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ABSTRACT 

Genealogical or coalescent methods have proved very useful in interpreting and 
understanding a wide range of population genetic data. Our aim is to illustrate 
some of the central ideas behind this approach. The primary focus is genealogy 
in neuual genetic models, for which the effects of demography can be separated 
from those of mutation. We describe the coalescent for panmictic populations 
of fmed size, and its extensions to incorporate various assumptions about vari- 
ation in population size and nonrandom mating caused by geographical popula- 
tion subdivision. The effects of such genealogical structure on patterns and 
correlations in genetic data are discussed. An urn model is useful for simulating 
samples at loci with complex mutation mechanisms. We give two applications 
of the genealogical approach. The fust concerns methods for estimating the 
mutation rate from infmitelv-manv-sites data. and the second relates to inference 
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about recent common ance'stors i&d population history. 
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INTRODUCTION 

One of the important recent developments in population genetics modeling is 
the use of so-called coalescent or genealogical methods. In considering the 
structure of genetic data, these methods focus primarily on the genealogical 
tree of the sampled genes. They are attractive for several reasons: (a) Quanti- 
tative analysis of stochastic models is usually easier with genealogical methods 
than with traditional approaches; (b) the structure of genetic data reflects, in 
large part, the underlying genealogy, so that an understanding of genealogy 
enhances a qualitative understanding of the patterns of variation in genetic 
data; (c) use of the coalescent leads to extremely efficient simulation methods, 
and (d) it provides inference techniques for genetic data that allow, for the first 
time, full use of the information in that data. 

Our aim here is to illustrate some of the central ideas underlying genealogical 
methods. It is neither possible, nor perhaps helpful, to be exhaustive, and we 
do not attempt a complete historical account even of the areas we do discuss. 
Earlier reviews of the approach may be found (see 7,21,22,47,48). A notable 
absentee from our coverage is genealogy in models with recombination (see 
12, 21, 22). We have aimed for a middle course between giving free reign to 
intuition and giving precise mathematical statements of exact conditions under 
which the approximations apply. 

Throughout, we focus on genealogy in neutral genetics models. Under the 
assumption of neutrality, the effects of population demography may be sepa- 
rated from those of mutation. The coalescent processes described below capture 
the relevant features of the demographic history of a sample, as far as its current 
genetic composition is concerned. In studying the evolution of different sys- 
tems (for example, DNA sequences, multigene families, or mini-satellites) the 
underlying genealogy is probabilistically the same. The patterns of variation 
in such genetic data sets result from superimposing the effects of mutation on 
the sample genealogy. In contrast, for models incorporating natural selection, 
not only is relatively less known about genealogy [see for example (23, 24, 
26)], but the application of genealogical methods is fundamentally more dif- 
ficult, precisely because the effects of mutation and demography are insepa- 
rable. 

The descriptions of genealogy discussed below relate fundamentally to 
haploid genetic units. In some contexts, perhaps most notably evolutionary 
modeling for mitochondrial DNA, the assumption of haploidy applies explic- 
itly. In modeling diploid organisms, the analysis applies provided the focus is 
on regions of DNA within which recombination can be ignored. In this context, 
think of the DNA, or gene, itself as an “individual” that has a single “parent” 
(the gene from which it is copied) in the previous generation, and will have a 
number of “offspring” (genes that originate as copies of it) in the next genera- 
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tion. The fact that these haploid genes reside in pairs within organisms is not 
relevant in addmsing certain evolutionary questions. Throughout, we frame 
the discussion in terms of haploid genes. As a consequence, for example, when 
we refer to the size of a population we mean the number of haploid genes 
rather than the number of diploid individuals. 

THE COALESCENT 

The ancestry of a random sample of n genes from a population that has evolved 
with constant size N over many generations is often modeled by a stochastic 
process known as a coalescent. This process was introduced by Kingman 
[(27-29), see also Hudson (20) and Tajima (44)], as an approximation, valid 
in the limit of large population size, to the ancestral structure of a wide variety 
of neutral demographic models. 

We set the discussion in the context of models with discrete, nonoverlapping 
generations, but the result applies more generally (29). Suppose that in a 
particular generation the genes are labeled 1.2, . . . ,N, and let vI ,  v2, . . . vN 
be the respective numbers of descendants they have. The demographic structure 
of the population assumes panmixia, which is reflected in the assumption that 
the vi are exchangeable random variables. This assumption means that the joint 
distributions of these offspring numbers is unchanged under relabeling of the 
genes and, in particular, that the vi are identically distributed. We suppose also 
that these joint distributions do not change over time. 

