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Abstract

Genome-wide associations have shown a lot of promise in dissecting the genetics of complex traits in humans with single
variants, yet a large fraction of the genetic effects is still unaccounted for. Analyzing genetic interactions between variants
(epistasis) is one of the potential ways forward. We investigated the abundance and functional impact of a specific type of
epistasis, namely the interaction between regulatory and protein-coding variants. Using genotype and gene expression data
from the 210 unrelated individuals of the original four HapMap populations, we have explored the combined effects of
regulatory and protein-coding single nucleotide polymorphisms (SNPs). We predict that about 18% (1,502 out of 8,233
nsSNPs) of protein-coding variants are differentially expressed among individuals and demonstrate that regulatory variants
can modify the functional effect of a coding variant in cis. Furthermore, we show that such interactions in cis can affect the
expression of downstream targets of the gene containing the protein-coding SNP. In this way, a cis interaction between
regulatory and protein-coding variants has a trans impact on gene expression. Given the abundance of both types of
variants in human populations, we propose that joint consideration of regulatory and protein-coding variants may reveal
additional genetic effects underlying complex traits and disease and may shed light on causes of differential penetrance of
known disease variants.
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Introduction

Most disease association studies to date attempt to link single

genetic variants to a specific phenotype [1,2,3,4]. The genetic

interaction between variants, also called epistasis, results in a

phenotypic effect that is conditional on the combined presence of

two or more variants [5,6]. The prevalence and biological

significance of epistasis has always been an area of interest in

the field of human genetics and quantitative genetics, but its

contribution to phenotypic variation has remained obscure, largely

because genetic interactions have proven difficult to test [7]. This

difficulty arises primarily because it is unclear which variant

combinations should be tested and under which model of epistasis.

To date, most strategies that address the effects of epistasis in

humans involve millions of agnostic pairwise tests and fall into two

broad categories: exhaustive testing of interactions between all

pairs of variants across the genome [8], or testing of interactions

between all pairs of those variants that each have an independent

main effect on the phenotype of interest [8,9,10]. It is not entirely

clear whether improvements in statistical methods will be sufficient

to address the problem of epistasis. Therefore, the development of

realistic biological models of epistatic interactions may reduce the

statistical cost of dealing with many comparisons and facilitate the

development of such methodologies.

To date, such an approach has been most feasible in model

organisms and for specific genes or biological pathways that have

been well-characterised. One classic example is the Adh locus in

Drosophila where a series of regulatory SNPs in complex linkage

disequilibrium (LD) modify the effects of a protein-coding variant

[11,12]. The protein-coding variant affects the catalytic efficiency of

the ADH protein, whereas the regulatory variants have an impact on

protein concentration. Catalytic efficiency and protein levels affect

the overall activity of ADH showing that large effects attributed to a

single locus may arise as a consequence of multiple associated

variants. More recent studies in Drosophila reveal epistatic effects

between genes affecting traits such as ovariole number [13] and

olfactory avoidance [14]. In cases where little is known about the

genes sculpting a phenotype, addressing the possibility of epistasis

becomes more challenging. The value of assessing the impact of

genetic interactions is highlighted in a recent study interrogating

cardiac dysfunction in Drosophila [15]. A major susceptibility locus

for this trait has been detected, but the importance of examining the

phenotype in different genetic backgrounds was highlighted as a

means to detect variants contributing to the phenotype through

interactions with the prime susceptibility locus. The extent of

epistasis in a more global way has been demonstrated in yeast where

experiments on gene expression revealed that interacting locus pairs

are involved in the inheritance of over half of all transcripts[5].

Furthermore, a large proportion of the eQTLs attributable to

interaction effects were not detected by single locus tests. This

suggests that analysis of interaction effects in other systems is likely to

uncover additional associations.
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In humans, most documented cases of epistasis have been

detected in instances where there are biological clues as to which

genes should be tested for interaction. Epistasis between two multiple

sclerosis (MS) associated HLA-DR alleles was demonstrated by

Gregerson et al. [16] who showed that one allele modifies the T-cell

response activated by a second allele, through activation-induced

apoptosis contributing to a milder form of MS-like disease. Similarly,

Oprea et al. [17] demonstrated that a specific modifier effect is

protective against spinal muscular atrophy (SMA). SMA arises from

a homozygous deletion of SMN1, but some deletion homozygotes

escape the disease phenotype due to the modulating effects of

expression of PLS2. With the explosion of successful genome-wide

association studies over the past two years, the need to address

epistasis in a systematic, genome-wide approach is becoming

increasingly pressing. The case of MS clearly illustrates this: as with

most complex disorders, MS has a polygenic heritable component

characterised by underlying complex genetic architecture [18].

