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Abstract 
A new coalescent is introduced to study the genealogy of a sample from the 

infinite-alleles model of population genetics. This coalescent also records the 
age ordering of alleles in the sample. The distribution of this process is found 
explicitly for the Moran model, and is shown to be robust for a wide class of 
reproductive schemes. 

Properties of the ages themselves and the relationship between ages and 
class sizes then follow readily. 
GENEALOGY; INFINITE-ALLELES MODEL; EWENS SAMPLING FORMULA 

1. Introduction 

The coalescent was introduced by Kingman (1982a,b,c), as a means of 
representing the genealogy of a sample taken from a population evolving 
according to one of a large class of models. Watterson (1984) analyzed a 
related process in the context of reproductive models involving mutation (the 
so-called infinite-alleles models). In this paper we study a coalescent akin to 
that of Watterson which also takes account of the age-ordering of alleles 
present in the sample. When the population evolves according to a Moran 
model the distribution of this new coalescent is found explicitly. In the spirit of 
Kingman (1982~) we derive an invariance result in the case where the 
underlying reproductive mechanism is one of a large class of exchangeable 
models. This allows us to approximate the genealogy of samples from large 
populations. 

Problems relating to the ages of alleles are basic to the study of much of 
mathematical population genetics. If the alleles are labelled in order of 
increasing age, the distribution of class sizes in a sample follows easily from the 
properties of the new coalescent. This distribution is central, and many of the 
standard results on ages and allele frequencies follow from it. The structure of 
the coalescent also allows a characterization of the ages themselves. We give 
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2 PETER DONNELLY AND SIMON TAVARE 

explicit results in some cases. Finally we exhibit the partition structure induced 
on an infinite population by the age ordering and relate the properties of this 
partition structure to some similar structures arising in other areas of 
mathematical biology. 

2. Moran’s infinitely-many-neutral-aileles model 

Consider a population of fixed size M haploid individuals (or genes) evolving 
through discrete time (or generations) r = -2, -1, 0, 1, 2, - . . At each 
time point r, one individual is chosen at random to die, and one individual is 
chosen at random to have a single offspring. The surviving individuals and the 
new offspring form the population at the next time, r +  1. The offspring 
individual may be of the same allelic type as the parent with probability 1 - u, 
or, with probability u, may be a novel allelic type that has not been in the 
population before. This process is a discrete-time version of the infinitely- 
many-neutral-alleles model of evolution with Moran-type reproduction. 

We now take a random sample of n genes without replacement from the 
population at some time labelled 0, and consider its composition with respect 
to the ancestral population at time -m. As in Watterson (1984) it is 
convenient to divide the individuals in the sample into two types of disjoint 
equivalence classes, which we label ‘old’ and ‘new’. First, randomly label the n 
individuals in the sample 1, 2, - - - , n. We say that individuals i and j in the 
sample are in the same old equivalence class at time m if i and j have the same 
ancestor at time -m, and no intervening mutation has occurred. 

On the other hand, we say that i and j are in the same new equivalence class 
at time m if, for some r satisfying 1 S r < m, individuals i and j have the same 
ancestor in generation -r, this ancestor itself being a mutant, with no 
intervening mutation between time - r  and 0. 

With respect to time -m, we denote the number of old equivalence classes 
by D,, and the number of new equivalence classes by F,. Dm and F, satisfy 

(2.1) D,=O, 1, . . - , n ,  Fm=O, 1, - . . , n - D ,  

and, since each individual in the sample is equivalent only to itself with respect 
to time 0, we have 

The process {Dm, m 2 0} is a Markov chain on the state space {n, n - 
1, - * e ,  1,0} whose properties have been studied inter alia by several authors; 
see Section 3. {D,, m 20) is a (discrete-time) pure death process whose 
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one-step transition probabilities pii, are determined by 

(2.3) 

where 
(2.4) 
An explicit expression for the transition probabilities of this process is given in 
Watterson (1984). 

