slot contains the quality con-
trol information. For consistency with the definition
of other ExpressionSet objects, we use exprs and
se.exprs to access the expression and standard er-
ror slots.

Analysis of Bead Summary Data

The quality control information read as part of
readBeadSummaryData can be retrieved using QCInfo
and plotted using plotQC, which gives an overview
of each control type. Plots of particular controls
(e.g., negative controls) can be produced using
singleQCPlot with the usual R plotting arguments
available.

Scatter and M (difference) vs. A (average) plots
can be generated for multiple arrays using the
plotMAXY function (Figure 4). These can give a vi-
sual indicator of the variability between arrays in an
experiment. For replicate arrays, we would expect to
see the majority of points lying on the horizontal for
the MA plots and along the diagonal for the scatter
plots. Systematic deviation from these lines may in-
dicate a bias between the arrays which requires nor-
malising. An MA or scatter plot can also be produced
for just two arrays at a time (plotMA and plotXY re-
spectively). An attractive feature of these plots is that
the location of particular genes (e.g., controls) can be
highlighted using the genesToLabel argument.

R News ISSN 1609-3631



Vol. 6/5, December 2006 21

0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

IH−1
●

●
●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

● ●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●●

●●
● ●●

●
●

●

●

●
●

●

●

●

●●●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

● ●

●

●●

●● ●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●●

●

●

●

● ●●

●●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●
●
●

●

●

●
●

●●

●
●●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ● ●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●●

●
●●

●

●

● ●
●

●

●
●

●

●

●
●

●
●●

●

●

●

●
● ●

●

●

●

●

●

●
●● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●
●●

●

●

●
●

●

● ●
●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

● ●
● ●

●●

●

●●

8 10 12 14

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

8 10 12 14

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●●
●

●

● ●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
● ●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●●

●

● ●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

6
8

10
12

14

0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

0 IC−1

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

● ●●

●

●

●
●

●

●
●

●

●

●

● ●
●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●
●

● ●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●●
●

●

●

●

●

●

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●
●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●●
●

●
●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

8 10 12 14 16

6
8

10
12

14

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

● ●
●

●

●
●●

●

●●●

●

●

●

●

● ●

●
●

●
●

●

●
●●

● ●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

● ●

● ●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
● ●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●● ●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●

●
● ●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●
●

●

●

●

●

●●

8 10 12 14 16 0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 IH−2

Figure 4: The plotMAXY function can be used to compare bead summary data from multiple arrays in the same
experiment. In this figure we compare three replicates from the example bead summary data provided with
beadarray

R News ISSN 1609-3631



Vol. 6/5, December 2006 22

Since the ExpressionSetIllumina class includes
a matrix of expression values, it can be analysed in
a similar manner to data obtained from other tech-
nologies. In particular, this enables normalisation
of BeadArray data to be carried out using the exist-
ing methods available in other Bioconductor pack-
ages (such as those available within the affy pack-
age, using assayDataElementReplace to replace the
exprs slot). Illumina recommend normalising data
by subtracting the average value of negative controls
from each array. This method is implemented in the
backgroundNormalise function and has quite a dra-
matic effect at lower intensities, often producing a lot
of negative values. Typically, we find that the vari-
ability between arrays is low and a quantile or me-
dian normalisation (the function medianNormalise
in beadarray) is sufficient.

The linear modelling tools within limma (Smyth,
2004) can be applied to the log-transformed expres-
sion exprs matrix in order to detect genes which are
differentially expressed between arrays. The Illu-
mina custom method is implemented by the function
DiffScore but at present is only able to make pair-
wise comparisons between arrays.

Computational Issues and Future
Plans

The vast amounts of data that can be generated
from BeadArray experiments present a number of
challenges for researchers, especially for analyses
based on the bead level data. One has to con-
sider that there are 12 80MB TIFF images for
each BeadChip and 96 6MB TIFF Images for a
SAM. In the case of a BeadChip experiment, sim-
ply reading the data into R for arrays from more
than one BeadChip is problematic. We find that
at least 1 Gb of RAM is required to run the
readBeadLevelData and createBeadSummaryData
functions on a BeadLevelList object representing
one BeadChip. We hope to implement methods for
normalisation which take the full bead level infor-
mation into account but anticipate that this is going
to be a computationally expensive task and may re-
quire the package to take advantage of parallel com-
puting tools for R. Future versions of the package will
also have better methods for creating bead averages
which take information from replicate arrays into ac-
count.

Another major addition planned for beadarray is
to allow sequence annotation information to be im-
ported so that Illumina expression data can be com-
bined with other microarray technologies such as ar-
rayCGH, SNP and DNA methylation arrays. We
plan to include functionality to read Illumina SNP
and methylation data into the package.

Useful Illumina Resources

The vignettes supplied with the package give more
detailed examples of how to analyse both bead level
and bead summary data. Our previous paper (Dun-
ning et al., 2005) provides descriptions of the image
processing steps used by Illumina and some exam-
ples of bead level analysis. Readers interested in a
comparison between Illumina and Affymetrix tech-
nologies are referred to Barnes et al. (2005).

We are keen to hear comments and feedback from
users of beadarray.

Acknowledgements

We thank Brenda Kahl and Semyon Kruglyak (Illu-
mina), Barbara Stranger, Matthew Forrest and Mano-
lis Dermitzakis (Wellcome Trust Sanger Institute),
and Andrew Lynch and John Marioni (University
of Cambridge) for many helpful discussions during
the devlopment of this work. We would also like
to thank Isabelle Camilier (Ecole Polytechnique) for
implementing the Illumina image processing algo-
rithms and Roman Sasik (University of California,
San Diego) for providing C code for reading TIFF im-
ages. The authors were supported by grants from
Cancer Research UK (MS, NT & ST) and the Medi-
cal Research Council (MD). Simon Tavaré is a Royal
Society / Wolfson Research Merit Award holder.