Association studies to date have met with modest success in

identifying MS-causing genes, and a large proportion of phenotypic

variation remains unexplained. The expectation is that this residual

variation arises at least in part, as a consequence of gene-gene

interactions. Finally, epistasis may mask and prevent replication of

otherwise real genetic effects due to differential fixation of variants

that modulate the primary disease variant and affect the degree of

penetrance of certain disease alleles.

In this study we propose a biological framework that could be

useful for global survey of epistatic (modifier) effects in humans,

which avoids exhaustive testing of agnostic pairs and involves

prioritisation of variants to be tested. Two types of functional

variants are common throughout the human genome and are

present at appreciable frequencies in populations: regulatory variants

with an impact on the expression patterns and levels of genes

[19,20,21,22,23] and protein-coding nucleotide variants affecting

protein sequence [19,24]. To date, the effects of these variants have

been considered independently of each other. In this study we

perform an evaluation of the joint effects of regulatory and protein-

coding variants to genome-wide expression phenotypes in humans in

order to highlight an underappreciated angle of functional variation.

Results

The Model of Epistasis
Our model brings together quantitative and qualitative

variation. A gene that has an identified cis regulatory variant is

differentially expressed among individuals of a population where

that variant is segregating [20,23]. If this gene also contains coding

variation, then, assuming that mRNA levels are indicative of

mature protein levels, the resulting protein products will not only

differ in quantity (expression level) but also in quality or type

(amino acid sequence) among individuals. Furthermore, depend-

ing on the historical rate of recombination between the regulatory

and the coding variants, different allelic combinations (haplotypes)

can arise on the two homologous chromosomes in a population.

Phasing, the arrangement of the alleles at each variant with respect

to one another, can differ between individuals in the population

(Figure 1) [25]. If this is the case, the epistasic effect arising from

these two variant types can be explored under a specific and

testable biological model.

Using this model as a main principle, we explored the degree to

which protein-coding variants can be modulated by cis-acting

regulatory variants in human populations. In a previous study [20]

we identified a set of SNPs (minor allele frequency (MAF)$0.05)

implicated in regulation of activity of genes in EBV-transformed

lymphoblastoid cell lines (LCLs) of the unrelated individuals of the

HapMap populations [26,27] (60 Caucasians of Northern and

Western European origin (CEU), 45 unrelated Chinese individuals

from Beijing University (CHB), 45 unrelated Japanese individuals

from Tokyo (JPT), and 60 Yoruba from Ibadan, Nigeria (YRI)).

LCLs represent one particular cell type and even though there

may be some effect arising from EBV transformation, it has been

demonstrated that genetic effects on gene expression , such as the

ones we describe below, are readily identifiable and mappable,

and replicate in independent population samples. We henceforth

refer to genetic variants associated with gene expression levels as

candidate regulatory SNPs (rSNPs) and regard them as proxies for

the linked functional variants that drive differential expression

levels of nearby genes. The protein-coding variants considered

under this model are non-synonymous SNPs (nsSNPs), i.e. variants

that give rise to an amino acid substitution in the protein product.

nsSNPs harboured in genes with varying expression levels are

hereon termed differentially expressed (DE).

Differentially Expressed nsSNPs
Two strategies were applied to detect DE nsSNPs in the

HapMap populations. The first strategy involved scanning genes

with known rSNPs [20] for nsSNPs. The aim was to identify

nsSNPs that are predicted to be DE as a consequence of a nearby

regulatory variant tagged by an identified rSNP. From the 606,

634, 679 and 742 genes with rSNPs previously identified [20] (0.01

permutation threshold and estimated false discovery rate

(FDR) = 20%) in the CEU, CHB, JPT and YRI respectively, we

found 159, 168, 180 and 202 of these genes (union of 484)

containing 286, 304, 311 and 393 nsSNPs respectively (union of

909) (Table S1). We infer that these nsSNPs are DE as they reside

in genes with experimentally-derived varying expression levels.

This means that there are allelic effects on gene expression such

that, depending on the genotypes of the rSNP and nsSNP and on

the phasing of their alleles, one can make predictions about the

relative abundance of the two alleles of a transcript in the cell.

The second strategy for DE nsSNP discovery involved direct

association testing between nsSNP genotype and expression levels

of the gene in which the nsSNP resides. We performed the test for

each expressed gene harbouring at least one nsSNP. This strategy

Author Summary

The ultimate goal of genome-wide association studies
(GWAS) is to explain the proportion of variation in a
phenotypic trait that can be attributed to genetic factors.
The past two years have seen a plethora of successes in
this field, yet, for most traits, a large fraction of variation
remains unexplained. Epistasis, or interaction between
genetic variants, is a largely under-explored factor, which
may shed some light in this area. We use the HapMap
populations to investigate interactions between regulatory
and protein-coding variants and their impact on gene
expression. We show that if a specific protein-coding
variant has a functional impact, this can be modified by a
co-segregating regulatory variant (cis interaction). Further-
more, the authors demonstrate that such modification
effects between variants at one locus may affect the
expression of other genes in the cell in a trans manner. The
aim of this article is to present a framework though which
variation can be considered in the context of GWAS.
Viewing variation from this underappreciated angle may,
in some cases, provide an explanation for differential
penetrance of complex disease traits, but also for non-
replication of GWAS results that may arise as a conse-
quence of such interactions.