The new equivalence classes, F, in number, arise from ancestors who were 
mutants at generations -q, -q, - , -TFm, say. Here, we order the { T }  so 
that m Z q > & > - > T,. Recall that since there is at most one mutation 
per generation, no two of the T can be equal. Notice that by definition 
individuals in the same new equivalence class are of the same allelic type, and 
that the allelic types of individuals in distinct new equivalence classes are 
different. We may then define unambiguously the ages of the novel allelic 
types; the youngest allele in the sample is that which corresponds to the (new) 
equivalence class whose ancestor occurs at time - T ,  and the oldest of the 
novel alleles in the sample is that which corresponds to the equivalence class 
whose ancestor is a mutant at time -q. Note that as the process evolves, the 
age of a particular allele does not change; for convenience in Section 5 ,  we 
allow its label to change. Of course with respect to a given time -m, there may 
be no new classes, in which case F, = 0, and the { 21.) above are not defined. 
We shall not be concerned here with the ages of allelic types represented in the 
old equivalence classes. 

The new equivalence classes will be denoted by ql, q2, - - , qFm (0 denoting 
the fact that there are no new equivalence classes), and their sizes by 

(2.5) pj=lq,l, j = 1 ,  - - e ,  E,. 

The 7’s above are listed in increasing order of age, so that, for example, qFm is 
the equivalence class of individuals of oldest allelic type. The old equivalence 
classes will be denoted by El, * e ,  ED,, with sizes 

(2.6) Ai = 1&l, i = 1, * - - > 0,; 

the ordering of the Ei is immaterial here. 

the two-type equivalence classes of the form 
We now represent the genealogy of the sample of individuals (1, , n} by 

(2.7) R m  = ( E l ,  * * * , 50,; ~ 1 ,  * * , qFm)* 

The (backward) evolution of the process {R, m ZO} then describes the 
genetic history of the sample. The stochastic behavior of R,,, is provided in the 
following basic result. 
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Theorem 2.1. 

P(R, = (51, * . * 7 ED,,,; 71, * * 9 TIP,,,), F, = 1 I Dm = k) 
A,! A2! - (n - k ) !  k! 8' * Ak! pl! * * * p l !  (2.8) - 

n !  (k + e ) @ - k )  * Pl(Pl+ P z )  * (Pl + * * + PO ' 

X(fl) = .(X + 1) - - - ( X  + n - 1). 

f o r k = O , l ; ~ ~ , n , l = O , l , ~ ~ ~ , n - k . H e r e , ~ = M u / ( l - u ) a n d  

Proof. The proof is similar in spirit to that of Watterson (1984). Suppose that 
Dm = k, F, = 1, R,  = (g, q) = (E , ,  e ,  E k ;  q,, , ql). There are two sorts of 
change of state that can occur from R ,  to R,+,: 

(a) Two ancestors at time - m  who founded Ei and gj (for 1 S i < j  S k, say) 
may be descended, without mutation, from a single ancestor at time - ( m  + 1). 
This results in 

Rm+1 = (51,  * ' 7 ci u Ej,  9 E k ;  ql, * 7 ql), 

and D,,, = k - 1. This specific change has probability 

1 1  2 2(1- u ) .  -. -= 
M M M ( M + ~ )  

(b) A particular ancestor at time - m  who founded f i ,  say, may be a 
mutant offspring of an individual at time - ( m  + l) ,  in which case & becomes 
reclassified as a new class ql+, with respect to time - (m + 1). The individuals 
in ei now correspond to the oldest novel allele. This results in 

R m + 1 =  (51, * > E i - 1 ,  E i+1>  * * > E,c; qlt 7 VI, ci), 

and Dm+l = k - 1, F,,, = 1 + 1. This specific change has probability 

(2.10) 
U e 

M - M ( M  + e) * 
_ -  

The probability of no change of state can be computed from (2.9) and 

(2.10). Since D, = k, there are changes of the type with probability (2.9), 

and (t) changes of the type with probability (2.10). Hence 

Just as in Watterson's case, the one-step transition probabilities for R,  
depend only on 0,. If we now watch the process R,  only at those points at 
which it changes state, we obtain the embedded Markov chain which we shall 
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denote by {d,, k = n, n - 1, 

The distribution of R, is simplified by an independence result analogous to 
that of Watterson (1984) and Kingman (1982b) to the effect that 
(2.13) P(dDm = R) = P(D, = k)P(d,  = R) 

where R is a two-type partition, with k old equivalence classes. It remains to 
find the distribution of SP,. 

Suppose that d, = R = ( E , ,  - - , 5,; ql, - , qI) .  We want to show that 
P ( d ,  = R) is given by (2.8): 

e ,  1,0}. Then we have 
(2.12) R, = d,. 

