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Abstract 

Suppose you repeatedly play a game of chance in which you have the 
advantage. Your return on investment is your net gain divided by the total 
amount that you have bet. It is shown that the ratio of your return on 
investment under optimal proportional betting to your return on investment 
under constant betting converges to an exponential distribution with mean 2 as 
your advantage tends to 0. The case of non-optimal proportional betting is also 
treated. 

CONVERGENCE IN DISTRIBUTION; GAMMA DISTRIBUTION; BETTING SYSTEMS 

1. Introduction 

Consider a game of chance that is played repeatedly and in which at each trial 
the bettor either wins or loses the amount of his bet. Suppose that the win 

probability p satisfies 1<p< <1, so that the game is advantageous. Given 
f E (0, 1], one possible strategy is for the bettor to wager a proportion f of his 
current fortune at each trial. Letting X1, X2,- be independent and identically 
distributed (i.i.d.) with 

1 with probability p 

S- 1 with probability 1 - p, 

the proportional bettor's fortune after n trials is 

(1.2) Fn= Fo (1 + fXi), 

Received 30 September 1982. 
* Postal address: Department of Statistics and Probability, Michigan State University, East 

Lansing, MI 48824, U.S.A. 
Supported in part by NSF Grant MCS-8102063. 
** Postal address: Department of Statistics, Colorado State University, Fort Collins, CO 80523, 

U.S.A. 

563 



564 S. N. ETHIER AND S. TAVARE 

where Fo is his initial fortune (a positive constant). The exponential rate of 

growth of his fortune is defined by 

(1.3) Gp (f) = E log(1 + fX1), 

since lim,,,~(1/n)log(F,/Fo)= G(f) a.s. by the law of large numbers. In 

particular, if f is such that Gp (f)> 0, then F, 0oo a.s. The choice f* of f that 
maximizes Gp(f) (namely, f* = 2p - 1) results in an optimal betting system 
(Kelly (1956), Breiman (1961), Finkelstein and Whitley (1981)), which is often 
referred to as the Kelly system. 

Our interest centers on the proportional bettor's return on investment (i.e., 
net gain divided by total amount bet), which after n trials is given by 

F, - Fo 
(1.4) R.= ,F-- 

f EFk k=0 

Assume that f is such that Gp (f)> 0. In Section 2 we show that as n - c, 

(1.5) R, - R 

and 

(1.6) Rn { l Xx,=a } =[np]} R, 

where - denotes convergence in distribution and 

(1.7) R = 
fE (Fo/Fk) 

k=l 

The random variable R, which by (1.5) represents the proportional bettor's 

(asymptotic as n - oo) return on investment, can be shown to satisfy 0 < R < 1 
almost surely and 

(1.8) ER < EX,. 

The latter result says that the expected return on investment under proportional 
betting is less than it is under constant betting. For fixed p and f, it is difficult to 

say by how much, but asymptotic results can be obtained by letting p 
-• 

- + and 

f 0-*+. 
Fix a E (0, 2). Then G(l+,)/2(ae)> 0 for e positive and sufficiently small, and 

for such e we let 
Xi(E),X2(e),'" 

be i.i.d. with XI(E) given by (1.1) with 

p = (1 + e)/2, and we define R " (e) by (1.7) and (1.2) with Xi = X (e) and f = ae. 
This corresponds to the case in which the betting proportion is a times the 

optimal betting proportion. In Section 3 we show that as e 0 +, 
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(1.9) R" ()/EX,(e) ---, gamma -1, , 

where gamma(0, A) denotes the distribution on (0,oo) with density g(x)-- 
F(0)-A x 0- e-1x. Moreover, we have uniform integrability, so 

(1.10) lim ER" ()/EX(E) = 1 - - 1-0+ 2 

In the case of optimal proportional betting, a = 1 and (1.9) becomes 

(1.11) R '(E)/EXI(E) -)* exponential(2), 

where exponential(A) denotes the distribution on (0,oo) with density g(x)= 

Ahe-, while (1.10) reduces to 

(1.12) lim ER '(E)/EX,(E) = 1. E:----0+ 

In a recent paper, Wong (1981) argued that the optimal proportional bettor's 
return on investment is only about one-half of that of the constant bettor, at least 
when the actual number of wins is approximately the expected number. By (1.6), 
the latter condition is unnecessary. Ignoring it and assuming that Wong meant 

expected return on investment, we see that (1.12) can be viewed as a precise 
formulation of Wong's assertion. 

