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Abstract. A process analogous to Kingman's coalescent is introduced to 
describe the genealogy of populations evolving according to the infinitely- 
many neutral alleles model. The process records population frequencies 
in old and new classes, and labels the new classes in order of decreasing 
age. Its marginal distribution is characterized in a form which is amenable 
to explicit calculations and the transition densities of the associated K-allele 
models follow readily from this representation. 
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1. Introduction 

Genealogical processes have received considerable attention recently and found 
a large number of applications within population genetics. Kingman (1982a, c) 
introduced the n-coalescent as a robust method of describing the genealogy of 
a sample of fixed size, n, taken from a large haploid population evolving according 
to one of a wide class of reproductive models. It also provides an exact description 
of the genealogy of the Moran model. With respect to an ancestral population 
some time t in the past, the n-coalescent partitions the sample into equivalence 
classes; individuals in the same class share a common ancestor in the ancestral 
population. As t increases (and the reference time recedes), the number of 
ancestors of the sample will decrease and the equivalence classes of the n- 
coalescent coalesce, until, for large enough t, the whole sample shares a single 
common ancestor, and forms one equivalence class. This process was extended 
by Watterson (1984) in the infinitely-many neutral alleles setting, to a process 
with two types of equivalence class, old and new. Individuals in the same old 
class share a common ancestor in the reference ancestral population and have 
no mutations in their line of descent from that ancestor (and so are all of the 
same genetic type as the ancestor). Individuals in the same new equivalence class 
share a common ancestor more recently (that is, less far into the past) than the 
reference ancestral population, that ancestor itself being a mutant (and so of a 
novel genetic type), with no further mutation in their lines of descent between 
the ancestor and the present time. Thus each individual in a particular new class 
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will share the same genetic type, and different new classes correspond to different 
types. Donnelly and TavarC (1986) observed that it is possible to keep track of 
the order in which new classes arise and as a consequence to study the age 
structure of the alleles explicitly. 

Each of these processes evolves on a discrete state space and describes the 
genealogy of samples from an evolving population. Indeed the robustness result 
(Kingman (1982c), Donnelly and Tavari (1986)) relies heavily on the fact that 
the sample size is fixed as the population size tends to infinity. With the exception 
of the Moran model, less is known of the genealogy of the whole population. 
Kingman’s (1982b) coalescent is a process in which are embedded n-coalescents 
for each value of n and it may be thought of as a description of the population 
genealogy. Our purpose here is to describe an analogous (though more compli- 
cated) population process in the infinitely-many alleles framework. In the infinite 
population diffusion time-scale limit the infinite alleles model is usually specified 
in terms of a particular diffusion model on the simplex of sequences of ordered 
non-negative real numbers which sum to one (see for example Ethier and Kurtz 
(1981)) or, more recently, as a measure-valued diffusion (cf. Ethier and Kurtz 
(1986)). The process described in this paper should be seen as an alternative way 
of thinking about (or specifying) the model, and would seem to have a number 
of advantages. Like the sample coalescents to which it is closely related (in 
particular that in Donnelly and Tavari (1986)), the process enjoys a simple 
structure and its transitions always involve one of only two possible types of 
change of state. The marginal distribution of the process at any fixed time, and 
its equilibrium distribution, have a particularly tractable representation in a form 
which greatly facilitates direct calculation. These distributions, and indeed our 
whole approach, are closely allied to those of Griffiths (1980). In contrast to that 
work, and to the usual diffusion model, the genealogical process also keeps track 
of the age ordering of the new alleles. As well as making the process more 
informative, this device is largely responsible for the simplicity, both in structure 
and in distribution, which it enjoys. 

In the next section we describe the process and give its marginal distribution 
and transition mechanism. The appendix is used to prove that such a process 
actually exists. The final section shows how to embed the usual K-allele models 
in the genealogical process and recovers their transition densities as an illustration 
of the ease with which calculations may be performed. 