The simplest aspect of genealogy involves counting ancestors: Let A&) 
denote the number of distinct ancestors, t generations earlier, of a sample of 
n genes taken from the population in a particular generation. For a specific 
value of N and for a given distribution for the vi, the properties of this ancestral 
process are not in general easy to calculate. However, when the population 
size is large, and time is measured in units of N generations, there is a simple 
process that provides a good approximation to AN(*). Together with an addi- 
tional technical condition that is satisfied in cases of interest, Kingman (27, 

c 

L 

- 29) showed that if 

lim\rar(vl)=d, o<$  <=, 1. 
N+ 

then the ancestral process { A D t l ) ,  t 2 O), where bJ denotes the integer part 
of x, converges (in distribution) to a process {A(&), t 2 0). It is worth 
emphasizing that the time scale of the approximation is determined by the 
parameter 2. For the Wright-Fisher model, in which the vi have a symmetric 
multinomial distribution, 2 = 1. The condition in Equation 1 ensures that on 
this new time scale, the genealogy does not degenerate. 

The process {A(&), t 2 0) is extremely simple: It is a continuous-time 
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Markov chain that starts from A(0) = n, and moves through the sequence of 
states n,n - 1, . . . ,3,2 as the number of ancestors decreases by exactly one 
each time it changes value. The process eventually reaches the value 1 at the 
time TMRa that the sample has been traced back to its most recent common 
ancestor (MRCA). TMRcA is sometimes called the coalescence time of the 
sample. The amount of time Ti for which there arej  distinct ancestors in the 
history of the sample has an exponential distribution with mean 

EVj) = 2/(j(j - I)$), j = 2,3, , . . ,n, 
, 

the Ti being independent for different j. Clearly, T,+,R~A = T2 + T3 + - 0 .  + T,,, 
and 

2 1  E(TMRCA) = -( 1 - ;). 02 
The role of d is intuitively reasonable: If the variance of the number of 
offspring is bigger, the time back to the MRCA should be shorter, and vice 
versa. The variance Of TMRcA is 1/04 for a sample of n = 2 genes. AS n increases, 
this variance increases to about 1.16/04, with the latter value providing an 
accumte approximation to Var(TMRa) for samples of size five or larger. 

A full description of the genealogy of the sample requires more than just 
ancestral numbers. One natural way of picturing the genealogy is as a tree: 
The sampled genes are the “leaves”, or tips, of the tree and the MRCA is 
the root. We think of, and draw, the trees “vertically,” looking backwards in 
time from the sampled genes “up” to their common ancestor. See for example 
Figure 1. 

The coalescent describes the probabilistic structure of the random tree, which 
arises as an approximation to the actual genealogical tree of a sample of genes 
from a large population, when time is measured in units of N generations. The 
tree has n leaves, one labeled by each of the sampled genes. At any time in 
the past (more recently than the common ancestor of the sample) there is one 
branch in the tree for each ancestor of the sample. As we move up the tree, 
the number of branches decreases each time the number of ancestors decreases. 
Thus, with time measured from the tips, there a r e j  branches in the tree for 
time q,j = n, n - 1, . . . ,2. Each time the number of branches decreases, two 
existing branches are chosen uniformly at random and coalesced. 

We shall see below that there are close relationships between the shape of 
the genealogical tree and patterns to be expected in genetic data from the 
sampled genes, so we turn now to several qualitative properties of coalescent 
trees. One of the most striking properties, which is evident in Figure 1, is the 
extent to which the tree is dominated by the last two branches. For a sample 
of size n, the mean time for which the tree has only two branches is l/d. The 
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Figure 1 
each tree the labels 1.2,3,4,5 should be assigned at random to the leaves.) 

Six realizations, drawn on the same scale, of coalescent trees for a sample of n = 5. (In 

mean time for which the tree has more than two branches, namely (I/&( 1 - 
Un), is smaller: For much of the time since its common ancestor, the sample 
has only two ancestors. Further, for any sample size n, the variability in the 
time T2 for which there are two branches in the tree accounts for most of the 
variability in the depth of the whole tree. In fact, the variability in the time for 
which there are 2,3,4, or 5 branches accounts for effectively all the variability 
in the depth of the tree. 

Variable Population Size 
In this section we discuss the behavior of the coalescent that arises as an 
approximation to the genealogical structure of populations with variable size. 
We consider first the case of deterministically varying population size. 

Suppose that the generation at the time of sampling consisted of M(0) = N 
genes and that the size of the population r generations earlier was M(r). We 
assume the same sort of reproductive symmetry as earlier: In generation r the 
numbers vf) , i = 1,2, . . . ,M(r), of descendants of the ith gene, are exchangeable 
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random variables with sum M(r - 1) and variance Var(vy)) = d(r) .  For the 
Wright-Fisher model, the vf) have a symmetric multinomial distribution, and 

The coalescent arises naturally when all the population sizes M(r) are large. 
Once more we measure time in units of N generations, and we assume that 
there is an increasing continuous function A(t) for which 

d ( r )  = M(r - l)(M(r) - l))/M(r)*. 

2. 

where 0 < A(z) < = for t > 0. For the Wright-Fisher case (39), the condition 
becomes 

LNd . 

In what follows we suppose that A(t) has a density q.): A(t) = If h (s)&.For 
thewright-Fisher model, llh(t) may be thought of as the size ofthe popula- 
tion N f  generations ago, relative to its size N now. 

