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The Ewens sampling formula (ESF) describes
a specilic probability for the partition of a posi-
tive integer into parts. The distribution contains
onc parameter, usually denoted by 6. For the
case @ = | the distribution is quite old, going

K

back in effect to Cauchy [7], since it then de-
scribes the partition into cycles of a random per-
mutation, with each possible permutation being
equally likely. The distribution arises in a wider
variety of combinatorial objects than permuta-
tions, and in many scientific disciplines.

DISTRIBUTION AND MOMENTS

The ESF is most casily described in terms of
sequential sampling of animals from an infinite
collection of distinguishable species (Fisher
ct al. [14], McCloskey [25], Engen [11]). We
use this example throughout, except where
other specific applications are discussed. Sup-
pose that the species have random frequencies
P = (P, P,,...) satisfying

O<pP <], i=12,...,

H

Conditional upon P, the species types of the
animals are assumed to be independent, any
animal being of species i/ with probability P;.
In what follows, we assume that the random
vector P is defined by

Py =W,
Po=(—-W)(1—-W)---(1 - W)W,
r=23,..., @

where the W, W,,... arc i.i.d. with density
01 —x)*', 0<x<1, 0<@ <o This
implies a nonmultinomial distribution for the
numbers of different species observed.
Suppose a sample of n animals is taken.
We can describe the specics partition of these
animals in two ways. First, we can record
the counts Cj;(n), the number of species
represented by j animals. The vector C, =
(Ci(n),...,Cu(n)) satisfies 37, jCi(n) = n,
and if K, is the number of distinct specics
lo appear in the sample, K, = Z}',, Cj(n).
Rather more information is obtained by rccord-
ing Ay(n), the number of animals of the fi:st
species to appear, A»(n), the number of animals
of the sccond specics to appear, and so on.
Under the assumption that the random vector
P has distribution given by (2), the ESF (Ewens




[12]) gives the distribution of the vector C,, as

P, = a,] = 2 [ (ﬁ—) L@

B i\ J a;!

where Oy = 00 -+ 1} (0 + n— 1) and
a, = (a|, as,...,a,)is a vector of nonnegative

integers satisfying ay + 2as 4 -« + na, =
n. Similarly, the distribution of K, is

DK, = k] = S(n,k)0*/0,. 4)

where S(n, k) is the coefficient of 8% in 0,
that is, is the absolute value of a Stirling num-
ber* of the first kind (see STIRLING DISTRI-
BUTIONS. And the distribution of the vector
A, = (A)(n), A2(n),...) is given by Donnelly
and Tavaré [9] as

p[Kn = kv Ai(n) = N, 1,2,.‘] =
0 (n ~ 1)
. (5
Oune(ne + mgy) - (ng +ompoy + -0 + u.z)
Thus the conditional distribution of C,, given
K, =k, is

n!
S(n, k) IT, Jja;l’
(6)
and the number of singleion species has the
distribution

P[Cin) = a] =

P[Cll = all I K" = I\] ==

Hu n-a ‘()j (IJ a7 o
ES -y Lltd gy
al = JV i+ 0 -~ a-— jhaep

The joint factorial moments® ol C,, of arbi-
trary order, are

s VO yqf 0\”
IEI le(”)tr,l AT I [(7)
j=1

m! Oy il

when m = n — erj 2 0, and 0 whenm <0
(Watterson  [33]); here we define xp,) =
o~ D lx=r+ 1) for r=012,....
Also, the mean and variance of K, are

n-|
0
K, = 2 ——,
' = 0+
n-d 0i

Var(K,) = .
(K, Z. G
These are the core consequences of the proba-
bility model assumed for the ESF.

N
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PROPERTIES AND CHARACTERIZATIONS

The ESF is @« member of the exponential fam-
ily* of distributions. The complete sufficient
statistic for 0 is K,,, and its maximum likelihood
estimator* 4 is given implicitly from (4) as the
solution of the equation Z;’;(,' 8/(d + i) = K,.
The only functions of 8 admitting unbiased™* es-
timation are linear combinations of expressions
of the form [(i + 0)(j + 0)---(m + O],
where i,/,...,m are integers with [ </ <
Jj<.---<m=sgn-1

Let u, denote the distribution of the parti-
tion vector C,, when sampling from the species
model in (1). We say the sample has the species
deletion property if, when an animal is taken
at random from the sample and it is observed
that in all there are r animals of this species
in the sample, then the partition distribution of
the remaining n — r animals is u, -,. Kingman
|22, 23] shows that the species deletion prop-
erty holds for the ESF [ie., when u,, is given
by (3)).