2. The process 

Throughout, we will work on the so called diffusion (or continuous) time scale 
and consider a hypothetically infinite population. In the usual way the (scaled) 
mutation parameter will be denoted by 0, which we assume to be positive. One 
could (at least conceptually) label the individuals from the set N = {1,2,3,. . .} 
and describe genealogy by means of equivalence relations on this set of labels. 
This is the approach of Kingman’s coalescent. However it is in fact equivalent 
(Kingman (1982b)) and for our purposes more convenient to specify the frequency 
of the population in each of the equivalence classes. 
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As usual fix t > 0 and consider the genealogy of the population at the present 
time (time 0) with respect to the ancestral population time t in the past (time 
- t ) .  A certain proportion of the population, x1 say, may share a common ancestor, 
without intervening mutation, at time - t  (in a coalescent type terminology these 
individuals would comprise an old equivalence class). A further proportion, x2 
say, may share a different common ancestor, again without intervening mutation 
between time 0 and time - t ,  and so on. Suppose there are k such groups (for 
t > 0, we will see that k is almost surely finite) having frequencies x1 , . . . , xk 
written in an arbitrary order (so that later probability statements will refer to the 
sequence xl,.  . . , Xk and not to the unordered set {xl,. . . , &))e Each such group 
will be of the same genetic type as the corresponding ancestor. There will also 
be a number of alleles in the current population which do not appear in the 
ancestral population (recall that 8 > 0 and that the infinitely-many alleles assump- 
tion means that each mutation results in a completely novel allele). In fact, we 
will see that for t > 0, there will (almost surely) be an infinite number of distinct 
new alleles. All the individuals of a particular new allele (in coalescent ter- 
minology) form a new class-they are descended without mutation from a single 
common ancestor who was himself a mutant at some time -r, 0 < r < t. Each new 
allele arises at a different time (recall our diffusion type limit) and so we may 
order them by age, i.e. by time since first appearance in the population, with the 
oldest new allele arising at some time -rl ,  the second oldest at - r2 ,  and so on, 
with t > rl > r2 > - - > 0. Denote the frequencies of the oldest, second 
oldest,. . . allele (i.e. the age ordered frequencies in the new classes) by 
&+I, xk+z,. . . . For this value of t we may abbreviate the above genealogical 
information by (k; xl, x2, . . . , x k ,  &+2, . . .) for some k = 0,1,2, . . . , O S  xi s 
1 and x, = 1. As t increases this will give rise to a stochastic process describing 
the genealogy of the population, and we denote this process by {M, ,  t L 0). 

When t = 0 every individual in the population is its own (distinct) common 
ancestor. We denote this by (00; 0, 0, 0, . . .) and choose this as the value of Mo. 
The process { M , ,  t 2 0) thus has a state space which is a subset of N, x A, where 
we have written N, for N u  (0, a), and A for the set of sequences (xl, x2,. . .) 
with each x, E [0,1], and 1 x i s  1. 

Before describing the process, a few words about strategy are in order; there 
are a number of alternatives. At one extreme we could simply dejne the process 
{ M , ,  t >O}, derive its properties, and then state that statements about the (infinite 
population) “infinitely-many alleles model” are those which necessarily follow 
from its having a genealogy described by { M f ,  t 2 0). After all, many genetic 
models are often defined by specifying (via its generator for example) an appropri- 
ate diffusion. In our setting it would perhaps be appropriate to show that the 
“model” defined via { M f ,  t 2 0) is consistent with (or equivalent to) that which 
arises from the usual diffusion. At the other extreme one could look at the 
genealogical process associated with a finite population (infinitely-many alleles) 
Wright-Fisher, or more general, model and define the genealogical process 
associated with the infinite population model to be a suitable (weak) limit of the 
finite process as the population size increases, if such a limit exists. We will steer 
a middle course, arguing that on the basis of existing results concerning both the 
diffusion and finite genealogies, the process {M, ,  t 2 O )  must behave in a certain 
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way. That the usual K-allele diffusions arise as consequences of the genealogy 
specified by {M,, t 2 0) is further convincing evidence for the consistency of the 
various models. 