Write {AV(t),t 2 0) for the limiting process, which approximates ancestral 
numbers here. Its distribution can be defined (13, 14, 29) by a time change 
of the ancestral process A(. )  that arose in the constant population-size 
case: 

AV(t) = A(A(?)), t 2 0. 3. 

Most interesting properties of the variable-size process can be calculated 
using the representation in Equation 3. For example, for t > 0, 

> tlTn + ... + Tfi1 = s) = exp(-(,)(A(t j + s) - A(s))). 4. 

This leads to a natural scheme for simulating the times T,, . . . ,T2 between 
successive coalescences in the genealogical tree. Let U,,, . . , ,U2 be independent 
random variables uniformly distributed on (OJ), and let f$t) denote the 
expression on the right of Equation 4. First simulate a value for T, by setting 
s = 0 and j = n and solving the equation 
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5.  

To generate a value for Tn-,. update by setting s = s + and j = n - 1, and 
repeat the step in Equation 5. This procedure may be continued recursively 
until finally a value for T2 is generated. 

The approximation result says that with time measured in units of N gen- 
erations, if there are k ancestors of the sample at some time s in the past, the 
rate at which the number of ancestors (equivalently, the number of branches 
in the genealogical tree) decreases is k(k - l)Us)/2. Suppose, for example, that 
the population has increased in size, forward through time, with Wright-Fisher 
demography. In this case, M(r) e N for all r, so that Ut)  > 1 for all t. That is, 
with time measured in units of the current population size, coalescences happen 
at a faster rate, relative to a population of constant size N, in a population 
whose size has grown to N. This is as we would expect intuitively: The smaller 
population sizes in the past make sharing of ancestors, and hence coalescences, 
more likely. 

One particular growth scenario of some interest is that of a population whose 
size has grown exponentially forward in time. In this case, Ut) = 8' for an 
appropriately scaled growth rate p > 0. Thus the pairwise coalescence rate in 
the genealogical tree grows exponentially. The effect of this on the general 
shape of the genealogical tree can be quite marked. Its relative effect is to 
stretch the tree near the leaves and to compress it substantially near the root. 
Intuitively, few coalescences happen while the population size is large. The 
rapid decrease backwards in time of the population size then induces all the 
remaining coalescences. For populations that have grown exponentially from 
a very small size, the resulting genealogical trees tend to resemble a star 
phylogeny (39), in stark contrast to their typical shape (Figure 1) in the case 
of populations of constant size. Note that this conclusion depends on the initial 
small size of the population. It is not true for populations that were initially of 
nontrivial size for some time before growing exponentially (32, 33). 

Our discussion of genealogy with variation in population size applies in the 
case of deterministically changing population sizes. Such an assumption is 
unrealistic in most applications, in which the variation in the population size 
is the result of exogeneous and/or endogeneous stochastic effects. Nonetheless, 
in many applications, information may be available about the sizes of the 
population at various times in the past, so that the natural question concerns 
the structure of the genealogy conditional on observed values of the population 
sizes. 

It turns out that for a large class of models (P Donnelly & TG Kurtz, 
unpublished) the structure of genealogy, conditional on the observed values of the 
population sizes, is the same as it is in the case of deterministic population 
sizes described above. This class includes the classical genetics models in 
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which the distribution of offspring numbers is specified conditional on the 
values of exogenously varying population sizes, and models arising from 
branching processes in which, loosely speaking, numbers of descendants of 
different genes are independent. 

On the other hand, the results described above do not apply in general. It is 
true for very general neutral models that unless there are discontinuities, i.e. 
sudden changes, in the processes governing the population size, the ancestral 
process can be represented as a time change of the process described in the 
previous subsection. However, the form of the time change, which is in general 
different from Equation 2, depends on properties of the random process gov- 
erning the rate at which individuals are born in the population, about which 
little is known in many practical contexts. It thus appears that some caution is 
appropriate in applying the above results on the coalescent in populations of 
variable size. 

For any of the models just described, the topology of the genealogical tree 
has the same structure in the variable population-size case as in the constant- 
size case: When the number of branches in the tree decreases by one, any two 
of the existing branches are equally likely to coalesce. 

Genealogy in Geographically Structured Populations 
The coalescent processes introduced above describe genealogical relationships 
in a randomly mating population. The assumption of panmixia may be unre- 
alistic for many populations, notably those that exhibit geographical structure 
in which matings between “nearby” individuals are more likely than between 
“distant” individuals. We now examine genealogical structure in one class of 
models for geographically structured populations. [For further background, see 
for example (21,35,45)]. We suppose that the population consists of a discrete 
collection of subpopulations, or colonies, each of which is large and panmictic. 
The colonies are partially isolated from each other, with gene flow resulting 
from the migration between colonies. Such models may be inappropriate for 
some applications, in which case the genealogical structure is different from 
that described below. 