Cis Epistatic Effects
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aimed to identify DE nsSNPs that are in LD with a regulatory

variant. Depending on the strength of the regulatory effect, such

variants may or may have not been detected in our initial scan for

rSNPs. Relative distances between rSNPs and nsSNPs can vary, but

in the special case where this distance is short in genetic terms, the

two variants may be in LD [25]. Under these circumstances we

expect that the nsSNP itself will demonstrate some degree of

association with expression levels of the gene in which it resides. We

used standard methodologies described in Stranger et al. 2007 [20]

(see Methods) to test for genotype-expression associations in each

population and in three multiple-population sample panels: (a) all

four HapMap populations, (b) three populations (CEU-CHB-JPT),

and (c) two populations (CHB-JPT). The choice of these panels

represents a pooling strategy by which we sequentially remove

individuals of the most genetically distant population sample.

For the single-populations analysis, with significance evaluated

at the 0.01 significance threshold as determined by 10,000

permutations, we expect 56 nsSNPs and 34 genes to have at least

one significant association by chance. We detected 242, 276, 267

and 255 nsSNPs (union of 703; estimated FDR ,21%) with

significant associations to expression levels of the gene in which

they reside for the CEU, CHB, JPT and YRI populations

respectively. These associated nsSNPs correspond to 196, 226, 210

and 211 genes (union of 560; estimated FDR ,16%) (Table 1).

For the multiple-population analysis at the same significance

threshold (using conditional permutations that account for

population differentiation–see Methods), we detected 345, 362

and 417 nsSNPs (estimated FDR ,15%) for the four, three and

two population groups respectively, corresponding to 284, 296 and

320 significant genes (estimated FDR ,11%) (Table 1). Overall,

the multiple-population analysis yielded a total of 587 nsSNPs with

significant associations, corresponding to 461 genes. Taken

together, the association analyses indicate that 884 nsSNPs (688

genes) are associated with expression levels of the genes they are in,

suggesting that they are in LD with regulatory variants driving

their expression. In this specific case of association, the nsSNP

itself serves as a proxy to the regulatory variant. Therefore,

knowledge of associated nsSNP genotype for an individual enables

us to make a prediction about the relative abundance of the two

alleles of a transcript containing the nsSNP.

To summarize, two classes of DE nsSNPs were discovered: (a)

nsSNPs mapping in genes with a previously-identified rSNP (909

nsSNPs, considering nsSNPs of all frequencies) and (b) nsSNPs

showing a significant association with expression levels of the gene

they are in (884 nsSNPs, considering nsSNPs with MAF$0.05)

(Figure 2a & b). From a non-redundant total of 8233 nsSNPs

tested, we predict that 1502 of these (,18.2%) are DE. If mature

protein levels mirror on average transcript levels, which is a

reasonable biological hypothesis, then this high fraction has

important implications for the levels of protein diversity in the cell.

Linkage Disequilibrium between rSNPs and nsSNPs
Of the 884 DE nsSNPs discovered through association testing

(set b above), only 291 also possess a previously identified rSNP.

This suggests that rSNP detection in our previous study [20] was

conservative and that nsSNPs can act as tags of (markers for)

nearby, undiscovered regulatory variants. With this in mind, we

expect that LD between rSNP- nsSNP pairs in which the nsSNP

had a significant association (0.01 permutation threshold) with

gene expression, will be greater than LD between rSNP- nsSNP

pairs in which the nsSNP was not associated. To explore this, we

used data from the single population analysis, and compared the

distribution of r-squared values (a measure of LD) between the two

rSNP-nsSNP pair types. As expected, we found much higher LD

Figure 1. Illustration of a hypothetical epistatic interaction between a regulatory and a protein-coding variant. Two double
heterozygote individuals may be genotypically identical, but the phasing of alleles can be different and may result in very distinct phenotypes
between individuals. In one individual (i) the A allele of the rSNP drives high expression levels of the protein arising from the C allele of the nsSNP. In
another individual (ii) the G allele of the rSNP drives low expression levels of the protein arising from the C allele of the nsSNP. If the protein-coding
variant is functionally important then this can give rise to different means in the distribution of a complex trait phenotype as shown on the right.
doi:10.1371/journal.pgen.1000244.g001

Cis Epistatic Effects
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between rSNP-nsSNP pairs where the nsSNP showed a significant

association (Mann-Whitney p,0.0001) (Figure 2c). This confirms

that in most cases, association of the nsSNP with gene expression

of its own gene is due to a regulatory variant that acts as proxy to

the identified rSNP.