Now 

(2.15) P(d ,  = R) = 2 P(d ,  = R I dk+l = R’)P(d,+, = R’) 

where R‘ is any two-type collection of equivalence classes which may be 
changed into R by means of the two operations described in (a) and (b) above. 
These two cases give: 

R‘ 

(a’) R’ = (El, - 9 Ei,, Ei*, * , E,; q,, - 9 V I )  

where, for some i E (1, - - , k}, Ei, U gi, = Given that a change occurs, the 
probability of a transition from R’  to R is 2/(k + l)(k + e), from (2.9) and 
(2.11). Watterson (1984) has shown that the contribution to the right-hand side 
of (2.15) from transitions of this form is then 

(b‘) These changes result in creation of another new class. Here, R’  is of the 
form R’ = ( E , ,  - . . , E,, ql; q,, * e ,  ql - l ) .  Given that a change occurs, the 
probability of a transition to R is, from (2.10) and (2.11), 8 / ( k  + l)(k + e). 
Hence, once more assuming that P(d ,+ l=R’ )  is of the form specified by 
(2.14), the contribution to the right-hand side of (2.15) is 

(n - k - I)! (k  + I)! el-, A,! - A,! P I !  P,! - PI- , !  e 
n! (0 + k + 1)(,-,-1) Pl(Pl+ P2) * (Pl + * * + PI-1) * ( k  + l)(k + 0) 

e[pl! - - - p l !  A,! . - - A,! 
Pl(Pl+ Pz) (Pl + * * * + PI) n!(k + e)(,-,) 1=1 

(2.17) 
(n - k - I)! k! 

- - (2 Pj).  * 

Adding (2.16) and (2.17) gives (2.14), since E!=, (Ai - 1) + pj = n - k. 
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Finally, when k = n we have 1 = 0, A,  = - - = A, = 1, so (2.8) gives, cor- 
rectly, probability 1 to the initial state for d,. The proof of the theorem is thus 
complete. 

The following combinatorial result will be needed below. The proof is given 

Proposition 2.1. Let p,, ,uD * , ,uI be any 1 positive numbers, and let II be 

in Appendix 1. 

the set of all permutations a = (n(l), * - - , n(1)) of (1, - - , I). Then 

c [Pn(l)(Pn(l) + I%(*)) * * (Pn(1) + * * + Pn(9)I-l = b l  - * Pl1-l. 
men 

Recall that in this paper R, is a two-type coalescent in which the new 
equivalence classes q,, qD * - are ordered according to increasing age. It is 
also of interest to study the coalescent W,, say, in which the ages of the new 
classes are immaterial. This process is precisely the one studied by Watterson, 
and it provided the starting point for our analysis. The probability distribution 
of W, is obtained from that of R, by summing (2.8) over all permutations a of 
the labels of q,, * . - , qr. Using the result of Proposition 2.1, with R = (5;  q), 
we obtain the following result. 

Theorem 2.2 (Watterson (1984)). 

3. An invariance principle 

The explicit results provided in Theorem 1 were based on the Moran 
reproduction scheme in discrete time. In the spirit of Kingman (1982a) and 
Donnelly (1985), it is natural to ask in what sense the results of Theorem 2.1 
are robust against changes in the reproduction mechanism. 

We shall consider a class of neutral models with non-overlapping generations 
introduced by Cannings (1974). Randomly label the M individuals in a 
particular generation, and let vi be the number of offspring born to the ith 
individual, i = 1, 2, - - , M. The random variables {v i }  are exchangeable, and 
constant population size is maintained by requiring Y, + v2 + - - + vM = M. 
We shall also assume that the distribution of {vl, . , vM} is invariant over 
time. The assumption of neutrality implies that the vi are independent of 
family sizes in preceding generations. Each offspring individual may be subject 
to mutation at birth. Mutations occur independently for each individual with 
probability u, and, as in the infinite-alleles Moran model, result in a novel 
allelic type. 
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From the population, we take a random sample of size n individuals at time 
0, and as in Section 2, define the corresponding coalescent with ages, which we 
here denote by {&,, m = 0, 1, - -}. The behavior of {&, m = 0, 1, - e }  for 
large population sizes M is described below. 

Theorem 3.1. Assume that as M 3 00: 

(i) Var ( vl) + a2 > 0. 

(ii) SUP [ E ( Y ~ )  C m, k = 1,2,  * * * . 
M 

(iii) 
ea2 
2M 

u = - + o(M-'),  for some 8 > 0. 