Observe that 

(1.13) h(a)- lim P{R"()/IEX,(E) > 1} E:---•+ 

represents the (asymptotic as e -*0+) probability that proportional betting 
outperforms constant betting in terms of return on investment when the betting 
proportion is a times the optimal betting proportion. Using (1.9), it can be 
checked that h(0+)=?, h(1)=e-2, and h(2-)=0. (We believe that h is 
monotone decreasing on (0,2) but do not have a proof.) However, it would 

probably be a mistake to regard this or (1.10) as an indictment of proportional 
betting. As Wong (1981) put it (referring only to the optimal case), 
'... proportional betting costs you about half of your arithmetic expectation. 
You can think of this as being the premium you have to pay for the insurance 

against going broke that you get with proportional betting.' 
Up until now, we have assumed that X1, the bettor's net gain per unit bet, is 

{ - 1, 1}-valued. This assumption, however, is unnecessary. In particular, (1.5) 
and (1.8) hold with X1, X2,.- - taken to be i.i.d. non-degenerate [- 1, o)-valued 
random variables with positive (finite) expectation (assuming of course that 
E log(1 +fX1)>0). As for (1.9) and (1.10), we require for some M>0 that 

X1(E), X2(E),... be i.i.d. non-degenerate [- 1, M]-valued random variables for 
each eE [0, so), that 

X1(E)--- 
X(0) as e -0 +, and that EX(E) > 0 > 
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E[XI(E)/(1 + X1(E))] for 0 < e < Eo and EX1(0) = 0. (The boundedness assump- 
tion on X1(e) is probably stronger than necessary but involves no real loss of 

applicability.) In this case, (1.9) and (1.10) hold with R () defined for E 

sufficiently small by (1.7) and (1.2) with Xi = Xi (e) and f = af*(e), f*(e) being 
the choice of f that maximizes E log(1 + fX1(E)), the exponential rate of growth 
of the bettor's fortune. Clearly, these results generalize the previously stated 
ones. 

One of the best-known applications of proportional betting occurs in the game 
of blackjack (Griffin (1981)). While it seems likely that the above results hold at 
least qualitatively in this context, it should be recognized that several of our 

assumptions fail to hold here. First, successive blackjack hands are not indepen- 
dent unless separated by a shuffle. Second, successive hands are not identically 
distributed from the card-counter's point of view; in particular, his advantage 
fluctuates. Third, our requirement that X,1 ?- 1 (i.e., the bettor cannot lose 
more than the amount of his bet) seems to preclude the blackjack options of pair 
splitting, doubling down, and insurance; however, by suitably rescaling, it it easy 
to generalize the above results, replacing - 1 by an arbitrary negative constant. 

Finally, we have assumed implicitly that money is infinitely divisible, which of 
course is not the case in a gambling casino. 

2. Asymptotic distribution of R, as n--* 

Our first result concerns the random variable R defined by (1.7), though here 
we do not assume (1.1). 

Proposition 2.1. Let X1, X2,-- be i.i.d. non-degenerate [- 1, oo)-valued ran- 
dom variables with 0 < EX, < oo. Fix f E (0, 1] such that 

(2.1) E log(1 + fX,) > 0, 

and let Fo be a positive constant. Define F1, 
F2," 

- by (1.2), R1, R2,.- by (1.4), 
and R by (1.7). 

(a) 0 < R < ess sup X1 a.s. 

(b) R,, --- R as n --*. - 

(c) There exists a random variable R' (defined on the same probability space 
that X1, X2, are defined on) such that R' = R, R' is independent of X1, and 

(2.2) R = (1 + fX,)R '/(1 + fR '). 

(d) ER < EX,. 

Proof. (a) By the law of large numbers and (2.1), 

lim (Fo/Fk)l/k = lim exp{ - (1/k)log(Fk /Fo)} 
k --+oo k -}1oo 

= exp{ - E log(1 + fX,)} < 1 a.s., 
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so the series in (1.7) converges almost surely by the root test. Hence R > 0 
almost surely. For the second inequality, if ess sup X1 = oo, there is nothing to 

prove. If M = ess sup X1 < oc, then 

1/R - f E (1 + fM)-k = 1/M a.s. 
k=1 

with equality only if Xi = M for each i? 1. Hence the non-degeneracy of X, 
implies that R < M almost surely. 

(b) Observe that 

1- (Fo/F,) 1- (Fo/F,) 
R, 

n-1 n- 
f (FkFn,) f E(Fo/F,-k) k=o k=0 

(2.3) 
(2.3) 1 - (FoIFn) as. 