Next we consider the propertics of (3) and (5)
for two consecutive sample sizes, n and n + 1.
We denote the history of the sample of size
nby 3, = (A, A,,...,A,), where A; is the
vector describing the species composition of the
first i animals. We ask: Given FH,,, what is the
conditional probability that the next animal will
be of a new species? This probability is found
from (3) as

P[(n + 1th animal of a new species | F,] =

0
n+0 ®

If a given specics has been observed m times
(m > 0) in the sample of n, the conditional
probability that the (n + 1)th animal will be
of this species is

P{(n + 1)th animal is of a particular specics
m )

—. 9
n+t+0 )
The probabilities (8) and (9) may be used
10 generate the process A,, n = 1,2,..., by
a sequential urn scheme, starting from 4, =
(1). This scheme is a special case of an urn
model* considered, in a nonspecies context, by
Blackwell and MacQueen [6), who used it to

seen m times] H,] =
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discuss propertics of sampling from a Dirichlet
process™. Hoppe [ 18] was the first to exploit this
urn model in the context of statistical genctics*
to obtain properties of the distribution (3).

The species delction property and the law-of-
succession (see LAPLACE'S LAW OFF SUCCESSION)
formulas (8) and (9) may be used to character-
ize the ESF in the context of sampling from
the model (1):

1. (Kingman [22, 23].) If the species deletion
property holds, then the vector C,, has dis-
tribution u, given by the ESF.

2. The Law of Succession. Suppose that the
sample history H, is given. If the condi-
tional probability that the next animal is of
a new species depends only on n, then this
probability must be of the form 8/(@ + n)
for some nonncgative constant 6 [8]. If,
further, the conditional probability that this
animal is of a specific species seen m times
in the sample depends only on m (the suf-
ficientness principle of Johnson [19]), then
the species partition probability is given by
the ESF [35].

RELATIONS WITH OTHER DISTRIBUTIONS

The ESF can be derived by a conditioning argu-
ment from the logarithmic series distribution®
{33] as well as from the Poisson*. For the latter,
suppose that Z;, Z ... are independent Poisson
random variables with E[Z;] = 0/j. Then

ijz, = n) ,

=1

(C]....,C,,) =d (Z,,....Z,,

where =, denotes equality in distribution.

Another representation, called the Feller
coupling, is uselul for deriving asymptotic re-
sults for the ESTF {4]. 1.ct ;. i = 1, be inde-
pendent Bernoulli random variables satisfying
Ple; = 1]+ 0/(0 + i = 1), and let C;(n) be
the number of spacings* of length j betwecn
the 1's in the sequence &£,&>... &, 1. Then the
distribution of the vector C,, is the ESF. Fur-
ther, if Z; is the number of spacings of length
j in the infinite sequence &£, .., then the Z;
are independent Poisson random variables with
mean E{Z;] = 0/j.

The distribution of the vector P = (P, .
P, ...) determined by (2) is known as
the GEM distribution. 1t is named after
McCloskey {25] and Engen [10}, who intro-
duced it in the context of ecology. and Griffiths
[15]. who first noted its importance to genetics.
The GEM distribution is a residual allocation
model [27], that is, a mode! of the form (2)
where W), W,,... are independent. It is the
only such model with identically distributed
residual fractions for which the size-biased
permutation has the same distribution as P (for
a definition of a size-biased permutation, and a
proof of this assertion, see refs. [25] and [10]).

The decreasing order statistics®* (P,
Pg,...) of P have the Poisson-Dirichlet
distribution with parameter § [20]. The GEM
is the size-biased permutation of the Poisson-
Dirichlet [27, 24].