Bibliography

MJ Dunning, NP Thorne, I Camilier, et al. Qual-
ity control and low-level statistical analysis of Il-
lumina BeadArrays. Revstat, 4:1–30, 2006.

RC Gentleman, VJ Carey, DM Bates, et al. Bioconduc-
tor: open software development for computational
biology and bioinformatics. Genome Biol, 5:R80,
2004.

KL Gunderson, S Kruglyak, MS Graige, et al. Decod-
ing randomly ordered DNA arrays. Genome Res,
14:870–877, 2004.

K Kuhn, SC Baker, E Chudin, et al. A novel, high-
performance random array platform for quanti-
tative gene expression profiling. Genome Res,
14:2347–2356, 2004.

L Gautier, L Cope, BM Bolstad, et al. affy–analysis
of Affymetrix GeneChip data at the probe level.
Bioinformatics, 20(3):307–15, 2004.

GK Smyth. Linear models and empirical Bayes meth-
ods for assessing differential expression in mi-
croarray experiments. Statistical Applications in Ge-
netics and Molecular Biology, 3:113–136, 2004.

R News ISSN 1609-3631



Vol. 6/5, December 2006 23

GK Smyth. Limma: linear models for microarray
data. In R Gentleman, V Carey, W Huber, et al.
Bioinformatics and Computational Biology Solutions
using R and Bioconductor, pages 397–420. Springer,
New York, 2005.

M Barnes, J Freudenberg, S Thompson, et al. Ex-
perimental comparison and cross-validation of the
Affymetrix and Illumina gene expression analysis
platforms. Nucleic Acids Res, 33:5914–5923, 2005.

Mark Dunning, Mike Smith, Natalie Thorne and Simon
Tavaré
Computational Biology Group
Hutchison / MRC Research Centre
Department of Oncology
University of Cambridge
Hills Rd, Cambridge CB2 2XZ
United Kingdom
md392@cam.ac.uk
mls40@cam.ac.uk
npt22@cam.ac.uk
s.tavare@damtp.cam.ac.uk

Transcript Mapping with High-Density
Tiling Arrays
by Matthew Ritchie and Wolfgang Huber

Introduction

Oligonucleotide tiling arrays allow the measurement
of transcriptional activity and DNA binding events
at a much higher resolution than traditional microar-
rays. Compared to the spotted technology, tiling ar-
rays typically contain between 10 and 1000 times as
many probes, which may be ordered or ‘tiled’ along
entire chromosomes, or within specific regions of in-
terest, such as promoters.

For RNA analysis, tiling arrays can be used to
identify novel transcripts, splice variants, and anti-
sense transcription (Bertone et al., 2004; Stolc et al.,
2005). In DNA analysis, this technology can iden-
tify DNA binding sites through chromatin immuno-
precipitation (ChIP) on chip analysis (Sun et al.,
2003; Carroll et al., 2005) or genetic polymorphisms
and chromosomal rearrangements via comparative
genome hybridization (arrayCGH).

Due to the wide range of applications of this tech-
nology and the custom nature of the probe layout,
the analysis of these data is different to that of regu-
lar microarrays. In this article, the tilingArray pack-
age, which extends the existing Bioconductor toolset
to the problem of measuring transcriptional activity
using Affymetrix high-density tiling arrays, is pre-
sented.

Background

The initial processing steps of quality assessment
and normalization which are routinely applied to
lower density arrays are also important when ana-
lyzing tiling array data. Diagnostic plots of the raw
probe intensity data can highlight systematic biases

or artefacts which may warrant the need for individ-
ual arrays or batches of arrays to be repeated. Nor-
malization between arrays is necessary when data
from multiple hybridizations is to be combined in an
analysis. In the tilingArray package, a normaliza-
tion method which uses the probe intensities from
a DNA hybridization as a reference is implemented
(Huber et al., 2006). The next step in the analy-
sis is to detect the transcript boundaries. A sim-
ple change-point model, which segments the ordered
chromosomal intensity data into discrete units has
proven quite useful for whole genome tiling array
data (David et al., 2006). Other approaches which
use Hidden Markov Models (Toyoda and Shinozaki,
2005; Munch et al., 2006) or moving averages (Schadt
et al., 2004) have also been proposed. Displaying the
data with reference to the position along the chro-
mosome allows visualization of the segmentation re-
sults. These capabilities will be demonstrated in the
following sections.

The custom Affymetrix arrays used in this arti-
cle were produced for the Stanford Genome Tech-
nology Center and tile the complete genome of Sac-
charomyces cerevisiae with 25mer probes arranged in
steps of 8 bases along both strands of each chro-
mosome. The two tiles per chromosome are off-
set by 4 bases (see Figure 1). Both perfect match
(PM) and mismatch (MM) probes were available.
The experimental data we analyze comes from David
et al. (2006), and includes 5 RNA hybridizations from
yeast cells undergoing exponential growth and 3
DNA hybridizations of labelled genomic fragments.
This data is publicly available in the davidTiling
package or from ArrayExpress (accession number E-
TABM-14). A cell cycle experiment made up of RNA
hybridizations from 24 time-points sampled at 10
minute intervals and 3 DNA hybridizations will also
be used.

R News ISSN 1609-3631

mailto:md392@cam.ac.uk
mailto:mls40@cam.ac.uk
mailto:npt22@cam.ac.uk
mailto:s.tavare@damtp.cam.ac.uk