Then for fixed n, with [XI denoting the integer part of x :  

converge as M 
ages {R, t B 0 ) .  

two-type equivalence relations of the form (5 ,  q),  with transition rates 

(a) The finite-dimensional distributions of the process {RIMo-~, ] ,  t L 0) 
00 to those of a continuous-time two-type coalescent with 

(b) { R ,  t B 0 )  is a Markov process whose state space is the collection of 

q((E1; * ' ') Ek; ql, * * J ql) 

+ (El, ' * 7 Ei Ej ,  * ' J Ek; 71, * * 9 77')) = 1 

(3'1) q((E1, e ' Ek; ql, ' 9 ql) 

for l S i < j S k .  
- 0} 

is the jump-chain of {R,}, and (0, t 2 0) is a pure death process with death 
rate dk = k ( k  + 8 - 1)/2 from state k. Further, (0,) is independent of {&}, 
and 

(c) The process R, may be represented as R, = d, where { S a ,  k = n, 

(3.2) WRr = (5, v ) )  = P(Dr = k ) P ( d ,  = (5; q)), 

where k is the number of (old) equivalence classes in f .  

where Ai = 1 Si 5 k and pi = [vi[, 15 i S 1. 

Proof. Suppose that R, = (5, q). On looking back one more generation, we 
observe a transition to a state of the form R ' =  (E1, - - ., EiU Ej, . e ,  
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Ek; ql, - - , qr)  if the individuals i and j at time -m who are the ancestors of Ei 
and gj are descended from a common parent at time -(m + l), and neither is a 
mutant. Under assumptions (i) and (ii) above, Kingman (1982~) showed that 
the probability of i and j sharing a common parent is u2/M + o(M-') ,  so that, 
using (iii), the probability P R R ,  of a transition of this type is 

(3.3) 
U2 U' 

M M 
PRR' = (- + o(M-l))(l- u)' = - + o(M-1).  

Next, we might have a transition from R to R' = (E1, , E k ;  

ql, . , qr, Ei) if individual i at time -m, who is the ancestor of Ei, is a mutant 
offspring of the parent at time -(m + 1). This transition has probability u, so 
that by (iii) once more 

e ,  EiT1, lji+l, 

(3.4) 

All other changes that can occur have probability o ( M - l ) ,  either because 
they involve the coalescing of more than two old equivalence classes (which 
has probability o ( M - l ) ,  by Kingman (1982c)), mutation of more than one 
individual, or a coalescence and a mutation. Hence if we denote by 
PM = (pRR,) the one-step transition matrix of {&}, we can write 

U2 

M 
P M = Z + - Q  +o(M-') ,  

where Q is the infinitesimal generator determined by (3.1). Finally, the 
argument of Kingman (1982a) shows that 

which is sufficient to establish (a) and (b). To verify (c), note that D, is the 
number of old equivalence classes in R ,  and that, from (3.1), the jump rate for 
D, from state k, is 

(3.5) 2 

Independence of {dk} and {Dt }  follows just as in Kingman (1982b) and 
Watterson (1984). Finally, from (3.3), (3.4) and (3.5) the one-step transition 
probabilities of { Se,} are determined by 

~ ( d k  = ( E l ,  * * '9 Ei u gj ,  * * * 7 E k + l ;  ~ 1 ,  * 7 ql) I d k + l  

= (El, 9 Ek+l; V l ,  - - - 9 V l ) )  

= 2/(k + l)(k + e), 
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and 

Hence the jump-chain { dk} here has precisely the same stochastic structure 
as the jump chain for the Moranprocess, and thus (d) follows from Theorem 
2.1. 

Remarks. 
(i) The well-known Wright-Fisher process is the particular case in which 

(vl, - - , vM) has a joint multinomial distribution with 

P(vi = y ,  15 i S M )  = - M - M .  
M 

j = l  
n Y j !  

Here, u2 = 1. 
(ii) The transition density and related properties of the process {Q, t B 0} 

have been studied by several authors; see Donnelly (1984), TavarC (1984), 
Saunders et al. (1984) and Watterson (1984), Griffiths (1980). 

The approximation described by Theorem 3.1 allows us to use the two-type 
coalescent structure of Theorems 2.1 and 2.2 to approximate the genetic 
history of samples taken from a large population, with mutation rate 
u = u28/2M. Alternatively, we may look at exact results either for a sample or 
the whole population for the Moran process, in which u = B/ (M + e). The 
jump-chains of the two processes are the same, and the time-scale is 
determined by a pure death process in discrete time (for Moran’s model) or 
continuous time for the approximating processes. 