Experimental Verification of Differentially Expressed
nsSNPs

So far we have used genotypic associations, not direct allele-

specific quantification (allele-specific expression; ASE), to derive

relative abundance estimates for transcripts of genes containing

nsSNPs. To experimentally verify the predictions of the association

tests (i.e. that the alleles of associated nsSNP are DE), we tested a

subset of nsSNPs for allele-specific expression [22,28] in

heterozygote CEU and YRI individuals. The initial experiment

included a total of 141 nsSNPs from category (b) of DE nsSNPs.

nsSNPs of this category provide a prediction of the relative

abundance of the two alleles as transcripts in the cell. The assay

performed was new and proved noisy. As a result it was possible to

confirm and analyze signals for 28 nsSNPs. For individuals

heterozygous for each nsSNP, we assigned relative expression of

the two alleles. We then compared the experimentally derived

relative abundance, by ASE, with the predictions of relative

abundance from the genotypic association test. We found that

predicted and experimentally-quantified relative expression of

alleles of nsSNPs were in agreement for 89% (16 out of 18) and

90% (9 out of 10) of nsSNPs tested in the CEU and the YRI

populations, respectively. This is in agreement with the FDR

estimated above. This strongly suggests that the relative abun-

dance of alternative coding transcripts can be inferred reliably by

genotypic associations.

Properties of Differentially Expressed nsSNPs
To assess the potential biological impact of DE nsSNPs we

compared three functional attributes of those amino acid

substitutions arising from DE nsSNPs and those arising from

non-DE nsSNPs (nsSNP MAF$0.05, to assess common nsSNP

consequences). We investigated: (1) the relative position of

substitution on the peptide, as different effects may arise

depending on whether the nsSNP is at the beginning or the end

of the peptide), (2) the resulting change in peptide hydrophobicity

which may alter the interactions of a protein [29], and (3) the

resulting change in Pfam score (a measure of amino acid profile in

each position of a protein domain)[30], which assesses the integrity

of protein domains that are evolutionary conserved and likely to

harbour important functions. In all cases the properties of DE

nsSNPs were not different from those of nonDE nsSNPs. Though

indirect and not comprehensive, this signal suggests that DE

nsSNPs may be a random subset of nsSNPs (Figure S1 a–c).

To assess how many DE nsSNPs have a known function, we

explored the OMIM database [31] and found that 71 (out of 1502)

DE nsSNPs have an OMIM entry (Table S2). DE nsSNPs were

found to map in genes with a role in cancer susceptibility (BRAC1

(+113705), BARD1 (+113705)), asthma and obesity (ADRB2

(+109690)), Crohn’s disease (DLG5 (*604090)), myokymia (KCNA1

(*176260)), diabetes (OAS1 (*164350)), chronic lymphatic leukae-

mia (P2RX7 (*602566)) emphysema and liver disease (P

I(+107400)), severe keratoderma (DSP (+125647)), and familial

hypercholesterolemia (ABCA1 (+600046)). In some cases the

functional role of the nsSNP remains unclear and the noise in

reported functional effects in OMIM is well-known and very

difficult to assess in a study such as the present, but there are

examples where specific effects have been attributed to nsSNPs.

Table 1. nsSNP and gene cis associations in single and multiple-population subsets.

0.01 permutation threshold

1 2 3 4

Population
significant
nsSNPs

CEU-CHB-JPT-YRI
multipop

CEU-CHB-JPT
multipop

CHB-JPT
multipop

Overlap
1&2

Overlap
1&3

Overlap
1&4

CEU 242 345 362 417 111 139 104

CHB 276 345 362 417 126 162 224

JPT 267 345 362 417 136 161 203

YRI 255 345 362 417 102 86 90

Nonredundant 703

4 populations 34

$2 populations 233

0.01 permutation threshold

1 2 3 4

Population
significant
genes

CEU-CHB-JPT-YRI
multipop

CEU-CHB-JPT
multipop

CHB-JPT
multipop

Overlap
1&2

Overlap
1&3

Overlap
1&4

CEU 196 284 296 320 99 117 87

CHB 226 284 296 320 109 129 183

JPT 210 284 296 320 114 125 156

YRI 211 284 296 320 87 77 82

Nonredundant 560

4 populations 31

$2 populations 196

doi:10.1371/journal.pgen.1000244.t001

Cis Epistatic Effects
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For example, rs28931610 in DSP is predicted to change disulphide

bonding patterns and alter the peptide tertiary structure; rs28933383

in KCNA1 causes a substitution in a highly conserved position of the

potassium channel and is predicted to impair neuronal repolariza-

tion; rs28937574 in P2RX7 is a loss of function mutation associated

with chronic lymphatic leukaemia; rs28931572 in PI entails a

replacement of a polar for a non-polar amino acid and is predicted to

disrupt tertiary structure of the protein, and rs2230806 in ABCA1 is

associated with protection against coronary heart disease in familial

hypercholesterolemia. The modulation of such strong effects by cis

regulatory variation may increase the complexity and severity of

these biological effects.

