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1 .  INTRODUCTION 

Kingman (81,  [ 9 ]  introduced the  coalescent as  a means of des- 
c r ib ing  the  genealogy of samples taken from a l a rge  evolving haploid 
population. The coalescent p a r t i t i o n s  a sample of genes i n t o  equiva- 
lence classes with respect  t o  an ances t r a l  population some time t 
in to  the p a s t ;  genes in  the same equivalence class i n  the sample have 
the same ancestors. A s  t increases the equivalence classes coalesce 
u n t i l ,  s u f f i c i e n t l y  f a r  i n  the  p a s t ,  a l l  individuals i n  the sample a r e  
equivalent,  being descended from a common ancestor. 

Watterson [ l l ]  showed t h a t  the e f f e c t s  of mutation i n  the genea- 
logy could be allowed f o r  e x p l i c i t y  by constructing a process with two 
d i f f e r e n t  types of equivalence classes .  Spec i f i ca l ly ,  consider a 
sample of n genes chosen a t  reference time 0. Genes i and j are 
in the  same "old" equivalence class a t  t i m e  -t i f  i and j share 
a common ancestor a t  time - t ,  and no mutation has occurred i n  the 
l i ne  of descent from t h a t  ancestor t o  i and j between t i m e  0 and 
time -t. On the o the r  hand, i and j might be descended from a 
common ancestor a t  time -8  (> - t), t h a t  ancestor being a new 
mutant. If no f u r t h e r  mutation occurs i n  the l i n e  of descent t o  i 
and j, then we say t h a t  i and j are i n  the same "new" equiva- 
lence class. Each new equivalence class contains genes of i d e n t i c a l  
type, and with the infinitely-many a l l e l e s  assumption t h a t  each muta- 
t ion leads t o  a novel a l l e l i c  t y p e ,  d i s t i n c t  new equivalence classes 
have d i s t i n c t  types. 

Donnelly and Tavare [3] observed tha t  keeping t r ack  of the new 
equivalence c l a s ses  i n  order  of t h e i r  appearance leads t o  a d i r e c t  way 
Of studying questions involving the ages of a l l e l e s  and the age order- 
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ing in samples. 

'In this paper, we will focus on an age-ordered genealogical des- 
cription of the infinitely-many neutral alleles diffusion model from 
which the samples were taken. After a brief review of the stochastic 

process which keeps track of the allele frequencies in the (infinite) 
population and the order of their occurrence by mutation. In the 
final section, we use this population frequency process to give a 
unified treatment of several aspects of neutral mutation theory. 

I structure of the age-ordered sample coalescent , we construct a Markov 
i 

2. A COALESCENT WITH AGES 

We will need later the basic properties of the sample coalescent 
with ages. The necessary results are taken, with minor changes of 
notation, from [ 3 ] .  This process is a continuous-time Markov 
chain {At,t>O} in which a typical state can be represented as a 
collection of equivalence classes in which 
6 ,  ,.. . ,ck represent new clas- 
sea, those genes in class having arisen by mutation after (that 
is; further into the pastl) those in class if r < s. Let 
En be the collection of such ordered equivalence relations. fniti- 
ally, each individual is in his own old equivalence class, and there 
are no new classes. For sufficiently large t, all individuals in 
the sample are in new classes, since the sample must comprise only 
mutants with respect to sufficiently remote generations. 

( 6 ,  ,. .. ,tk;n, ,. . . ,nt) 
denote old classes, and nl ,.. . , (1 L 

n r  

One of the attractive features of these coalescents is that the 
process changes state through one of only two possible mechanisms : 
either two old equivalence classes coalesce to form a single (old) 
class, or an old class becomes the oldest of the new classes. In each 
case, the number of old classes decreases by exactly one, and the 
times between such changes depend only on the number of old classes 
then present, and not on the detailed structure of the current config- 
uration. 

Let {Dt,t>O;DO=n} be a pure death process on {n,n-1 , . . . ,O}  
with death rate k(k+e-1)/2 from state k, where e > 0 is the 
scaled mutation parameter. be a discrete-time 

element of having k old equivalence classes, and the transi- 

Let {QkIk - n,... , O }  
t Markov chain on c, independent of the death process. Qk le an 
'. 
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p(Qk-,=( € 1  P 9 Eiu)E j s e Ek; n1 S P I 
(2.lb) 

- ( E ~ S * . . P E ~ ; S ~ B - . * , ~  I ) )  2/k(k+e-l), 

for k = l,...,n; 1 < i < j < k. Here Ei U Ej denotes the union 
of the two old equivalence classes Ei and tl .  The marginal dis- 
tribution of k is obtained from [3], equation (3.2): 

where A i  is the number of genes in Ei and pi is the number of 
genes in q i  . Finally, we have 

At '4,. t 0 .  (2 3) 

The results (2.2) and (2.3) provide a detailed description of age- 
ordered samples from the infinitely-many neutral alleles model. A 
number of further applications are given in [3]. We turn now to the 
corresponding population structure. 