Specification of the demography of the population requires a description of 
the reproductive mechanism within each colony and of the migration processes 
between colonies. Suppose the colonies are labeled, and write S for the set of 
labels. Denote by Nj = cJV the size of subpopulation i, where ci is a positive 
integer constant. For definiteness we suppose that reproduction within each 
colony is governed by the neutral Wright-Fisher model, but the analysis ex- 
tends, with the analogous dependence on the asymptotic variance of offspring 
numbers, to any of the exchangeable models for reproduction described above. 
In each generation, after reproduction, a proportion yu of the genes born in 
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colony i migrate to colony j (yi 2 0, c # yi I 1). We assume that the colony 
sizes are not changed by migration, so that for all i E S ci c j+ixj= 

In this geographically structured setting, a description of ancestral relation- 
ships requires that we keep track not only of the number of ancestors of the 
sample of genes, but of the locations of each of the ancestors. In order to 
facilitate comparison with the panmictic case, we make the additional as- 
sumption here that the number of colonies is finite. We describe the approxi- 
mation result somewhat informally. [For a formal statement, and details in 
the case of an infinite collection of colonies, see (191. Suppose the population 
has been evolving indefinitely in the manner just described, and consider a 
sample of n genes taken from a particular generation, which we call the 
present. When N is large, the genealogy of the sample is well approximated 
by a process (or random tree), which we call the structured coalescent. Write 
C = &&ir so that CN is the total population size. With time measured into 
the past in units of CN generations, write Ai(f), i E S for the number of 
ancestors of the sample who were in the ith colony t time units ago. Two 
sorts of changes are possible in this structured ancestral process. It may be 
that two particular ancestors in one colony, say colony i, themselves share 
a common ancestor. In this case, the number of ancestors in colony i 
decreases by one. Alternatively, in a particular generation one of the ancestors 
in colony i may have migrated there from colony J. In this case, the number 
of ancestors in colony i decreases by one and the number of ancestors in 
colony j increases by one. 

The structured ancestral process {Ai(t),t 2 0, i E 5) is a continuous time 
Markov chain with transitions from a state (Al(t),A2(t), . . .) to a state of the 
form (A&), . . . ,ACl(f),Ai(t) - l,Ai+l(f), . . .) at rate CAi(f)(A,{f) - 1)/(2ci), and 
to a state of the form (Al(t), . . . ,AcI(t),Ai(f) - l,Ai+l(t), . . . ,A&), A,{f) + 
l,Aj+l(f), . . .) at rate Ai(t)MiJ2, where Mu = limN,2CNcj~~ci. Its initial value 
is Ai(0) = ni, where ni is the number of genes sampled from colony i, i E S, 
and Ciss ni = n. 

To develop intuition on the effect of population structure on genealogy, 
focus attention on the case of C equal-sized colonies, for which ci = 1 for all 
i E S In the structured coalescent, lineages can coalesce only if they are in 
the same colony. If, as in the panmictic case, time is measured in units of the 
total population size, then each pair of lineages within a particular colony 
coalesces at rate C. In addition, each lineage in colony i “moves” to colony j 
at rate Mu/2, where the values Mu. some of which may be zero, reflect the 
migration rates. 

Suppose, for definiteness, that the sampled individuals are all taken from a 
single colony. In this case, the initial coalescences happen C times more quickly 
than in the panmictic setting, thus compressing the branches near the leaves 

C j +  i Cj Y j i s  
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of the genealogical tree. If migration rates are small enough, it may happen 
that all sampled lineages coalesce before any lineage has moved to another 
colony. In this case, the entire tree is compressed. Alternatively, if some 
lineages do move from the sampled colony, then since the final coalescences 
(those near the root of the tree) cannot occur unless the lineages involved find 
themselves in the same colony, the top of the tree tends to be extended in 
comparison with the panmictic setting. The magnitude of this extension of the 
genealogical tree near the root depends on the migration rates and pattern and 
on the number of colonies, but it can be very marked. If the sampled individuals 
are not all taken from a single colony, then the effect just described, of waiting 
for lineages to find themselves in the same colony before the final coalescence 
can occur, is inevitable and leads to a stretching of the genealogical tree near 
its root. 
To illustrate further the effect of geographical structure on genealogy, we 

consider briefly the coalescence time of pairs of genes, a problem for which 
exact results are available. It turns out that for models with considerable 
symmetry in migration rates and patterns, including, for example, the symmet- 
ric island and stepping-stone models, the mean coalescence time for a pair of 
genes taken from the same colony is the same as that for a panmictic population 
of the same total size (18,43). This surprising result is somewhat misleading. 
Recall the intuition that while the two ancestral lineages are in the same colony, 
they coalesce at a rate C times higher than in the panmictic case. Thus in the 
structured population, if a coalescence occurs before either lineage leaves the 
colony from which the individuals were chosen, it is likely to occur more 
quickly than in the panmictic case. On the other hand, if one of the lineages 
does leave the original colony before coalescence, the coalescence time in the 
structured population will be much longer than in the panmictic case. Thus the 
coalescence time of two genes from the same colony in the structured case is 
more variable than in the panmictic setting, although the mean of each distri- 
bution is the same. 