Genetic Interaction between rSNP and nsSNP
Thus far we have presented indirect evidence for an interaction in

cis where the effect of an nsSNP is modulated by a co-segregating

regulatory variant tagged by an rSNP. Under such circumstances,

and if the gene containing the nsSNP has downstream targets, then it

is likely that the expression of downstream genes may also be

affected. In other words, apart from the modification effect observed

in cis, we wanted to test for the genome-wide effects of this interaction

directly, in a statistical framework. To do this we carried out

ANOVA by testing the main effects of rSNPs and nsSNPs and their

interaction term (rSNP6nsSNP) on genome-wide gene expression

(trans effects). The rationale behind this approach is that if an rSNP-

nsSNP interaction is biologically relevant, its effect may influence the

expression of downstream targets of the gene harbouring the rSNP-

nsSNP pair. The power to detect an interaction is maximized when

all combinations of genotypes are present, each at appreciable

frequencies in the population. To increase power of interaction

detection, we pooled rare homozygotes with heterozygotes into a

single genotypic category, creating a 262 table of genotypes. This

does not bias our statistic as shown by permutations below. We

performed this analysis in the CEU population sample as CHB and

JPT population samples were small (45 individuals) and the YRI

sample has generally shown low levels of trans effects in previous

Figure 2. Strategies applied to discover differentially expressed (DE) nsSNPs and linkage disequilibrium properties between rSNP-
nsSNP pairs. (A) Two approaches were employed to discover DE nsSNPs: nsSNPs mapping in genes with a known rSNP (i) and nsSNPs that were
associated with expression levels of the gene they map in (ii). In (ii) the presence of a cis-acting regulatory variant is implied. For some nsSNPs with a
significant association, an identified cis rSNPs also exists (iii). In all other cases the nsSNPs interrogated were not inferred to be DE (iv). (B) (i) 909
nsSNPs map in a gene with an identified rSNP; (ii) 884 nsSNPs were found to be associated with levels of gene expression of the gene they reside in;
(iii) the overlap between i and ii (nsSNPs with an identified rSNP that also showed a significant association) is 291 (iii). 6731 nsSNPs show no evidence
for DE. (C) The distribution of r-squared (a measure of LD) was compared between rSNP-nsSNP pairs in which the nsSNP showed a significant
association (at the 0.01 permutation threshold) and SNP pairs in which the nsSNP was not associated. As expected, r-squared values are much higher
in the first case, in which the nsSNP is thought to act as a tag of the functional regulatory variant nearby.
doi:10.1371/journal.pgen.1000244.g002

Cis Epistatic Effects
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analyses [20]. We tested 22 rSNP-nsSNP pairs (SNP pairs) with low

LD (D9#0.5) and a MAF$0.1 for both SNPs, against genome-wide

expression. At the 0.001 nominal p-value threshold, we expect

roughly 331 significant associations (assuming a uniform distribution

of p-values) for the interaction term. We observe 412, which

corresponds to an estimated FDR of 80%. This is overall a weak

signal (see also Figure 3a), but signals at the tail of the distribution

appear to be real given the limited power of this analysis (Figure 3c, d).

To test for potential biases in the statistic used, we carried out

the same tests using permuted gene expression values (a single

permutation was done by maintaining the correlation structure of

gene expression data–see Methods) relative to the rSNP-nsSNP

genotypes. We explored the p-value distribution of the rSNP-

nsSNP interaction for observed and permuted data (Figure 3b) and

found an abundance of low p-values in the observed data. There

appears to be some degree of p-value inflation in the observed data

relative to the permuted data which is most likely due to

correlations in gene expression data. This however does not affect

the enrichment of p-values seen in the tails of the observed

distribution relative to expected distributions (uniform distribution

of p-values) or the p-value distributions derived from permuted

gene expression data. The permutation was not done in order to

assess significance thresholds but rather in order to assess the

enrichment of tests with low p-values in the observed data and is in

agreement with the enrichment derived from the enrichment

under a uniform distribution of p-values. To further evaluate the

robustness of the interactions, we repeated the analysis for the top

10 rSNP-nsSNP significant pairs against their corresponding trans-

associated gene expression phenotype, after permuting rSNP

genotypes relative to nsSNP genotypes and gene expression values.