3. THE POPULATION FREQUENCY PROCESS 

If we are not particularly interested in which genes in our s m -  
ple belong to which equivalence classes, but rather in the numbers of 
genes in those classes, we obtain another Markov process 
whose structure follows immediately from (2.1)-(2.3). Its jump chain, 
qk, consists of collections of integers of the form ( a1 , . . , ak; u l  , . . ,ut) 
giving the numbers of individuals in each of the equivalence classes 
of ak, and 

fMt,t>O) 

where ai .I #{j:Aj=i}. 
ponding result where age ordering is ignored. 

See [ l l ]  equation (3.3.1) for the corres- 



In order to describe the population structure that corresponds, 
as it were, to samples of size n = a, we will need the following 
notation. Let No = (O,lD...D-}, let A be the collection of 
sequences {xl,x 2,...} satisfying 

and A' the subset of A comprising those sequences with sum 1. Let 
S =ao x A. Fix k 2 1 , and let vk be a random variable having 

the beta density fk given by 

Let be a random k-vector having a uniform distribution 
on the simplex ((ul ,... D%);ui > 0, u +u +...+ uk- 1 )  (i.e. density 
proportional to Lebesgue measure on the simplex), and let Z 1 ,  
z 2 D . . . .  be independent identically distributed random variables with 
density f given by 

(U1 , . . . ,Ilk) 
1 2  

and take {Ui} , Vk and {Zj} mutually independent. Finally. de- 

fine the random vector F(k) by 

When k = 0, put , 

Remark: These definitions are for fixed but arbitrary k. The 
(Zi) and {Uj} that appear in (3.2) and (3.3) should perhaps be 
written (2, ) D  (Uj ) to emphasise that they vary with k. We are 
only interested in distributional properties and so will continue to 
suppress the dependence on k. 

(k) ( k) 

1 One can view as a random point in A ; we will use it 
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to construct a sequence {ukvk = 0.1 ....} of probability measures 

Bore1 subset A of 4 

on S as follows. uk concentrates on {k) x b 1 , and for any 

Our key result, which has close affinities with the work of 
Griffiths [6] is the following theorem. 

j 

Theorem : 

(i) There is a discrete time Markov chain {q,k = 0,1,.. .) on 
S such that q k  has distribution uk, and 

for k = 1,2,... ; 1 < i < j < k. 

(ii) Let {Dt} be a pure death process with death rate 
k( k+e-1 ) / 2  from state k, starting at infinlty, and 
independent of {wk}. Then the process {Mtv t 2 0 )  defined 
by 

is a Markov process on S. 

- Proof. (i) We need to check the consistency of the finite dimen- 
sional distributions of It}. This follows after some lengthy but 
straightforward calculations using the structure (3.3) of the 
uk’s . To establish (ii), we can use an argument similar to that of 
[91 ,  p. 244. 

The process {Mt,t O }  may be thought of as a genealogical .. 
representation of the infinitely-many neutral alleles diffusion model; 



cf. Ethier and Kurtz [4]. Our explicit recognition of the age-order- 
ing of novel alleles leads to a variety of interesting results which 
we will exploit in the final expository section. 

4. APPLICATIONS 

(a) Limit distributions 

As t + -, Dt + 0 a.s., and so Mt v o ,  defined by (3.4) 
and (3.5). Eventually, then, the population comprises only new lines 
of descent, and it follows that at stationarity the frequencies of the 
oldest, next oldest , . . . , alleles in the infinitely-many neutral all- 
( 1  - Z 1  (1 -Z2) Z3,. . . where the Zi' s are independent and identically 
distributed r.v.'s with density (3.2). The decreasing order statist- 
ics of such a random vector have the Poisson-Dirichlet distribution 
with parameter e (cf. [ 7 ]  and [lo]), which distribution is well- 
known to be the stationary measure of the infinitely-many neutral 
alleles diffusion model (cf. [41). The Poisson-Dirichlet distribution 
is an intractable object to handle explicitly; as well as giving the 
age ordering of the population frequencies, our approach mitigates 
some of these difficulties. Donnelly [2] gives a number of intercon- 
nections between the distribution u o 1  and the properties of samples 
taken from such a distribution, exploiting more fully the consequences 
of size-biased sampling. 