We note that the analysis of the continuous-time formulation of the Moran 
process parallels that of Section 2, but the death process evolves in continuous 
time. With the appropriate time-scaling, this latter death process converges in 
distribution as M + w to that described in Theorem 3.1; see Donnelly (1985). 

4. Properties of the coalescent with ages 
The death process that provides the time-scale for the two-type coalescent 

process reaches 0 almost surely, at which time the old equivalence classes have 
disappeared. The process of ‘new’ equivalence classes then describes the 
genetic history of a random sample of size n taken from a stationary 
infinite-alleles model. We shall then denote by F the number of new 
equivalence classes. From (2.8) with k =0, we see that the probability 
p(Z; ql, - - - , ql), say, that the sample of size n from the stationary population 
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contains 1 allelic types, and equivalence classes ql, * 
order of age is 

, ql ranked in increasing 

where pi = [vi[, pi B 1, pl + * * + pl  = n. 
Usually we shall not be interested in which particular individuals belong to 

which equivalence classes. If we multiply the right-hand side of (4.1) by 
n!/pl! * pl! ,  the number of ways in which the sample could have arisen, we 
obtain the probability pA(l;  pl, - - , p I ) ,  say, that a sample of n contains 1 
allelic types, the oldest being represented by p l  individuals, . * * , the youngest 
by PI: 

It is an elementary result about Stirling numbers SL1) of the first kind (see 
Appendix 2, (A.4)) that 

E* n!/Pl(Pl+ P A  * - - (PI + * * * + PI)  = lg?l, 
Pl."'.Pl 

(4.3) 

E* being taken over integers pi B 1, with pl + - - - + p l  = n. Summing (4.2) 
over p,, - . . , p l  and using (4.3) gives 

(4.4) 

which is a well-known result of Ewens (1972). Further, if the ages of the types 
are immaterial, then summing (4.2) over all permutations of pl, - , pl gives 
the probability pE( l ;  ,ul, - - - , p1) that a sample of size n gives 1 allelic types, 
with one allele represented p1 times, . , an Ith represented y, times. Using 
the result of Proposition 2.1 gives 

\ 

(4.5) 

where pj is the number of alleles represented j times; lpl + * + npn = n, and 
+ . . + /3, = 1. Equation (4.5) is the celebrated Ewens sampling formula 

(Ewens (1972)), derived in the context of coalescents by Kingman (1982a) and 
Watterson (1984). 

For fixed class sizes pl, - - * , p1, the distribution (4.2) assigns greatest 
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probability to the configuration in which pl 5 4 p,, so one might expect 
older alleles to be more frequent. Crow (1972) posed the question, ‘Is the most 
frequent allele the oldest?’ Kelly (1977) and Watterson and Guess (1977) 
showed that the probability of this is the expected relative frequency of the 
most frequent allele in the sample. This also follows from (4.2) in the form of 
the following proposition, the original proof of which (Watterson (1976a), 
Kelly (1977)) exploited reversibility. 

Proposition 4.1. The probability that an allele, A, represented i times in a 
sample of size n is the oldest in the sample is iln. 

Proof 

P (alleleA is oldest I F = I ;  pl, e ,  p l  E {V,, * - -, 3[-,, i } )  

(n  - l)! n !  - - from Proposition 2.1 and (4.5) 

i 
n 

-- - 

The result now follows since this probability does not depend on 1, V,, 
e ,  yj,-l. 

5. The ages themselves 

To date we have considered the relationship between class sizes and the age 
ordering of the alleles. In this section, via a closer analysis of the death process 
0, we examine properties of the ages T,, T, - - e ,  TF of the alleles in the 
sample at stationarity. We restrict attention to the case when 0, evolves as a 
death process in continuous time with death rate k(k + 8 - 1)/2 from state k to 
state k - 1. Analogous results in the discrete-time setting follow mutatis 
mutandis. 

Denote by ti, j = n, n - 1, - . , 1, the amount of time for which 0, = j ,  that 
is the times between successive jumps of the process {dk}. We know that the 
random variables t,,, tn-,, * * , z1 follow independent exponential distribu- 
tions with parameters n(n - 1 + 8)/2, (n  - l)(n - 2 + 8)/2, - e ,  8/2 respec- 
tively. With each ti associate an indicator random variable xi to mark whether 
the change from dj to dj-l involves the coalescence of t w ~  old equivalence 
classes (xi = 0) or the creation of a new equivalence class (xi = 1). It follows 
from Theorem 3.1 that the random variables xi are independent with 
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P(xi = 1) = O/(i + 8 - 1), i = n, n - 1, . - - , 1, and furthermore that the ran- 
dom variables (x,, x,-~, * * ., x,) are independent of the random variables 
(z,, T , , - ~ ,  

We note in passing that, as in Watterson (1984), F, the number of different 
allelic types in the sample, may be written as 

- , z,). Note that x1 = 1 a.s. 