We first describe the transition mechanism of {M,, t 2 0). Griffiths (1980) 
studied lines of descent in the diffusion approximation of neutral Wright-Fisher 
models. This is tantamount to studying the genealogy induced by the diffusion. 
Each of our old classes corresponds, in his terminology, to a line of descent with 
a root at time zero and he shows that for t > 0 there are (almost surely) only a 
finite number of such. Suppose then that for some t > 0 ,  we have M , =  
(k; xl, x 2 ,  . . . , x k ,  x k + l ,  X k + &  . . .) for some k < co. How can M,  change? Each new 
class corresponds to a particular new allele which arose after time -t, and so as 
t increases the frequencies in these classes cannot change. The classes themselves 
will be relabeled though, as extra new alleles arise. Each old class corresponds 
to a particular individual in the population at time - t .  Tracing the genealogy of 
those members of the population (at time 0) who are in old classes with respect 
to the population at time - t  is equivalent to tracing the genealogy of the k 
ancestors (one for each class) from - t  further into the past. But this latter 
genealogy is much studied - it is that of a sample of fixed size k from an infinite 
population and is described by a k-coalescent and in particular by the process 
of Donnclly and Tavart (1986), which takes account of mutation and the age 
structure. (The preceding argument is an example of Kingman's (1982a) temporal 
coupling.) The time until the next change occurs depends only on k and is 
exponentially distributed with mean 2/( k(k+ 8 - 1) ) .  Given that a change occurs 
it will involve a particular pair of the k individuals sharing a common ancestor 
(and so the coalescence of the two corresponding old classes) with probability 
2 / k ( k + B - l ) ) ,  or a particular one of the k individuals being the result of a 
mutation (and so the corresponding old class becoming the oldest of the new 
classes) with probability O / ( k ( k  + 8 - 1)). In each case the number of old classes 
decreases by exactly one. 

We have thus specified the initial distribution of { M , ,  t 3 0) and its behavior 
from any positive time onwards. It can be shown that this is enough to characterize 
the process. We omit the details however and instead define the appropriate 
process and verify that it enjoys the required properties. 

Let { D,, t 2 0) be a death process with death rate k(k+ 0 - 1)/2 from state k, 
and an entrance boundary at infinity. That is, Do = 00, and 0, waits in state k for 
a period T k  which is independent of the past history of the process, and exponen- 
tially distributed with mean p k  = 2/k(k+ 8 - 1) .  Since, for any n, the time to first 
reach state n, Ck," Tk, has finite mean Ck,,, p k ,  it is almost surely finite. Intuitively, 
infinitely many of the waiting times T k  will have occurred in any finite interval 
EO, t )  and once it reaches a finite value, D, behaves as an "ordinary" death 
process. The value of this death process will correspond to the number of old 
classes in M,. Notice that 0, is almost surely finite for t > 0 ,  and given that 
D, = n, {Or+,, s 2 0) behaves as a death process with initial state n and the above 
death rates. Let (Yk be the indicator of the event that a new class is formed when 
the number of old classes drops from k+ 1 to k. The (Yk are independent, with 
P ( a k  = 1 )  = e / (  8 + k). The Borel-Cantelli Lemma then ensures that for any 
j ,  Cka, (Yk = co almost surely. Since P( D, <a) = 1 for any t > 0, it follows that 
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CkaD, (Yk = rn almost surely. Thus for any t > 0, M,  will contain an infinite number 
of new classes. Griffiths (1980) also shows that for any t > 0, the frequencies in 
the old lines are almost surely positive, and since each new class was an old class 
at some time s, 0 < s < t, it will have non-zero frequency with probability one. 