The ESF is a particular case of the Pit-
man sampling formula {28, 30}, which gives the
probability of a species partition C, = a, of n
animals as

P[Cn = a,, K, = k_l
nt(@+ a)(@ + 2a)---[0 + (k ~ 1)a]
(0 + l)(n--*l)

x ﬁ((l - a)(j—l))"’;%'

- J!

Since we are considering only the infinitely-
many-species case, we employ .. restrictions
0<a< |, 8> —a. The ESF is then the
particular case of the Pitman sampling for-
mula when @ = 0. The Pitman distribution has
several impottant properties, cf which we note
here one. Suppose in the residual allocation
model (2) we no longer assume that W, Wa, ...
are identically distributed. Then the most gen-
eral distribution of W; for which the distribution
of (Py, P2, P3,...) is invariant under size-biased
sampling is that for which W; has probability
density proportional to w™ (1 — w)?*tie=(cf,
ref. [29]). This model for (2) yields the Pitman
sampling formula.

It follows from (7) and the mcthod of mo-
ments* that random variables €, with the ESF
(3) satisfy, for each fixed b,

(C|(H),...,C},(H))=>(Z|,...,Zb) (lO)



as n — o, with = denoting convergence in
distribution. Rates of convergence in the total-
variation*® metric are given by Arratia ct al. [4].

The approximation in (10) covers the case of

species represented a small number of times.
A tunctional central limit theorem* is available
for the number oi species represented at most
n' times, for 0 < ¢ < 1 {16]. In particular, the
number K, of species in the sample has asymp-
totically a normal distribution with mean and
variance # log n.

It follows directly {rom the strong law of

large numbers* that the proportions A,/n con-
verge almost surely as n — %, and the limit has
the GEM distribution with parameter ¢. The
decreasing -order statistics of 4,/n converge
almost surely 1o the Poisson-Dirichlet distri-
bution with parameter 0 [20].

APPLICATIONS

We summarize applications of the ESF in vari-
ous different arcas. A more extensive review
of these topics may be found in Tavaré and
Ewens [32].

The ESF provides the null-hypothesis dis-
tribution of allele frequencies for the “non-
Darwinian” theory of evolution in population
genetics. The parameter 6 in (3) depends on
the population size, the mutation rate, and de-
tails of the evolutionary model, all usually un-
known. However, the conditional distribution
(6), being independeni of ¢, can be used for
testing this theory even when these quantities
are unknown. For details sce Watterson [34].

In the context of Bayesian statistics,
Antoniak [2] showed that the ESF gives the
distribution of the partition of a sample from
a Dirichlet process prior. Ferguson et al. [13]
and Scthuraman {3 1] give recent developments.

Equation (3) arises in a number of combi-
natorial contexts. First, as noted earlier, the
case @ = 1 gives the distribution of the num-
ber and lengths of the cycles in a uniform ran-
dom permutation of a objects. I the permu-
tation is chosen with probability proportional
to ¢', where 1 equals the number of cycles,
then this distribution is given by (3). Second,
suppose a random mapping of (1,2,...,N) to

/
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(1,2,...,N) is made, cach mapping having
probability N7V, Then in the limit as N — o,
the images of the components of this map-
ping in the set (1,2, ..., n) have the distribution
(3) with 0 = % 121, 1]. Further combinatorial
structures where (3) arises, including factoriza-
tions of polynomials over a finite field, are de-
scribed by Arratia and Tavaré |3].

In ecology, the species number and size al-
location distribution where species do not in-
teract is of some interest. This corresponds to
the independent sampling property of the ESF;
its characterization shows that this distribution
provides the required partition. The same prop-
erty is also used in physics [26, 17].

Bartholomew [5] describes a simple model
of the spread of news throughout a population,
where each individual hears the news first ei-
ther from a source (e.g., a radio station) or
from someone who alrcady knows the news.
Individuals can be grouped into components,
each component consisting of onc individual
who first heard the news from the source to-
gether with all those individuals who first heard
it throvgh some chain deriving from this per-
son. The distribution of component number and
sizes is given by (3), where 0 is the ratio of
the rates at which individuals in the population
hear the news from the source and from other
individuals.
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