For illustration, consider the circular stepping-stone model that posits a 
collection of C equal-sized colonies arranged in a circle, with migration pos- 
sible only between neighboring colonies. Write M/2 for the expected number 
of immigrant genes to (or migrant genes from) each colony per generation, 
and assume that a migrant chooses its destination uniformly from the two 
neighboring colonies. With time measured in units of CNgenerations, the mean 
and variance of the coalescence time for two genes from the same colony are 
1 and 1 + (3M)-'(C - d), respectively. In the panmictic case the mean and 
variance are both 1. One indication of the lengthening of the genealogical tree 
for a sample caused by the geographical structure in this model follows from 
the fact that for C even, the mean coalescence time for a pair of genes from 
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“opposite sides” of the collection of colonies is 1 + C/(4M). If the number of 
colonies is large, andor M is small, this can be much larger than the value of 
2 for the expected coalescence time for the whole population in the panmictic 
case. 

Explicit results for the means, variances, and moment generating functions 
of pairwise coalescence times are available (1 8) for a wide range of models, 
including several that are “asymmetric” in the sense of unequal colony sizes 
or asymmetric migration patterns. Apart from the inherent interest (see, for 
example, the discussion below of inference based on pairwise difference 
measures), these also allow a detailed analysis of Wright’s measure, Fm, of 
subpopulation differentiation (18, 38). It is noteworthy that many of these 
quantities depend in a sensitive way on exact details of the assumed popu- 
lation structure and migration patterns. As the latter are unlikely to be 
known in practice (if indeed this general class of model applies) consid- 
erable care is needed in interpreting inferences for structured populations, 
whether or not coalescent methods of analysis are used. For example, 
inferences and interpretations based on the assumption of a symmetric 
island model can be quite misleading if the true underlying population 
structure is different. 

GENETICS AND THE COALESCENT 
In different contexts it is natural to focus on different sorts of descriptions of 
genetic data. For example, one may wish to model genes as DNA sequences, 
as collections of discrete alleles (e.g. RFLPs), as unlabeled but distinguishable 
alleles (infinitely-many-alleles models), or in terms of the number of copies 
of a repeat sequence (e.g. VNTR data). Not only do different settings involve 
different descriptions of genetic type, but they also involve different specifi- 
cations of the way in which mutation changes these types. These different 
descriptions do not, however, affect the underlying genealogy. 

Extremely complicated mutation mechanisms may be studied via genealogy, 
but we motivate the method with a simple example. Consider a discrete gen- 
eration model in which we assume that mutations occur independently to all 
genes, with the probability that a mutation occurs in a given gene in a given 
generation being u. In following along a lineage of length t generations, the 
number of mutations occurring along the lineage has a binomial distribution 
with parameters r and u. For the panmictic case, suppose that time is scaled 
in units of N generations, and u is of the order of 1/N, in that 

lim 2Nu=8. 
N-W 

6. 
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It follows from the Poisson approximation to the binomial that as N + m the 
number of mutations occurring along a lineage of length t in rescaled time has 
a Poisson distribution with mean 8tl2. Indeed the process of mutations along 
the lineage is a Poisson process of rate 8/2. This argument can be extended to 
show that conditional on the coalescent tree, mutations are laid down according 
to independent Poisson processes of rate 8/2 in each branch. In particular, the 
total number of mutations occurring in the history of a sample of n genes since 
their MRCA has a compound Poisson distribution: given the total length T = 
&jqof the branches in the tree, it has a Poisson distribution with mean 
8T12. 

To simulate the distribution of types in a sample of genes under neutrality, 
(a) simulate the genealogical tree (allowing for population structure and vari- 
ation in population size); (b) assign a type to the common ancestor of the 
sample (in most applications this type is random, being chosen from the 
equilibrium distribution of the mutation process); and (c) trace down the 
genealogical tree from the root, recording the effects of the mutations along 
the branches of the tree. The (random) types at the tips of the tree in this 
simulation represent a realization of a sample of n genes from the model in 
question. There are now many examples of this approach in the literature 
[reviewed in (21,22)].  The same underlying methodology applies to simulation 
of nonequilibrium samples. 

In the case of constant population sizes, there are very efficient methods for 
simulating stationary samples using genealogical urn models (5, 31, 48). Let 
A denote the set of possible types, and suppose that whenever a mutation 
occurs to a gene of type i it results in a gene of typej with probabilityp$ Note 
thatpii > 0 allows the mutation rate to depend on the type of the gene. Suppose 
that (n,,,, m E A) is the equilibrium distribution of the recurrent mutation 
process with transition matrix (p& 

1. Choose a type in A according to the distribution (n,,,, m E A). The urn 
process begins with two balls in the urn, each of which is assigned this 
chosen type. 