(5.1) F = xn + xn-l + . . + xi, 
from which its moments and probability generating function follows readily. 
Also 

P(F = I )  = P(exact1y I - 1 of x,, xnp1, * , x, are 1) 

- - 2’ bl b,-[ 
e[ 

(e + n  - i ) ( e  + n  - 2 ) .  e 
where the summation E’ is over integers b,, . e ,  b,-[ satisfying 1 4  b ,  < b, < 

< bnpl  I n - 1. Thus from Appendix 2 (A.2) we have again that 

We introduce the random variables Hi, i = 1,2, - - a ,  n, defined by 

H, = 1 

Hi = 
k if xk = 1 and exactly i - 2 of x,-~, . e a ,  xz take the value 1 (5*2) I w if fewer than i of x,, , x1 take the value 1. 

It is evident that Hi takes the value k if the jump from d k  to a,-, involves the 
creation of a new equivalence class, and exactly i - 1 more new equivalence 
classes are created as d k - 1  evolves to a,. If there are fewer than i new classes 
in do then Hi takes the value CQ. Thus, when it is finite, Hi labels the jump at 
which the ith-oldest new equivalence class was created. When it is defined, 
that is when Hi < w or equivalently when F Z i, we may write T, the age of the 
ith-oldest allele, as 

(5.3) T = z, + z,-l + + ZH,. 
The age of the oldest allele is given by 

T, = Z, + - * + zl, 

the time for the death process 0, to reach 0. Exact expressions for the 
distribution of T, are given for example in TavarC (1984). Notice that it follows 
from the independence of { D,} and { d k }  and is independent of the process 
{a,}, and in particular that Tl is independent of the class sizes p,, e ,  p p  
This latter result is originally due to Kelly (1977). 
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The joint distribution of the Hi, i = 1, 2, - e, F is straightforward. For 
example 

With the aid of the characterization (5.3) this gives, at least in principle, the 
joint distribution of the ages T,, - a ,  TF. 

For the marginal distribution, note from (5.2) that 

k = i , i + l ,  

where the summation E '  is over integers b,, . * ,  bk+ satisfying 1 5 b ,  < * - < 
bk+ 4 k - 2. Thus from Appendix 2 (A.2) we have 

On the set where Hi= k, the distribution of TI.= z, + a  e - + zk is known. 
(P(z, + - - + tk 5 t )  = P(D, S k - 1); this latter can be computed from TavarC 
(1984), Equations 5.2 and 5.3, for example.) Averaging this over the 
distribution (5.4) of Hi gives the distribution of T, the age of the ith-oldest 
allele, explicitly. Of course the moments and generating functions of may 
also be found via (5.3) and (5.4). We omit the details. 

6. Partition by ages 

We return now to the distribution of the age-class sizes themselves. We shall 
be concerned with the distribution (4.2) of age-class sizes from a stationary 
infinite-alleles sample of size n. To emphasize its dependence on n, the number 
of alleles in the sample will be denoted in this section by F("). Let 
X,,, i = 1,2, - * ,  F(") denote the frequency of the oldest, , youngest 
alleles in the sample. 

Proposition 6.1. For b e d  r, with xi E { 1, ., n}, i = 1, - - , r satisfying 
n - 1  + r L x ,  + + x ,  Z r ,  if 1 2 r  then 

P(X,, =xi, 1 5 i I r 1 F(") = 1 )  

- n ! /S~'I$. .. -J 
ISPI (n-x,-...-x,)!n(n-x,)...(n-x,-...-x, _,)' 

- (6.1) 
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using Appendix 2 (A.4). 

Now (6.1) follows on dividing this last quantity by P (Fc") = I )  given in (4.4). 

