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1 Introduction

Statistical inference for stochastic processes is often challenging because of
the difficulty (or impossibility) of computing the likelihood function. In re-
sponse to this challenge, population geneticists introduced the idea of ABC
— Approximate Bayesian Computation (TAVARE et al., 1997; PRITCHARD
et al., 1999). This approach exploited simulation to generate observations
from the process of interest for parameter values 6 generated from the prior.
The resultant data are summarised and the summary statistics, Sgm,, com-
pared to the value of the observed summary, Sy,s. Values of 6 for which Sg;,
are close to Syps are taken as observations from the (approximate) posterior
of #. Since its introduction ABC has flourished as part of the statisticians
toolkit, a plethora of methods being discussed in SISSON et al. (2019) for
example.

Among the challenges of ABC are choice of summary statistics, choice
of metric to compare them, and implementation of some of the methods.
This situation changed with the appearance of ABC-RF, a random forest
method, in RAYNAL et al. (2019). The idea is to exploit random forest
regression or classification to infer posterior features of the parameters or
to compare hypotheses, respectively. The approach is implemented in the
R packages abcrf and DIYABC and can provide estimates of the marginal
posterior distribution of functions of each parameter, while avoiding issues
such as choice of summary statistics and metric.



2 Distributional random forests

The principal drawback of ABC-RF is the lack of a simple way to study
the joint posterior behavior of the parameters, which is necessary for study-
ing goodness-of-fit through posterior predictive analysis, for example. The
purpose of this note is to highlight the appearance of distributional random
forests in (CEVID et al., 2022), a method to address regression problems
with multi-dimensional dependent variables. This approach, ABC-DRF, can
readily be adapted for use in ABC to deal with full posterior distributions.

3 A toy model

We illustrate the approach with one example from RAYNAL et al. (2019),
for which the marginal posteriors are known explicitly. The parameter is
0 = (61,05), and the hierarchical model has Y; | 6§ ~ N(6y,6s), the normal
distribution with mean 6; and variance 6y; 61 | 65 ~ N(0,6,), and finally
0y ~ 1G(4,3), where IG(a, #) denotes the inverse gamma distribution with
density
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We take a conditionally independent sample Y = (Y3,...,Y,) of size n
with given values of 6, and compute
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The posteriors of #; and 0, given Y are dependent, but uncorrelated. Their
joint law has
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The marginal posterior of ¢, is given in (RAYNAL et al., 2019) as
01 | Y ~ M+7—Tn+87
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and T}, denotes the t-distribution with m degrees of freedom.
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3.1 Example

We illustrate the ABC-RF and ABC-DRF methods for the toy model. We
generated a reference set of 10,000 examples simulated from the model with
a = 4,6 = 3, and chose the same set of summary statistics as in RAYNAL
et al. (2019), resulting in a total of 61 features, 50 of which were U(0,1) noise
and 11 related to the model. In the figure below we have plotted the marginal
posteriors of #; and 0y from ABC-RF (green lines), and the corresponding
marginals inferred from ABC-DRF using the R implementation in drf (blue
lines). The contour plot for the inferred joint posterior is in the body of the
plot, and the true density contours, readily computable using (1) and (2),
are superimposed (red lines). The fits seem convincing.
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The results suggest that ABC-DRF will be a very useful addition to the
statistician’s toolbox.
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