2. If there are currently k balls in the urn, choose one of these uniformly, 
independently of everything else, and denote its type by i. 
(a) With probability (k - l)d/(e + (k - I@), copy the chosen ball and 
return both to the urn; 
(b) With probability €)/(e + (k - I)&, mutate the chosen ball to type j E 
A with probability pij and return the mutant ball to the urn. 

Y 
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3. If there are fewer than n + 1 balls in the urn, return to step 2. Otherwise, 
discard the last ball added to the urn and stop. 

The types associated with the n balls in the urn correspond to a sample of size 
n from the stationary distribution of the underlying model. 

Apart from its use in simulation, the underlying structure of these sampling 
distributions facilitates valuable qualitative insight. A fundamental observa- 
tion, some of whose consequences will be seen in the next section, is that the 
types in a sample are dependent, precisely because of their shared genealogical 
history. Recall that in samples from constant-sized populations, typical genea- 
logical trees are dominated by the time for which the sample has exactly two 
ancestors. During this time the types of these two ancestors tend to diverge 
because of mutation. For such trees, rather less divergence may happen from 
these two types to the tips, so that in such populations samples with two 
“clusters” of genetic types (with genes relatively similar within clusters and 
broadly less similar between clusters) should not be surprising. In particular, 
such clustering does not necessarily require that additional explanations be 
invoked. 

The effect of continued rapid growth (forward in time) of a population can 
be to change the genealogical tree to be more star-shaped. This change in- 
creases the independence between genetic types in samples and tends to destroy 
the clustering effect just described. On the other hand, in structured populations 
the genealogical tree can be substantially stretched near the root and com- 
pressed near the tips, and this exacerbates the clustering effect. 

One substantive application of the methods in this section arises in attempts 
to understand the mutation mechanisms at mini- and micro-satellite repeat, or 
VNTR, loci in human populations. [See (4,36), and for related work (17, a), 
and references therein.] 

INFERENCE 
Estimating the Mutation Rate 
As an illustration of the use of coalescent methods in connection with genetic 
inference, we focus here on a particular problem that has received extensive 
attention in the literature: the estimation of the mutation rate 8 on the basis of 
a sample of size n, taken at equilibrium, from the infinitely-many-sites model 
for DNA sequence data. This model assumes that each gene is a long sequence 
of completely linked sites. It assumes no back mutation, so that each mutation 
on the coalescent tree introduces a new segregating site. At any given site the 
sequences in the sample display one of two possible types: the ancestral type 
present in the MRCA of the sample, and the mutant type. 

. 

.I 



We consider the constant population-size case and assume that time has 
been scaled in units of K 2 N  generations with the mutation parameter 8 now 
defined as limN+dul(uv). With this scaling, the parameter 2 makes no 
explicit appearance in what follows. However, if primary interest focuses on 
estimation of u itself, or in making time estimates in years rather than coales- 
cent time units, then the value of 2 becomes crucial. The values of u, N, and 
d are confounded Estimation of one of these requires independent information 
about the other two. Inferences about coalescence times require independent 
information on all three. 

Define S, to be number of sites at which sequences i andj  differ, for i #j. 
The sample homozygosity F,, may be written in the form 

I(S,=O), 
2 F,, =- 

n(n- 1) 
i < j  

7. 

where I(S, = 0) = 1 if S, = 0, and 0 otherwise. The mean of F, is E(F,,) = 
P(S12 = 0) = 1/(1 + e), and this suggests the moment estimator 8, = 1/F, - 1 .  
Since the behavior of the allele frequencies in an infinitely-many-sites model 
is precisely the same as the behavior of the allele frequencies in the infinitely- 
many-alleles model, we recall Ewens' fundamental observation (6) that this 
estimator is using precisely that part of the data that is least informative for 8, 
and so it is likely to have poor statistical properties. Indeed, 0, is not a 
consistent estimator because F,, has a nondegenerate limit distribution (41). 
(Recall that consistency means that as the sample size increases the estimator 
converges to 8.) 

The maximum likelihood estimator OE for the infinitely-many-alleles model 
(6) is the solution of the equation K,, =Ew' 8/(0 + k), where K,,, the sufficient 
statistic for 8, is the number of allelesk@!stinct sequences) observed in the 
data. The estimator 8, is consistent, and it has asymptotic variance 

The number of segregating sites S,, in the sample equals the total number 
of mutations that occur on its genealogical tree. Watterson (51)  proposed the 
unbiased estimator 

Y 
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of 8. The asymptotic variance of Ow is 

and so Ow is also a consistent estimator of 8. 
Tajima (44) suggested an unbiased estimator based on pairwise differences: 

2 
n(n - 1) 

0r = -z Sly, 
i < j  

8. 

and he showed that the variance of Or is 

n +  1 e +  2 ( n * + t 1 + 3 ) ~ *  
Var(8r) = - 

3(n-  1) 9n(n- 1) * 

Notice that Var(8,) is asymptotic to 8(3 + 28)B > 0, so that Oris not consistent. 
While consistency may not be the only, nor even the paramount, concern, 

the lack of consistency of some estimators highlights their inefficient use of 
the data. The explanation is partly genealogical. Both estimators OF and Or are 
based on pairwise comparisons within the sample. Exactly because all genes 
in the sample share the same overall genealogy, differences between pairs of 
genes are positively correlated, even when the four genes in the two pairs are 
distinct. This positive correlation of the terms in the sums in Equations 7 and 
8 effectively limits the precision of these estimators. 