-- R 

f (Fo/Fk) k=1 

as n-- c0, where the equality in distribution follows by reversing the order of 

X1, X2, - - -, X; we have also used F, --oo a.s. as n -- -, valid by (2.1). 
(c) Define R' in terms of X2, 

X3," exactly in the same way that R is defined 
in terms of XX, X2,- . Then 

(2.4) 1 f + 
R 1+fX, R' I' 

which is equivalent to (2.2). 
(d) By (2.2), R 

_ (1 + fX)/If, and thus R has finite expectation. Now the 
function P(r) r/(1 + fr) is strictly concave on (0,oo), so by (c) and Jensen's 

inequality (using the non-degeneracy of X1 and therefore R), 

ER = E[1 + fX,]E[R /(1 + fR)] < (1 + f EX,)ER /(1 + f ER), 

from which the desired result follows. 

The next result will allow us to prove a generalization of (1.6). 

Proposition 2.2. Let X1, X2," "f, Fo, F1, F2, - - - , and R be as in Proposition 
2.1. For each n 1, let Xl, ... X,,X be [-1,oo)-valued random variables, and 
define 

SFm,, - F 
Fmn =Fo (1 + fXin), Rmn= ,-i 

i=1 f• Fkn 
kfO 

for 1 - rm - 
n. Assume that 

(2.5) 
(X,,,. .., X,,) 

= (X,,, 
. . ., 

X1,), 
n- 

1, 
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(2.6) (Xln,,..-., Xmn) (Xi,..-, Xm) as n --*, m 1, 

(2.7) E(Fo/Fm,,)" E(Fo/Fm)", 1 m n, 0O< u < 1. 

Then R,, --- 
R as n -- oo. 

Proof. As in (2.3), we infer from (2.5) that 

1- (Fo/Fnn) 
fn E(Fo/Fk,) k=1 

so it will suffice to show that Fo/F,, --> 0 and 

(Fo/Fkn) (Fo/Fk). 
k=l k=l 

By (2.6), the latter will follow from Theorem 4.2 of Billingsley (1968), provided 
we can show that 

(2.8) lim sup P 
(Fo/Fk,) 

~ 8 0 m--- n m+l k=m+l 

for every 8 > 0; the former will also be a consequence of (2.8). Now 4(t) - 

E exp( - t log(1 + fX,)) satisfies 40(0) = 1 and 0'(0) < 0, so there exists u E (0, 1) 
with 4(u) < 1. Thus, the probability in (2.8) is bounded by 

u-"E 
(Fo/Fk,) -8 

s" E(Fo/Fk,)" k =m+l k=m+l 

•-u 
8 E 

E(Fo/Fk=)"u=8u 
E (u)k 

k=m+l k=m+l 

? 
8-U(u)mr+l/(1-- 

4(u)) 

for each n > m :-: 1, where we have used (2.7). This implies (2.8) and completes 
the proof. 

Corollary 2.3. Let X1, X2, .,f, Fo, R , 
R2,,-" 

and R be as in Proposition 
2.1. Suppose in addition that 1 - 2 and there exist distinct , 

, . 
, 5 E [- 1, 00) 

such that pj - P{X, = j} > 0 for j = 
1,-.., 1 and 

1•_- 
pi = 1. For each n 1, let 

mi,,, " 
, mi, be non-negative integers summing to n, and put 

An = { i xx=6 = mj, j = 1,, ,I. 

Assume that 
limn,-o m,, /n = pj for j = 1, ., l. Then Rn A, 

R as n --*c. 

Proof. For each n 
_ 

1, let 
(X1,,. " 

X,, X) have the conditional distribution of 
(X1, .. , X,) given A,, and apply Proposition 2.2. Conditions (2.5) and (2.6) are 
easily checked, while (2.7) follows from Theorem 4 of Hoeffding (1963). 
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3. Asymptotic distribution of R /EX, 

The main result of this section specifies the asymptotic distribution of R /EX, 
as the bettor's advantage tends to 0. 