We are now in a position to give a formal definition of the process {M,,  t 2 0). 
Let {D , ,  t 3 0 )  be the death process defined above. Let { m k ,  k =0,1,2, .  . .} be a 
discrete time Markov chain on N, x A, independent of {D,, t 2 O } ,  with 

mk = ( k ;  X 1 , .  . . , x k ,  Xk+' , .  . .)) = l / k ( k +  8 - I ) ,  1 S i < j S  k ;  

mnz, = ( k ;  X I , .  . . , X k ,  X k + l , .  . .)) = l / k ( k +  e l ) ,  1 i < j S  k. 

(That such a process exists will be shown in the Appendix.) Finally, define 

Mo=(~;O,O ,...) and M,=9XD, ( t > O ) .  

Now we give the distribution of {M,}. It is easiest to give the distribution of 
{D,} and then the distribution of M, conditional on D,, Le., the distribution of 
n. The former is well known; see for example TavarC (1984, equation (5 .5 ) ) :  

(-iy '-k(2j+ e -  1 ) r ( k +  e + j -  1) 
, k a l  

_ .  k ! ( j -  k ) ! T ( k +  e )  

In the appendix we will show that the distribution, vk say, of mk is concentrated 
on { k }  x A', where A'  is the subset of sequences in A which sum to unity, and 
has the following representation. Let vk be a random variable having the beta 
density fk given by 

r( k + 8)xk- '(  1 - x )  , O S X S l .  
f k ( x ) =  T ( B ) ( k - l ) !  

Let ( U ,  , U2,  . . . , uk) be a random k-vector having a uniform distribution on 
the simplex { ( u l ,  u 2 , .  . . , u k ) ;  ui 3 0, u1 + u2+ - * + uk  = 1 )  (i.e. density propor- 
tional to Lebesgue measure on the simplex), and let Z1, Z,,  . . . be independent 
and identically distributed random variables with density f given by 

f( X )  = e( 1 - X )  '-I, o c x c 1,  
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and choose (U , ,  U,, . . . , Uk), v k ,  and (5) to be mutually independent. Finally 
define the random element X ( k )  of A’  by 

X‘&’ = ( vku1, vku,, . . , v k  uk, (1 - vk)Zl, (1 - v k ) (  1 - z’)z2 y (1 - v k ) (  1 - 2 1 )  

(1 -Z&, . . .). 

x‘”=(z1,(1-z,)z,,(1-z,)(1-z,)z3, . . .). (2.2) 

When k = 0, put 

Now for any Bore1 subset A of A, define v k  by 

v k ( { k } X A ) = P ( X ( k ) E A ) ,  k = 0 ,  1,2 ,.... 
Remark 1. At equilibrium ( t  + 00) there will be no old classes and the age ordered 
frequencies of the new classes will have the representation (2.2). (For two 
alternative derivations and numerous applications of this representation see 
Donnelly and TavarC (1986) and Donnelly (1986a).) Perhaps the easiest way of 
thinking about the distribution vk of i?& is as follows. The proportion of the 
population who are in old classes, v k ,  has the distribution fk given by (2.1). 
Conditional on this, the joint distribution of the proportions in each old class is 
uniform on the appropriate space and the joint distribution of the age ordered 
proportion in each of the new classes has the representation (2.2). That is, 
conditional on the total size of the new classes they behave like a stationary 
population of that size. 
Remark 2. Griffiths (1980) obtained the distribution (2.1) of v k ,  and the above 
distribution of ( U1, . . . , u k )  as the marginal distribution of the total and individual 
frequencies respectively of genes in old lines of descent in the diffusion approxi- 
mation, conditional on there being k such old lines. That the distributions are 
identical to those above is hardly surprising. It is a consequence of the fact that 
our genealogical process { M , ,  t 3 0) and the usual infinite alleles diffusion really 
describe the same model. But note that our result does not automatically follow 
from Griffiths’. The novelty of the current approach lies in constructing and 
characterizing a geneaiogical process (rather than its distribution for fixed t ) .  
Furthermore, the labeling of new alleles by age is informative, and equally 
importantly leads to the very tractable distribution represented at (2.2). Previous 
approaches labeled the new alleles in decreasing order of class size and lead to 
the Poisson-Dirichlet distribution. For the relationship between the two, see for 
example Donnelly (1986a). 