The estimators €IE and €Iw have variances that decay at a rate proportional 
to Mogn, rather than the rate of l/n familiar from the setting of estimation for 
independeet and identically distributed random variables. This much slower 
decay rate is a consequence of the fact that the types of genes in a sample are 
not independent, because of their shared genealogy. As a consequence, esti- 
mates of mutation rates are going to be rather imprecise no matter how large 
the sample size n is. On the other hand, these two estimators are making rather 
more efficient use of information than those based on pairwise differences. 
These kinds of conclusions, depending as they do on genealogical structure, 
are not specific to the infinitely-many-sites model for mutation. 

One common feature of these estimators is that they do not make full use 
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of the information in the data. Some theoretical assessment of this problem is 
available (8, 10). In principle, it would be preferable to make inferences from 
the entire data set using a full likelihood-based approach. Even in the infi- 
nitely-many-sites d e l  such an approach is difficult. No explicit expressions 
are available for the likelihood function. Further, effectively because of the 
enormous dimensionality of the space of possible genealogical trees, conven- 
tional simulation-based techniques do not appear helpful. However, using 
genealogical methods it is possible to derive recursive equations for the value 
of the likelihood function at particular parameter values (11, 16.42). In turn, 
a Monte Carlo simulation method leads to numerical evaluation of the solution 
of the recursion, and thence to the evaluation, and, for example, the maximi- 
zation of the likelihood function. [We do not give details here, but refer the 
reader to (13-16).] Methods of this kind, though extremely computationally 
intensive, now allow for optimal use of genetic data and appear extremely 
useful in practice. Further, they may be applied to different models and for 
different inference problems. For example, the method has been adapted for 
some variable population-size models (13, 14). to models with back mutation 
(15), and to models with geographical structure (34). See also (9,31) for other 
approaches to such models. For another promising Monte Carlo inference 
method, see (30). 

For comparative purposes, we apply the estimation methods described above 
to a mitochondrial data set from (50). The data are 360 base pairs of D-loop 
sequence from an Amerindian population. The sample comprised 55 individu- 
als and had 14 alleles and 18 segregating sites. A detailed description of the 
sequences appears in (14). The MLE e,, based on the infinitely-many-sites 
model was found in (14) using the Monte Carlo approach. The estimate (with 
standard error in parentheses) was eGT = 4.76 (1.48). For comparison, we 
obtained the values = 5.73 (1.66). Ow = 3.93 (1.44). and OT = 3.24 (1.88). 
The preceding standard errors for each method are increasing functions of the 
estimated values of 8. Thus if an estimate happens to be small, the same is 
true of the associated standard error. It may thus be more helpful to compare 
standard errors for a common value of 8. With 8 = 4.76, the estimated standard 
errors are 1.73 (E), 1.67 (W), and 2.29 (T), compared to 1.48 for (GT). The 
precision of the estimators, as measured by these standard errors, coincides 
with expectations from the theoretical discussion above. 

d 

Human Population Genetics 
The previous section illustrated genealogical methods within the context of a 
formal estimation problem. Here we outline their use in two less structured 
inference problems from human population genetics:inference about the time 
since mitochondrial Eve and the use of genetic data to make inferences about 



COALESCENTS AND GENEALOGY 417 

population history. Our treatment here aims simply to indicate the flavor of 
certain approaches. 

There has been considerable interest in inferences about the time TEvr since 
“Eve,” the MRCA of extant human mtDNA (2). Information about this time 
has an important bearing on competing theories for early human evolution. 
[See (49) for a critical review.] In fact, genealogical arguments have not figured 
greatly in this problem. Most authors regard TEvc as a fixed parameter to be 
estimated from genetic data. Estimates are usually based on some measure of 
the “divergence” within the sample of sequences examined, calibrated by 
mutation rates estimated from comparisons with data from a separate species, 
assumed to have diverged from humans at a known time. 