P(x,, = xi, 1 d i d r ;  F(") 2 r )  

To establish (6.2), notice that if s = n + r - x ,  - - * - x, 

S 

= 2 P(x,, = xi, 1 s i s r ;  F(") = I )  
I=r =i- eh  ! p$k;;-. ..-J 1 
I=r e(,) (n -xl - s - . - X J  n(n -xl). . . (n -xl - . . . -xr-l) 

s-r 

- .  - x r ) !  n(n - X , p  - . (n  -xl - - - - - x r - J  I = O  

ern! - - 2 el Is:?,/ 
e(,,(n - x ,  - 

e' n!  . . -xr )  - - 
n(n -xl) - .  . (n -xl - . - - -x,- , )  e(,,(n -xl - - .  . - x , ) ! *  

Remark. When r = 1, (6.2) can be written in the form 

This last result is due to Kelly (1977) in the context of the Moran model. 

. 
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2 

I .  

Now suppose that the process is evolving in continuous time, as in Section 3. 
Having taken a limit as M + w, F(") may be interpreted as the number of 
alleles in a sample of size n from a stationary infinite alleles diffusion model. 

Theorem 6.1. For each fixed integer r B 1, 

where 

(6.3) XI = Y1, X2= (1 - Y1)Yu * . ., X, = (1 - &)(I - Yz) * * . (1 - Y,-i)K, 

with Yl, Y, - - * independent and identically distributed random variables with 
probability density function f(x) = e( 1 - x)'-l, 0 S x S 1. 

Proof. First note that from (5.1) and the Borel-Cantelli lemma, 

F(") + 00 a s .  as n + a. (6.4) 

Let y,, y, - - , y, be positive numbers satisfying 0 < yi < 1, 1 S i 5 r, and 
O <  C ; y i  < 1. From the asymptotics of the gamma function (e.g. Abramowitz 
and Stegun (1972), p. 257), it follows that for any sequence of integers m, t w 

a s n + w  

Hence from (6.2) and (6.4), we have 

lim nrP(Xi,, = [nyi], 1 S i S r ;  Fen) I r )  
n-m 

(6.5) 

It is readily verified that if {Y;}  and (4.) are defined as in (6.3), then the 
right-hand side of (6.5) is the joint probability density function of (X,, a ,  X,). 
The theorem follows from (6.5) and an application of Scheffd's theorem (cf. 
Serfling (1980), p. 17). 

Remark 1. It was established by Kingman (1975) that if Zo)  B 2(2) B * * * 

denote the ordered allele frequencies in the stationary infinite-alleles diffusion 
model (e.g. Watterson (1976b)), then the joint distribution of (Z,,,, 2(2), -) 
is a Poisson-Dirichlet with parameter 8. Patil and Taillie (1977) showed that if 
(X,, X, ...) are defined as in (6.3), then the joint distribution of the 
descending order statistics X(,) 2 - - h X(,, 2 - - - is also Poisson-Dirichlet 
with parameter 8. 
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Remark 2. An interpretation of the representation of (6.3) as the age- 
ordered partition of the infinite alleles diffusion model has been obtained 
independently by R. C. Griffiths (personal communication). 

7. Partition structures 

There has been considerable recent interest in partition structures on 
populations. See for example Patil and Taillie (1977), Kingman (1975), (1980). 
The last section developed a partition of an infinite population based on the 
ages of the alleles present. Earlier sections studied the partitions induced on 
samples by ages. We now examine further properties of these partitions and 
relate them to some partition structures arising elsewhere in mathematical 
biology. 

Consider first partitions of a sample. Suppose we take a sample of size n 
from a population at equilibrium, and that the distribution of the allelic 
partition (I; pl, - * , p l )  is given by the Ewens sampling formula (4.5). Recall 
that the labels of the alleles are now arbitrary, and not based on their ages. 
Given the sample partition (I; pl, - - , p l ) ,  construct the size-biased partition 
as follows: choose an individual at random from the n and record his allelic 
type i l ,  say. After removing from the sample all individuals of this type, 
choose an individual at random from the remaining individuals, record his 
allelic type (iu say), and then remove all the individuals of this type. 
Continuing in this way produces a size-biased permutation ll* = (il, - - - , ir) of 
(1, - * * , I) and, conditional on (I; pl, - , p r )  

Denote by (I; p:, - - - , p:) the size-biased partition obtained in this way (so 
that there are p? genes of the type first chosen, & genes of the second type 
chosen, and so on). Averaging (7.1) over the Ewens distribution (4.5) now 
gives the distribution of the size-biased partition (I; p;, - - - , p:) as 