Lemma 3.1. Let M and eo be positive constants. Let Xi(e) be a non- 

degenerate, [-1, M]-valued random variable for each e E [0, Eo). Suppose that 

X,i()- X,(0) as E - 0 +, 

(3.1) EX,(e)> > E[X,(e)/(1 + 
Xl(e))], 

O< e < Eo, 

where - 1/0 = - oo, and EX1(0) = 0. For 0 < e < eo, define 

GE (f) = E log(1 + fXi,()), O f 5 1, 

and m1(e) = EX,(e), m2() = EX1(e)2. 
(a) For each eE (0, Eo), GE (f) is strictly concave in f and has a unique 

maximum at f = f*(e), say, in (0, 1). 
(b) f*(e)= ml(e)m2(e)-1(1+ o(1)) as e ---0 +. 

(c) For each a E (0, 2), as -- 0 +, 

GE (af*(e)) = af *(e)ml(e)(1- a + o (1)). 

Proof. (a) Fix eE (0, Eo). Since 

Xi(e) 
_X,(_)2 G(f)= E (E ) and G"(f)= -E 
X((E))2 E 1 + 

fX,(E) (1 + fX(E ))2 
, 

G, (f) is strictly concave in f, G'(f) is strictly decreasing in f, and G'(0)> 0 > 

G'(1 -) by (3.1). Hence there exists a unique f*(e) E (0, 1) with G'(f*(e)) = 0; 
clearly, this choice of f maximizes G, (f). 

(b) First we claim that f*(e)--->0 as e ---0 +. Suppose not. Then there exists 
En --* 0 + with f*(En~)-- fo E (0,1]. If fo < 1, then 

(3.2) 0 = lim E 
X,(e) 

-E X,(0) < 0 
n-(m 1 + 

f*(En)X,(en) 
1 + 

foX,(0) 
by Jensen's inequality, a contradiction. If fo = 1 the second equality in (3.2) 
becomes an inequality 

(_) 
and 

lim,_,- 
is replaced by lim supn... Here we are 

using Theorem 5.3 of Billingsley (1968) and the assumption that X1(e) is 
bounded above by M. This establishes the claim. Now since G '(f*(e))= 0, we 
have 

m(e)- f*(e)m2(e) +f*()2E + f(E), 
0 

and hence 

(3.3) f m*() (e) + E X(E) m2(E) m2(E) 
1 + 

f*(E)X,(E) 
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for 0 < E < o. The desired conclusion now follows from (3.3) and the initial 
claim. 

(c) By a Taylor expansion and (b), as ~--* 0+, 

GE (af*(e)) = E log(1 + af*(E)X,(e)) 

a= f*(E)ml()-a- 2f *()2m2() O (f*()3) 

- af *()m(e){1 
- af *(e)ml()-m2(e)+ O (1)} 

Saf*(E)m,(E)(1 - 'a + o(1)). 

Theorem 3.2. Let M, eo, and Fo be positive constants. Let X1(e), X2(J), 
be i.i.d. random variables for each E E [0, Eo) with X1(E), 0 - E < go, satisfying 
the conditions of Lemma 3.1. Fix a E (0, 2), and, using the notation of Lemma 
3.1, define R" () by (1.7) and (1.2) with X, = Xi(E) and f = af*(e) for each 

E E (0, go) for which GE (af*(e)) > 0. (This is possible by Lemma 3.1 (c).) Then, 
as --0 +, (1.9) holds. Moreover, R " 

(e)IEX,(E) is uniformly integrable in E, so 

(1.10) also holds. 

Proof. Let >E0 be such that G,(af*(e))> 0, and denote the nth moment of 

R" () by t, (E) for each n -1. Let n -1. By Proposition 2.1(c), 

Egn (E) = E(1 + af*(E )X,(E))n E[R (e)"/(1 + af *(E)R' (g))n ]. 

Since 1 - nx ? (1 + x)" ? 1 - nx + ("f)x2 for all x > 0, and since 
n+:2 

< Mn+1, 

we have 

(1+ r7)(n,-naf* 
.n,++)!SL,,n !(1+r){IA.-naf* 

(1- 2 Maf*) 
,,} where the dependence on e is implicit and where r = E(1 +af*X,)" -1. 

Rearranging, 

(3.4) P,/m lmn-./lm"' , 
02 n n 

where 

S1 = ,q/naf *mi(1+ ? ), 

2 = / naf*mi 
(1-n+l2 

Maf*) (1+rl). 