We have argued elsewhere (14, 33) that such methods are inappropriate in 
principle. The time TEve is not a parameter in the usual sense, rather it is the 
observed value of a random variable about whose distribution we have infor- 
mation before observing data. Inferential statements, whether classical or 
Bayesian, should relate to the conditional distribution of TEw, given the data. 
Its unconditional distribution is related to that of T,+,RcA for a genealogical tree 
from a population model in which one hopes to capture the important features 
of human demography. This approach is implemented, via the Monte Carlo 
method referred to above, for a plausible but simple population model for a 
particular Amerindian population, in (14). It is, at least at the present time, 
impossible to implement in connection with demographic scenarios that aim 
to capture realistic features of general human demography. On the other hand, 
it appears difficult (33) even to construct simple neutral models of human 
populations, incorporating population growth and substructure, for which the 
unconditional distribution of TEve is consistent with current estimates of about 
150,000 years. Our hope is that future developments in genealogy will allow 
full use in such problems of both the mitochondrial data and our background 
knowledge of human demography. In the interim, it should be remembered 
that most current estimates of TEvc substantially undempresent the uncertainty 
involved. 

We saw earlier how aspects of population demography, such as population 
growth, can affect sample genealogies. This, in turn, changes the patterns to 
be expected in genetic data. It is thus natural to hope that one might learn about 
the underlying demographic history of a population from genetic data. A 
particular application concerns attempts to learn about the timing and nature 
of the growth of early human populations. 

One summary of a DNA data set is obtained by counting the number of 
differences between each pair of sequences in the data and then plotting a 
histogram of all these pairwise difference counts. Attempts to reconstruct 
human population history [see (37) and references therein] have been based 
on such histograms, obtained from mitochondrial DNA data. The conclusion 

7 
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of this work is that the human population experienced an explosion during the 
late Pleistocene, between about 30,000 and 150,000 years ago. In related work 
(46, 49), genealogical arguments are used to study historical aspects of geo- 
graphical population structure. 

One problem with mitochondrial data is the uncertainty that follows from 
the fact that we have a single realization of the evolutionary process: Even if 
we knew the entire human mitochondrial genealogical tree, this would repre- 
sent a sample of size one from a distribution (on trees) that would depend in 
a complicated way on aspects of the population's history and structure. Its use 
to estimate these underlying processes should then be cautious. In fact we have 
less information in the data, and we have already seen that statistics based on 
pairwise measures may not make particularly efficient use of available infor- 
mation. 

'This type of approach to understanding human (and other) population history 
appears to have considerable promise. As data from unlinked nuclear loci 
become available we will, in principle, have independent realizations of gene- 
alogy. It is not without difficulties however, and conclusions may depend 
sensitively on underlying assumptions. For example, in the mitochondrial 
context, it has been argued (32) that it is difficult to construct any plausible 
neutral models for human demography for which observed patterns of pairwise 
differences are likely. This and other arguments (1, 3) suggest possible non- 
neutrality of the human mitochondrial genome. Not only are models with 
selection more difficult to analyze, but conclusions from such models may 
differ substantively from those under neutrality: For example, the effects on 
pairwise differences of the sweep to fixation of a selectively favored mutant 
allele in a constant-size population may be similar to those of population 
explosion under neutrality. Further, current applications to human populations 
assume that the effects of population growth are as for the deterministic models 
described around Equations 2 and 3. As we noted there, this is true for some 
plausible models for human demography. However, it will be false, and the 
conclusions possibly quite misleading, for other plasuible models of human 
demography. 

J 

DISCUSSION 

We have seen that genealogical methods apply readily to neutral models under 
a range of demographic assumptions. This allows a detailed study of such 
models. It also obviates the need to study more complicated demographic 
scenarios via (possibly misleading) effective population sizes. Further, a wide 
variety of behavior for genealogical trees, and hence patterns in genetic data, 
is possible under different assumptions about population demography. Many 
formal hypothesis tests of neutrality actually test a null hypothesis of panmixia, 
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constant-size population, no recombination, and neutrality. Consequently, re- 
jection of “neutrality” in such tests does not require selection to be operating. 
Similarly, the effects of selection could be confounded with other (demo- 
graphic) departures from the null hypothesis in such a way as to lead to 
nonsignificant test statistics. 

All coalescent theory relates to properties of a random sample of genes from 
the population. In practice, genetic data are typically obtained from conven- 
ience samples rather than proper random samples. There is an obvious danger 
that such data may contain individuals who share relatively too much ancestry 
on the relevant timescales. The extent to which application of coalescent (or 
traditional) methods to such convenience samples may be misleading remains 
an open, and potentially serious, question. 

Our primary focus has been on samples taken from populations at equilib- 
rium. However, there are many cases where other approximations are more 
appropriate. One example of great current interest involves linkage disequili- 
brium mapping, where equilibrium “diffusion time scale” approximations are 
known to be poor (25). 

Coalescent methods provide powerful tools in a range of evolutionary prob- 
lems. Our purpose here has been to outline some of the central ideas and results 
in the theory. In highlighting the applicability of the methodology in certain 
settings, we have also tried to indicate its limitations. Even in those cases in 
which the methodology is relevant, the interpretation of results from coalescent 
approaches can depend sensitively on particular assumptions. A general warn- 
ing, along the lines of caveat emptor, may be appropriate: In practical appli- 
cations, here as elsewhere, conclusions drawn from coalescent analyses can be 
misleading if the assumptions that underpin the analysis do not apply. 
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