Thus, identifying the genes labeled j in the size-biased partition with the 
jth-oldest allele in the sample, the distribution (7.2) of the size-biased partition 
is the same as that of the age partition (4.2). This equivalence is not surprising. 
By reversibility (see for example Kelly (1979), exercise 7.2.5) the age partition 
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is the same as the partition of alleles in terms of length of survival, and by 
symmetry this latter partition should be equivalent to the size-biased partition. 
It does provide one interpretation of the way in which novel alleles emerge, 
and confirms the intuitive observation that the oldest allele is most likely to be 
the most frequent. Incidentally, the equivalence of (4.2) and (7.2) provides a 
further proof of Proposition 4.1. Furthermore, it follows from Theorem 2.1 of 
Patil and Taillie (1977) that if X,, is the frequency of the ith-oldest allele in a 
sample of size n, then E(X,,) is decreasing in i. 

The partition of a population given by Theorem 6.1 arises in the context of 
population diversity as a particular residual allocation model (Engen (1975)). 
(A residual allocation model is one in which X, = Y,, X, = (1 - Yl)Yu - - - for 
some sequence of independent random variables called the residual 
fractions. In Engen's model the have probability density function O(1- 
x)"-'.) It was noted in the last section that the order statistics of this partition 
give the partition induced by the Poisson-Dirichlet distribution of Kingman 
(1975). Patil and Taillie (1977) note that the Engen partition (Le. that of 
Theorem 6.1) is the size-biased version of Kingman's partition, and moreover 
that it is characterized by the fact that it is the only infinite residual allocation 
model whose residual fractions are independent and identically distributed and 
which is invariant under size-biased permutation. 

It is well known that the relative frequency in the population of the allelic 
type of an individual chosen at random from an infinite-alleles model at 
stationarity has probability density function O(1- x)e-l (see for example 
Sawyer (1977)). The density'of the allelic type of a randomly chosen individual 
is exactly the density of the allele labelled 1 in the size-biased permutation of 
the underlying partition. The result follows by the above argument since the 
size-biased partition 'is identical to that of Engen (or equivalently that of 
Theorem 6.1) in which the probability density function of X, is O(1- x ) + l .  

Sawyer and Hart1 (1984) obtain the partition of a population of (6.3) in the 
context of a model for local selection. They also discuss a mechanism which 
would give rise to (6.3) as an age-ordered partition, but in their case the age 
ordering is opposite to that of (6.3). That the partition structure they obtain 
from local selection is equivalent to the partition by ages of an infinite-alleles 

arbitrarily, sheds light on the fact that they obtain the Ewens sampling formula 
as the description of samples from their model. 

. population, at least as far as taking finite samples in which alleles are labelled 
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Appendix 1. Proof of Proposition 2.1 

We need to prove that if p,, yu - - , p I  are positive numbers, and ll denotes 
the collection of permutations II = (~( l ) ,  * -, ~ ( l ) )  of the set {1,2, - * * , I}, 
then 

1 - - 1 
(A.1) z 

=en P ~ ( , ) ( P ~ ( , )  + ~ ( 2 ) )  . * * + * * * + P Z c r ) )  ~ 1 ~ 2  * * PI * 

The proof proceeds inductively. Let I I j  denote the collection of permutations 
n E n with n(1) = j .  The left-hand side of (A.l) may be written 

1 1 
PI + ~2 + * . + P I  ~ n ( l ) ( ~ n ( l )  + ~ n ( 2 ) )  * * * ( ~ n ( 1 )  + * * * + P ~ ( I - 1 ) )  

- - l i  Pi (by inductive hypothesis) 
PI + * * * + PI j=1  P A  . * * PI 

= lip,. * p,. 

When I = 1, the identity in (A.l) is trivial. Hence the proof is complete. 

Appendix 2 

Let Sz) be a Stirling number of the first kind. That is, IS!)[ is the coefficient 
of x’ in the expansion of x(” )  = x ( x  + 1) - * - (x  + n - 1); cf. Abramowitz and 
Stegun (1972), p. 824. By comparing coefficients, it follows that 

where E‘ is over integers b,, * 

n - 1. Hence 
, ZI,,-~ satisfymg 1 S bl < b2 < - < bn-I d 

(A.3) 

where E” is over integers a,, * - , u1-, satisfying 1 d a, < - . - < uj- ,  S n - 1. 
Finally, it follows from (A.3) that 

where E”‘ is over integers pi E (1, - . - , n}, satisfying E\ pi = n. 
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