Remark 3. One of the advantages of focusing on genealogy is that the above 
characterization lends itself readily to calculations. One could study at length 
the transient age structure of the population, and the joint distribution of popula- 
tion and sample frequencies (Le. subsampling genealogies). The ideas are 
analogous to Donnelly (1986a) and we omit the details. Instead, to illustrate 
calculations, we study K allele models. 

3. K-allele models 

Now (and throughout this section) consider the case in which each individual 
in the population is of one of K possible types, and label these alleles 
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A l ,  A 2 , .  . . , AK.  Suppose that the (scaled) mutation rate from alleles of type Ai 
to Ai( i Z j )  is given by eii = E~ for each i. Kingman (1980) gives a biological 
justification for this assumption. Historically, many of the fundamental results 
about the infinite alleles model were obtained by taking suitable limits in a 
K-allele model with symmetric mutation ( E ~  = E /  K )  as K + 00. Here we observe 
that the structure of the K-allele models can be recovered from the infinite alleles 
model and in particular from the genealogical process { M t ,  t 3 0). 

The first step is to give an equivalent version of the K-allele model. Define 
8 = E, + + E ~ .  Now consider a K-allele model in which mutations occur at 
rate 8, and given that a mutation occurs, the resulting offspring will be of type 
Ai with probability E ~ /  8 , j  = 1,2, . . . , K. This is readily seen to be equivalent to 
the original model; we have simply introduced the device of mutation from a 
type to itself. (A more detailed version of this argument in the finite population 
setting is given in Donnelly (1986b).) The point is that the process can now be 
constructed genealogically. Simply put down the genealogy for an infinite alleles 
model with mutation rate 8, then consider each novel allele (in the infinite alleles 
model) in turn and independently reclassify it to be of type AI with probability 
~ , / 8 , j = 1 , 2  ,..., K. 

The distribution of the K-allele model evolving forward in time now follows 
from our knowledge of { M t ,  t 3 0). Fix t > 0. The joint distribution of the propor- 
tions of the population who are of types A l ,  . . , , AK respectively, as the result 
of the mutation in (0, t), will be the same as the joint distributions of 
Y l ,  Y2,. . . , YK say, where for j = 1,2, .  . . , K ,  Y, is the sum of the frequencies 
of the new classes of M, which are relabelled j in the above (multinomial 
(E]/ 8, . . . , E~ / 8)) relabelling. Take a collection of frequencies ( xl, x2, . . .) with 
distribution of the form (2.2). As we are going to relabel the points anyway, 
rewrite these in descending order as a point ( yl , y 2 ,  . . .), yl 3 y2  2 y 3  3 . 3 0 of 
A'.  In this form the point has a Poisson-Dirichlet distribution and (among other 
things) may be represented as (zl/u, z 2 / u , .  . .) where z1 2 z 2 2  z 3 3  * are the 
points of a non-homogeneous Poisson process on (0, 00) with rate 82-I e-', and 

m 

u = c z,, 
1=1 

which is almost surely finite. See Kingman (1978). Now independently label each 
point of the Poisson process in such a way that P (point z, is labelled j) = E,/ 8, j = 
1,2, .  . . , K ;  i = 1,2,3, . . . . Denote by (zp), zp', z?), . . .) the points labelled j, j = 
1,2, .  . . , K ,  again written in decreasing order. It is well known in the theory of 
Poisson processes (see for example Karr (1986)) that the K collections of points 
(z:'), z;'), . . .), (z(12), zy), . . .), . . . , (ziK), z iK ) ,  . . .) form K independent Poisson 
processes rates ~ ~ 2 - l  e-', E ~ Z - '  e-*, . . . , E ~ z - '  e-' respectively. 