Letting E 0 + and noting that 

rl 
= naf*mi + () a2f*2m22 

+ O(f*3) 

we conclude from Lemma 3.1(b) that both P/ and 32 converge to 1 + ((n - 1)/2)a. 
By induction applied to (3.4) (using Proposition 2.1(d) for the initial step), 
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sup, 
• 

/m < oo, and hence (R /IEX,)" is uniformly integrable in e for each n ? 1 

(Billingsley (1968), p. 32). Also from (3.4), if 
lim,_-o++,/ 

mn exists, then 

limfo+ p,+1/m'' exists, and 

(3.5) lim m = 1 + a rlim ,/m1. 
E-•0+ 

2 E+ 

Since R /EX, is uniformly integrable in e, it is tight (Billingsley (1968), p. 41), 
hence relatively compact. Let U be any weak limit as e --0+, so that 

R"/EX,--A U as e---0+ through some subsequence. Let v, denote the n th 
moment of U for each n- 1. By the uniform integrability proved above, 

, /mI - v, as e --0 + through the subsequence for each n 1. By (3.5), 

(3.6) vn+i, = n2 + 1a) n1. 

Define 0 = 2/a -1 and A = 2/a. Using (3.6), we find that U has Laplace 
transform 

Ee -, 
= 1 + ( - t)"v, / n ! n=1 

=1 
+ 

(-t)"(0+n-1) (0 + 1)v,/A"-'n! n=l 

{( An( A A 

= 1+ +- 
+ 

A1- 
V. 

As t--+m, this tends to 1-(A/O)vi, which must therefore be non-negative. 
Hence U is a mixture of gamma(O, A) and So, the unit mass concentrated at 0. 

Let 0 < 8 < min(l, 0). We claim that 

(3.7) lim sup E(R" (e)/EX(e))-' < oo. 

Granting this for the moment, it follows that U must be purely gamma(O, A). 
Since U was an arbitrary weak limit as e --> 0 + of R " 

(e)/EX,(E), we conclude 
that (1.9) holds as e --0+. 

We turn to the proof of (3.7). As e -->0 +, 

E(1 + af*X,)-" = 1 - Saf *mi 
+28(8 

+ 1)a2f*2m2 + O(f*3) 

(3.8) = 1 - Saf 
*m,(1 

- (8 + 1)af*mmlm2 + o(1)) 

= 1- 8af*m(1 -(8 + 1)a + o(1)) 
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by Lemma 3.1(b). Since 0 < 8 < 0, this is less than 1 for all e sufficiently small. In 

particular, for such e, 

E(R)- = (af*)8E ( (Fo/F)) 

(af *)" E(Fo/IFk)8 
k=l 

(af*)" E {E(l + af*X,)-}k k=l1 

< 00 

Now by Proposition 2.1(c) (in particular, (2.4)), 

E = E(1 + af 
*X•)•E 

(af*mi +m' . 

Using the inequality (x + c)8 
- x8 + 8cx -', valid for all x > 0 and c > 0 (since 

0 < 8 
_ 1), and Proposition 2.1(d) together with Jensen's inequality, we find that 

E 2 
=<E(1+ 

af*X,)-' E mi 
+ 8af*mE 

SE(1 + af*x,)- E + 8af*mj , 

and hence 

(3.9) E(R"I/ml)-' s 8af*m {1 - E(1 + af *X,)-}.-1 

By (3.8), the right side of (3.9) tends to (1 - (6 + 1)a)-' as e --->0 +, proving (3.7) 
and completing the proof. 

Remark 3.3. We outline an alternative proof of (1.9), valid when X1(e) is 

given by (1.1) with p = (1+ e)/2 and somewhat more generally. By (3.7), 
(R (e)/EXI(e))_' (defined for e positive and sufficiently small) is uniformly 
integrable in e, hence tight, and therefore relatively compact. Let V be an 

arbitrary weak limit as e --> 0 +, and denote its Laplace transform by 4 (t), t ?0. 

Using Proposition 2.1(c) (in particular, (2.4)), a Taylor expansion, and Lemma 

3.1(b), we find that 4 satisfies the differential equation 

(3.10) ?atOf"(t) + (a - 1)0'(t) - f(t) = 0, t > 0. 

Moreover, 4 is monotone decreasing and 4 (0+) = 1. It follows from Grad- 

shteyn and Ryzhik (1980), Equation 8.494(5), that 

(3.11) 4(t) = 2(At)0/2Ko (2 ~ )/F(O), t >0, 
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where 0 = 2/a - 1, A = 2/a, and Ko is the (decreasing) modified Bessel function 
of order 0. We conclude from Gradshteyn and Ryzhik (1980), Equation 3.471(9), 
that 1/V is gamma(O, A). Since V was an arbitrary weak limit of 
(R ( )/EXI(e))-I as e-- 0+, the desired result follows. 
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