As expected, the significance of the interaction vanishes in the

permuted data. The conditional effects of alleles at the rSNP and

nsSNP loci can therefore have a very different impact on the

expression of other genes in the cell. This conditional effect on gene

expression is illustrated in Figures 3 c and d which show two

examples of an rSNP-nsSNP interaction (p = 4.5610211 and

p = 2.261025), and in Table 2 where the summary statistics and

specific information of SNPs and genes are illustrated for the 10 most

significant interaction effects. These plots illustrate the effect on gene

expression of different rSNP-nsSNP genotypic combinations. In

Figure 3c for example, SNP rs3009034 has an effect on gene

expression of gene NDN only if the genotype of SNP rs13093220 is

homozygous for the common allele. The phenotypic effect of such

interactions is even more prominent in Figure 3d where we observe

opposite directions of the effect of SNP rs1704196 on gene RLF

depending on the genotype on SNP rs6776417.

Figure 3. Impact of rSNP-nsSNP genetic interaction on trans gene expression. (A) QQ plot of observed –log10pvalues of the interaction term
in the ANOVA over expected (under the assumption of a Uniform distribution of p-values). (B) QQ plot of observed –log10pvalues of the interaction
term in the ANOVA over the –log10pvalues of the interaction term in the permuted data. (C) Example 1: The interaction between rs13093220 (rSNP)
and rs3009034 (nsSNP) on chromosome 3, is associated with changes in expression of NDN (probe ID GI_10800414-S) on chromosome 15 (interaction
p = 4.5*10211). (D) Example 2: The interaction between rs6776417 (rSNP) rs17040196 (nsSNP) on chromosome 3 is associated with changes in
expression of RLF (probe ID GI_6912631-S) on chromosome 1 (interaction p = 2.2*1025).
doi:10.1371/journal.pgen.1000244.g003

Cis Epistatic Effects
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Discussion

We have presented a biological framework to interrogate

functional genetic variation by focusing on a specific case of

epistasis between regulatory and protein-coding variants. We have

shown that regulatory variants may have an impact on the protein

diversity of cells by differentially modulating the expression of

protein-coding variants. In cis, regulatory variants can amplify or

mask the functional effects of protein-coding variants, which

might consequently result in a milder or more severe phenotype

to the one expected if only the protein-coding variant were

present. We have shown that such interactions can affect the

expression of other genes in the cell (trans effect), in a manner that

can only be revealed if the interaction term of the two variants is

considered.

The conditional effects of alleles of functional variants may

therefore have important consequences for complex phenotypic

traits. The extent to which epistasis affects phenotypes remains an

under-explored area, but the critical importance of such

interactions is starting to emerge [17]. We provide a biological

framework for considering and conditioning existing disease

associations on known regulatory and protein-coding variants, in

an approach that also provides a potential explanation for the

differential penetrance of known disease variants. The abundance

of cis regulatory and protein-coding variants in human populations

and the generic nature of this type of epistatic interaction (no

assumptions about specific biological pathways) makes it very likely

that such interactions are common genetic factors underlying

complex traits and their consideration is likely to reveal important

associations that have not been detected thus far. Furthermore,

this consideration is particularly important for studies that fail to

replicate the primary disease associations in newly tested

populations, since it is hypothesized that some of the failures are

due to differential frequency of modifier alleles between the first

and second population. The consideration of the interactions

described above may assist in better interpretation of non-

replicated signals.

Methods

Gene Expression Quantification and Normalization
Total RNA was extracted from lymphoblastoid cell lines of the

210 unrelated individuals of the HapMap [26,27] (Coriell,

Camden, New Jersey, United States). Gene expression (mRNA

levels) was quantified using Illumina’s commercial whole genome

expression array, Sentrix Human-6 Expression BeadChip version

1 (,48,000 transcripts interrogated; Illumina, San Diego,

California, United States) [32]. Hybridization intensity values

were normalized on a log2 scale using a quantile normalization

method [33] across all replicates of a single individual followed by

a median normalization method across all 210 individuals. A

subset of 14,456 probes (13,643 unique autosomal genes) that were

highly variable within and between populations was selected from

the 47,294 probes on the array, and were used for the analysis. A

detailed description can be found in Stranger et al.[20].

Nonsynonymous (nsSNPs) and Regulatory (rSNPs) SNPs
HapMap nsSNPs (version 21, NCBI Build 35) were mapped

onto Refseq genes using nsSNP and gene coordinate information.

rSNPs are defined as those phase II HapMap SNPs (version 21,

NCBI Build 35, minor allele frequency (MAF)$0.05) with a cis

significant association at the 0.01 permutation threshold, as

described in Stranger et al. [20]. The genomic location of rSNPs

is within 1 Mb from the probe genomic midpoint.
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nsSNP Association Analyses
We tested nsSNP genotype for association with expression levels

of the gene it is in using an additive linear regression model

[3,20,34] applied to each population separately. Our association

analysis employed: 1) nsSNP genotypes for the unrelated

individuals of each HapMap population (MAF$0.05) from the

HapMap phase II map for each population (version 21, NCBI

Build 35) and 2) normalized log2 quantitative gene expression

measurements for the 210 unrelated individuals of each of the

original four HapMap populations (60 Caucasians of Northern

and Western European origin (CEU), 45 unrelated Chinese

individuals from Beijing University (CHB), 45 unrelated Japanese

individuals from Tokyo (JPT), and 60 Yoruba from Ibadan,

Nigeria (YRI)).