We now derive the distribution of 
m 

u, = zjl). 
, = l  

Note that 
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and this last is just the probability generating functional of the process evaluated 
at the function exp( - t ). Hence 

1 (1 - e-") ~ ~ z - '  e-' dz 
i = l  

= ( 1 + t ) -1, 

and thus it follows that 9 has a Gamma distribution with index and scale 
parameter 1. Hence (al/a, w,/u,.  . . , aK/a )  has a Dirichlet distribution with 
parameters ( E ] ,  E ~ ,  . . . , E ~ ) .  (See Johnson and Kotz (1972, p. 321, and recall that 
(a,, a,, . . . , uK) are mutually independent). 

In our K-allele population at time t there will be a random number, 1 say 
(with the same distribution as 0,) of old classes, each of which consists of 
individuals who are descended without mutation from a single ancestor in the 
population at time 0. Denote the frequencies of the 1 classes by XI, X , ,  . . . , X,.  
All of the individuals of a particular old class will be of the same genetic type 
as the corresponding ancestor. It follows from the above and the earlier charac- 
terization of the distribution of Dl, that 

(xl ,  x2, * * a  x/; yl, y 2 9 . 0  - 3 YK) 
' d (  U I v , .  , U/&; (1 - v )w , , .  .., ( 1 -  V)WK) ,  

where ( U, , . . . , U,) and ( W, , . . . , W,) have independent Dirichlet distributions 
with parameters ( 1 , 1 ,  . . . , 1)  and ( E ] ,  E, ,  . . . , E ~ )  respectively, each independent 
of V, which has the distribution (2.1) with k replaced by 1, and = d  denotes 
equality in distribution. 

In the sequel it will be convenient to have a compact notation for Dirichlet 
distributions. Random variables W , ,  . . . , W, will be said to have a Dirichlet 
distribution D,(T,, . . . , 7,) if W, = 1 - W, - * - W,-,, and W , ,  . . . , Wp-,  have 
joint probability density 

on {0< w,, i = 1 , .  . . , p - 1; w1 + 
variables argument that 

+ wP-, < 1). It then follows by a change of 

( X I , . .  . , X , ,  y,,. . . , Y K )  has Q+K(l , .  . . , I ,  E , , .  . . , e K )  (3.1) 
distribution. 

Now assume that at time t the number of old classes is D, = 1. Suppose the 
initial distribution assigns labels (types) independently to each member of the 
population in such a way that at time zero any particular individual will be of 
type A , ,  A, ,  . . . , AK with probability p , ,  p 2 , .  . . , p K  respectively. Since 
individuals in the old classes inherit the type of their appropriate ancestor, each 
old class at time t will consist of individuals all of whom are of type A, with 
probability p j , j  = 1 ,2 , .  . . , K ,  independently for each class. Let Y :  be the total 
of the frequencies of the old classes which are assigned label i, i = 1,2,  . . . , K.  
The number of classes so labelled has a multinomial distribution, and if m,( 3 1) 
are labelled i, a simple symmetry argument in (3.1) shows that 
( Y : , . .  . , Y k ,  Y l , .  . . , Y, )  has the 4 K ( m 1 , .  . . , m K ,  E , ,  . . . , E ~ )  distribution. 
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Hence (Y: + Y l ,  . . . , Yk + YK) has the DK(ml  + . . . , mK + E ~ )  distribution. 
This last statement holds even if some of the mi are zero. Thus the probability 
density of the K allele frequencies at time f ,  given initial frequencies pl ,  . . . , p,, 
and given that D, = 1, has the form 

the sum being over all non-negative m, , . . . , mK with sum 1. This last expression, 
together with the distribution of { D t }  given earlier, gives the transition density 
of the K-allele model forward in time. It was obtained by other means (for the 
diffusion model) in Griffiths and Li (1983 equation (8)); see also Griffiths (1979). 

Acknowledgements. The authors were supported in part by NSF grants DMS 85-01763 and DMS 
86-08857. 