eles diffusion model have the representation 2 1 ,  (1-21)22, 

(b) K-allele models 

Many of the fundamental results about the inf initely-many neutral 
alleles process were discovered by taking suitable limits in a K-all- 
ele model with symmetric mutation, as K + 0 .  Here we observe that 
the fundamental structure of K-allele models with scaled mutation 

from alleles of type i to type j (cf. Griffiths rates 
[SI) can be recovered from the frequency process {Mt,t 0). The 
idea is to construct the K allele model from a realisation of 

as in [ l ] .  Lines of descent are initiated by mutations, 
but now the (age-ordered) classes do not have distinct allelic 

Fix t > 0, and suppose that the number of old classes, Dt, of 
*I Mt is equal to k 0. The relative frequencies of the new classes, 

(cf. (3.3) and normalised to have sum 1 ,  have distribution 

=ij :j 

{Mt,t>O), 

types. Define e - e l  +...+ e K. and pj = Ej/e, j = 1,2 ,..., K. 
' 1  

vO 
' il 
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(3.4)). Allelic labels 1,2,...,K are given to each class frequency 
with by labelling each independently, assigning label j 

points Z1, (1-Z1)2 2,... in (3.4) are an enumeration of the points of 
a non-homogeneous Poisson process with mean measure density 
ee-X/x, normalised to have sum 1. It follows that the collections 
of points pj , say, of frequencies which are labelled j may be 
viewed as the (normalised) points of K independent non-homogeneous 

Poisson processes with mean measure density p ee-x/x I cje-x/x. 
j = l,...,K. It can be shown that the total frequencies of new clas- 
ses labelled j have jointly a K-dimensional Dirichlet distribution , 
with parameters e l  ,..,cK. Thus when Dt = k, the frequencies 
Xl,...,Xk of old classes, and the frequencies YI,Y2, ..., YK of all- 
eles of types 1 ,...,K that arose by mutations in (0,t) have the 
s tructure 

I probability pj, j - l,...,K. Recall from [ 7 ]  and [lo] that the 

, 

j 

I I 

d 
(xlD***#xkD ylD*.*DyK) 

(u1vk#**-,u v s(1'Vk)DI #***#(~-V~)DK) s 

(4.1) 
k k  

where (D1,...,DK) have the Dirichlet distribution with parameters 
c 1  ,. 0 .  , c  K D  independent of (U lD..o,Uk)# and vk (cf. (3.1)). The 
structure exhibited by (4.1) was found by different means by Griffiths 
[SI and it leads immediately to an explicit representation for the 
transition density of the K-allele diffusion process. 

(c) A Population Coalescent 

The process {M,, t b 0) is closely related to an age-ordered 
coalescent via a modification of Kingman's paint box scheme. Fix t > 
0, and assume that D, = k, and qk = (k;xl ,x2,.. .). Define a seq- 
uence of independent and identically distributed random variables 

T ~ , T ~ , . . . ,  with 

P(rl = r) = xr,r * 1,2,... . (4.2) 

4 We can then define a labelled equivalence relation R on bs as fol- 
lows. We say that genes i and j are equivalent, in an equivalence 
class labelled 0, if fi = rj < k, while genes i and j are in 
the equivalence class labelled 
There are thus k equivalence classes labelled 0 (corresponding to 

r if Ei - Ej = k + r,r = 1,2 ,... . 
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the old classes in the introduction) and age-ordered new equivalence 
classes in which a class with label r is older than a class with 
label s if r < 8 .  Note that by the structure of the measure Vk, 
each class is a.s. infinite. 

We conclude with a brief discussion of how this process is re- 
lated to the sample coalescent of section 1. One obtains from R an 
equivalence relation in En by restricting attention to the labels 
assigned to genes 1,2 ,..., n. This relation, Qn say, will have 
some number m(ck) of old equivalence classes, and a number 
L (>O)  of new equivalence classes, age ordered in the natural way. 
It can then be shown that 

* 

P d  = ( E , ,  9 - *Em;n1 , IDt=k> 

k I r (k+e ) e 'A  I . . . Am I p I . . . p I 
I 

(k-m) I r (n+k+e) rL( uL+uL- ) . . . ( vL+. . .+p 

classes m in an may be less than the number of old classes k 
in R .  
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