nsSNP Association and Multiple-Test Correction
Single Population Analysis

To assess significance of association between nsSNP genotype

and expression variation of the gene harbouring the nsSNP, we

performed 10,000 permutations of each expression phenotype

relative to the genotypes [20]. An association to gene expression

was considered significant if the nominal p-value from the linear

regression test was lower than the 0.01 tail of the distribution of the

minimal p-values (among all comparisons for a given gene) from

each of the 10,000 permutations of the expression phenotypes. For

genes containing more than one nsSNP the most stringent

permuted p-value was retained.

Multiple Population Panels
To increase the power of the nsSNP association analysis we

combined data (nsSNP genotypes and normalized expression values)

for unrelated individuals of multiple populations [20]. We compiled

three different multiple population comparison panels: 1) CEU-

CHB-JPT-YRI, 2) CEU-CHB-JPT, 3) CHB-JPT. Association tests

were carried out for each population panel separately using linear

regression. Conditional permutations (randomization of data within

each population as described in Stranger et al. [20]were performed

to assess significance of the nominal p-values. This approach

accounts for the population differentiation and prevents detection of

spurious associations [20]. For each of the 14,456 probes in each

multiple population panel, expression values were permuted among

individuals of a single population followed by regression analysis of

the grouped multi-population expression data against the grouped

multi-population permuted nsSNP genotypes. Associations were

considered significant if the nominal p-value was lower than the

threshold of the 0.01 tail of the distribution of the minimal p-values

from the 10,000 permutations of the expression phenotypes. For

genes containing more than one nsSNP the most stringent permuted

p-value was retained. It is important to note that in all cases

permutations maintained the correlated structure of gene expression

values (i.e. all gene expression values were randomized as a block for

each individual).

DNA and RNA Preparation for Allele-Specific Expression
(ASE) Assay

Genomic DNA (gDNA) and total RNA were extracted from

lymphoblastoid cell lines of the unrelated CEU and YRI HapMap

individuals (Coriell, Camden, New Jersey, United States) using

Qiagen’s AllPrep kit. RNA was treated with Turbo DNA-free

(Ambion) to minimize gDNA contamination. The RNA was

concentrated and further cleaned with RNeasy MinElute columns

(Qiagen). Total RNA and gDNA were quantified using Nanodrop

Spectrophotometer and either Quant-iT RNA or DNA reagents

(Invitrogen). Double stranded (ds) cDNA was synthesised from

250 ng of cleaned RNA. The first strand was synthesised with

Superscript III (Invitrogen) and random hexamers. The second

strand was synthesised with DNA polymerase I (Invitrogen),

ribonuclease H (Invitrogen) and dNTPs. The 96-well plate

containing the ds cDNA samples was cleaned using Multiscreen

PCR plate (Millipore).

Illumina ASE Array
The Oligo Pool All (OPA) was custom made by illumina and is

based on the Golden Gate assay. Only exonic SNPs$45 bp from

both exon edges were chosen for submission to illumina for assay

design to ensure that the assay would work equally well for

genomic and cDNA. SNPs that failed according to illumina’s

design scores were discarded. Paired ds cDNA and gDNA were

dried down in 96-well plates and re-suspended in 5 ml of HPLC

purified water. Golden Gate assays were then run for all samples

using the manufacturer’s standard protocol for gDNA (i.e. ds

cDNA was treated exactly the same way as gDNA). Reactions

were hybridised to 8612 Sentrix Array Matrix (SAM) Universal

Probe Sets so that 96 arrays could be run in parallel. Each bead

type (probe) is present on a single array on average 30 times. All

reactions were run in duplicate, so that each cell line had two ds

cDNA replicate and two gDNA replicate hybridizations. SAMs

were scanned with a Bead Station (illumina). A total of 1536 assays

were interrogated on the array but only 141 were nsSNPs from

this study and only 28 were selected based on data quality for

further analysis.

ASE Assay Data Pre-Processing
Data from each array was summarised by calculating the per

bead type average of 4 quantities after outlier removal: the

log2(Cy3) and log2(Cy5) intensities, average log-intensities

(1/2log2(Cy5.Cy3)) and log-ratios (log2(Cy5/Cy3)). Outliers were

beads with values more than 3 median absolute deviations from

the median. Arrays with low dynamic range (determined using an

inter-quartile range cut-off of less than 1 for either the log2(Cy3) or

log2(Cy5) summary intensities) were discarded. The summarised

data was normalized by median centering the log-ratios. All

analysis was carried out in R using the beadarray package [35].