Appendix 

Our purpose here is to prove the existence of the discrete time Markov chain m. described in Sect. 
2 and to verify that the marginal distribution of mk is in fact given by v k ,  k = 0, 1 , 2 , .  . . . Since the 
state space N, x A of mk is compact, both of these conclusions will follow from the Kolmogorov 
extension theorem if we can show that the distributions vk are consistent with the transition mechanism 
of m.. 

Suppose than that there are k old classes, with total frequency Vk having a beta distribution with 
density 

The frequencies in the k old classes have representation 

Vk(u1, u2>...> uk) (W 
where ( U , ,  U,,  . . . , uk) has a Dirichlet distribution D k ( l ,  1 , .  . . , l ) ,  independent of vk, whereas the 
new classes, in decreasing age order, have the representation 

( 1 -  v k ~ ~ ~ l ~ ~ ~ ~ ~ l ~ z ~ ~ ~ ~ ~ z l ~ ~ 1 ~ z 2 ~ z ~ ~ ~ ~ ~ ~  (A3) 
where the {Zi} are independent, identically distributed random variables with the beta density 
e ( i - x ) e - l , o < x < i ,  independent of (u,, U2, ..., uk) and vk. 

We will show first that when the number of old classes decreases by one to k - 1, then the total 
frequency Vk-, in the old classes has the distribution (Al) with k replaced by k - 1.  

A transition from k to k - 1 can occur in two essentially different ways. For some 1 c i < j k, 
the ith and j th  old classes may coalesce. This event, Eij say, has probability 2 / ( k ( k +  8 -  l ) ) ,  and in 
this case Vk-l = Vk. Alternatively, the ith old class is chosen to become the oldest of the new classes. 
This event, F, say, occurs with probability O/k(k+O- l ) ,  and in this case Vk-l = Vk(l - Ui). Hence 
the rth moment of Vk-l is 

e k - 1  +-- 
k+i3-1 k + e - 1  k + r - 1  
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T(k - 1 + e)r( k - 1 + r )  

T ( k - l ) r ( r +  k - i + e ) '  
r = 0, 1, . . . . - - 

P. Donnelly and S. Tavart 

These are the moments of the density f k - , ( x ) ;  since this density is determined by its moments, we 
are finished. 

Next we establish that once the number of old classes has decreased from k to k - 1, the joint 
distribution of the k - 1 old frequencies has the representation 

where (U:, . . . , UL-,) is independent of V,-,, and has Dirichlet distribution Dk-,(1, .  . . , 1). Condi- 
tional on a coalescence occurring, we know that Vk-, = Vk, and that (Ui, . . . , UL-,) is formed by 
summing a randomly chosen pair of elements from ( u, , . . . , Uk). The resultant ( V i , .  . . , UL-,) has 
the required properties, as was shown in Kingman (1982c), p. 244. On the other hand, conditional 
on the ith old class being relabelled as the oldest of the new classes the old frequencies become 

v h ( u l * . . . ,  ua-l,Ut+l,... uh) 

It may readily be verified that 1 - U, is independent of the random vector on the right, and that this 
vector has the distribution DA-,( l , .  . . , 1). Since vk-1  = vk(1 - u,), this establishes our Claim. 

Finally, we need to show that after k old classes have been reduced to k - 1 the new frequencies 
have the same probabilistic structure as (A3). This is clear if the jump from k to k - 1 occurred via 
a coalescence. If the jump occurred from the reclassification of an old class as a new one then 
Vh-, = V,(1 - U,)  for some i, 1 s i s  k, and the new frequencies are 

where 

vk ui Zo = 
1 - v, + VkUi 

The random variables VAU,, . . . , VkUk, 1 - V, have a Dirichlet distribution with parameters 1 , .  . . , 1 
and 0, so it is straightforward to show that Zo has density 0 ( l  -x)'-',O<x< 1, and that Zo is 
independent of 1 - V, + V,U, = 1 - Vk-,. Thus the frequencies in the new classes have the required 
structure, and the proof is complete. 
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