Direction of expression (high/low) was assigned to alleles for

nsSNPs fulfilling threshold criteria from the association study

(adjusted r2 value$0.27; i.e. the nsSNP explained at least 27% of

the variance in gene expression of the gene it is found in so the

effect is expected to be large) and the ASE assay (average cDNA

log-intensity$12 within a population).

Assignment of Differentially Expressed (DE) nsSNPs
In each population an nsSNP is defined to be DE if: 1) it maps

within a gene that also has an independently identified cis rSNP or

2) it shows a significant association with its own gene’s expression

levels. We tested those rSNPs with the strongest association per

gene with nsSNPs of all frequencies. The total number of nsSNPs

that are predicted to be DE is the non-redundant union of 1)

and 2).

rSNP-nsSNP Pair Linkage Disequilibrium (LD) Analysis
LD values (r-squared and D9) were calculated by a pairwise

estimation between rSNPs and nsSNPs genotyped in the same

individuals and within a 100 kb window (Ensembl version 46). LD

estimates for rSNP-nsSNP pairs with and without an associated

nsSNP (0.01 permutation threshold) were compared using a

Mann-Whitney U test.

Cis Epistatic Effects
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Amino Acid Substitution Effect
Given that nsSNPs are likely to be functional we explored three

aspects of the resulting amino acid substitution: 1) Relative

position of substitution on the peptide, as a percent of peptide total

length. 2) Hydrophobicity change in peptide resulting from the

amino acid substitution. For each pair of variant sequences the

hydrophobicity at the position of the variant amino acid was

calculated using the Kyte-Doolittle algorithm using a window size

of 7 (centred on the variant amino acid). The difference between

hydrophobicty scores was then taken for each of the variant pairs

in the dataset. 3) Pfam score change in peptide sequence resulting

from the amino acid substitution. All sequences were searched

against the profile-HMM library provided by the Pfam database

(release 22.0) using hmmpfam from the HMMer software package

(version 2.3.2, http://hmmer.janelia.org/) and a default cut off E-

value of 10. Only the HMM_ls library was used so that domain

assignments to a pair of variant sequences were comparable. The

set of Pfam domain assignments were then filtered such that only

the domains that overlapped with the SNP position and that at

least one of the domain assignments from a pair of variant

sequences scored above the Pfam defined gathering threshold,

were considered in the subsequent analysis. The difference

between the two E-values was then taken for each of the variant

pairs in the dataset.

Trans Association Analysis
Our aim was to test the interaction effects of rSNP with nsSNP

on expression phenotypes in trans in the CEU population Our

strategy involved pooling the minor allele homozygote and the

heterozygote into a single genotypic category and then coding

genotypes as 0 (major allele homozygote) or 1 (heterozygote and

minor allele homozygote) for both SNP types. As a result four

possible rSNP-nsSNP genotypic combinations were possible: 0-0,

1-0, 0-1, 1-1. We performed ANOVA to test the effects of the

rSNP, the nsSNP, and the interaction term (rSNP6nsSNP) in the

same model against gene expression phenotypes in trans (in each

case excluding the gene from which the rSNP-nsSNP pair

originates). Tests were carried out for 22 SNP pairs with low LD

(D9#0.5) between the rSNP and the nsSNP and a MAF$0.1 for

both variants (to avoid outlier effects).

To assess significance of the interaction p-values we generated a

single permuted dataset of expression values relative to the

combined genotypes and compared the p-value distribution of the

interaction term for the observed and the permuted data. To

further evaluate the robustness of the observed interactions we

permuted the rSNP genotypes relative to nsSNP genotypes and

gene expression phenotypes, and re-ran the ANOVA association

test for the top 10 most significant interactions.

Supporting Information

Figure S1 We compared three functional attributes between

amino acid substitutions arising from differentially expressed (DE)

nsSNPs and those arising from non-DE nsSNPs. We investigated:

(A) the relative position of substitution on the peptide, (B) the

resulting change in peptide hydrophobicity [29] and (C) the

resulting change in Pfam score when searched against the Pfam

profile Hidden Markov Model library [30]. We conclude that DE

nsSNPs appear to be a random subset of nsSNPs. Therefore, if a

random nsSNP has a phenotypic effect, this is likely to be

amplified or masked through differential expression caused by a

cis-acting regulatory variant.

Found at: doi:10.1371/journal.pgen.1000244.s001 (0.91 MB TIF)

Table S1 nsSNPs and genes interrogated for differential

expression.

Found at: doi:10.1371/journal.pgen.1000244.s002 (0.01 MB PDF)

Table S2 Differentially expressed nsSNPs in OMIM.

Found at: doi:10.1371/journal.pgen.1000244.s003 (0.02 MB PDF)
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