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To identify novel dynamic patterns of gene expression, we develop a sta-
tistical method to cluster noisy measurements of gene expression collected
from multiple replicates at multiple time points, with an unknown num-
ber of clusters. We propose a random-effects mixture model coupled with
a Dirichlet-process prior for clustering. The mixture model formulation al-
lows for probabilistic cluster assignments. The random-effects formulation
allows for attributing the total variability in the data to the sources that are
consistent with the experimental design, particularly when the noise level is
high and the temporal dependence is not strong. The Dirichlet-process prior
induces a prior distribution on partitions and helps to estimate the number
of clusters (or mixture components) from the data. We further tackle two
challenges associated with Dirichlet-process prior-based methods. One is ef-
ficient sampling. We develop a novel Metropolis–Hastings Markov Chain
Monte Carlo (MCMC) procedure to sample the partitions. The other is ef-
ficient use of the MCMC samples in forming clusters. We propose a two-step
procedure for posterior inference, which involves resampling and relabeling,
to estimate the posterior allocation probability matrix. This matrix can be di-
rectly used in cluster assignments, while describing the uncertainty in cluster-
ing. We demonstrate the effectiveness of our model and sampling procedure
through simulated data. Applying our method to a real data set collected from
Drosophila adult muscle cells after five-minute Notch activation, we identify
14 clusters of different transcriptional responses among 163 differentially ex-
pressed genes, which provides novel insights into underlying transcriptional
mechanisms in the Notch signaling pathway. The algorithm developed here
is implemented in the R package DIRECT, available on CRAN.

1. Introduction. We are interested in the dynamics of the transcriptional re-
sponse to activation of the Notch signaling pathway [Housden et al. (2013)]. Dur-
ing transcription, RNA molecules are produced using the DNA sequence of the
genes as templates, leading to the notion of these genes being “expressed.” Some
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of the RNA molecules, mRNA specifically, are subsequently translated into pro-
teins, which directly regulate all kinds of biological processes. The highly con-
served Notch signaling pathway mediates communication between neighbouring
cells. Located on the cell surface, the Notch protein receives signals from adjacent
cells and releases an intracellular protein fragment that, along with other proteins,
elicits changes in gene expression in the receiving cell. Critical to the normal de-
velopment of many organisms, the Notch signaling pathway is under active and
extensive investigation [see Bray (2006) for a review].

Using Drosophila as a model system, we aim to characterise patterns of the
transcriptional responses of the whole genome following a pulse of Notch acti-
vation [Housden et al. (2013)]. Previous studies have examined the changes in
transcription at a single time-point following Notch pathway activation [Jennings
et al. (1994), Krejci et al. (2009)]. However, it is unclear whether the regulated
genes can have different temporal profiles, and whether there are particular patterns
of up-regulation (increased expression) or down-regulation (decreased expression)
amongst the genes whose expression changes. To generate the data we analyse
here, Notch signaling was initiated in Drosophila adult muscle cells and stimulated
for a short pulse of 5 minutes, and mRNA levels were measured in these treated
cells relative to untreated cells, using microarrays for 4 biological replicates at
18 unevenly-spaced time points during the 150 minutes after activation [Housden
(2011), Housden et al. (2013); also see Section 5 for details on the experiment and
preprocessing of the data]. We aim to address the following questions for the 163
differentially expressed genes: (i) how many different expression patterns are there
and what are these patterns? and (ii) which genes exhibit what expression pattern?
These questions naturally call for a clustering approach to analyse these data.

However, there are several challenges associated with this data set. First, these
data are different from the conventional time series data. Time series often refer to
the measurements of a single subject over time. In the microarray experiment, a bi-
ological replicate refers to a population of cells, and the expression levels at any
time point are measured for a distinct sample of cells from the starting population.
Although the cells from the same biological replicate are typically assumed to be
homogeneous, the heterogeneity among cells is nonnegligible and contributes to
the noise in the data [Spudich and Koshland (1976), McAdams and Arkin (1997),
Elowitz et al. (2002)]. Second, since only a short pulse of Notch activation was ap-
plied, the level of (relative) expression, measured as log2-transformed fold change,
in our data is often not much different from 0 (Figure 1). Specifically, the mean
expression level across time points and across replicates is only 0.1 with a stan-
dard deviation of 0.5, leading to a signal-to-noise ratio of only ∼0.2. Meanwhile,
the median of the lag 1 autocorrelation across replicates is only 0.4 (interquartile
range: 0.2–0.6), indicating that the temporal dependence is weak. Third, existing
clustering software programs such as MCLUST [Fraley and Raftery (2002), Fraley
and Raftery (2006)] and SplineCluster [Heard, Holmes and Stephens (2006)] give
vastly different results (see Section 5 for detail).
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FIG. 1. Mean profiles of 163 significantly expressed genes [false discovery rate 10% by EDGE;
Storey et al. (2005)] over the time course of 18 time points. Each value is the mean (taken over the
four replicates) of log2 fold change in treated cells relative to untreated cells.

These scientific questions and the challenges in the data thus motivated the
clustering method we develop here. Our clustering method consists mainly of a
random-effects mixture model coupled with a Dirichlet-process prior. We propose
the random-effects model to tackle the high level of noise in the data that arises
from several sources. Under the random-effects model, we make use of the full
data, rather than reducing the data to the means across replicates, which may not be
accurate with this level of noise. Under this model, we also do not make many as-
sumptions about the underlying biological process, which is still largely unknown.
Novel patterns detected this way are unlikely to be the result of potentially inap-
propriate assumptions. The use of a Dirichlet-process prior enables us to estimate
the number of clusters directly from the data. Below we review existing relevant
work, which laid the foundation for our method.

Most clustering methods that are shown to be effective on time-course data
are model-based, with the distribution following a mixture of multivariate Gaus-
sian components [Fraley and Raftery (2002), Medvedovic and Sivaganesan (2002),
Medvedovic, Yeung and Burngarner (2004), Celeux, Martin and Lavergne (2005),
Beal and Krishnamurthy (2006), Fraley and Raftery (2006), Heard, Holmes and
Stephens (2006), Ma et al. (2006), Qin (2006), Zhou and Wakefield (2006), Lau
and Green (2007), Booth, Casella and Hobert (2008), Rasmussen et al. (2009),
McNicholas and Murphy (2010), Green (2010), Cooke et al. (2011)]. Differ-
ent methods take different approaches to modeling the mean vectors and covari-
ance structures. Several methods attempt to account specifically for the tempo-
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ral dependence by modeling the (prior) mean vector in terms of spline func-
tions [Heard, Holmes and Stephens (2006), Ma et al. (2006)] or as a random
walk [Zhou and Wakefield (2006)]. As for the covariance structure, some meth-
ods [Medvedovic and Sivaganesan (2002), Medvedovic, Yeung and Burngarner
(2004), Heard, Holmes and Stephens (2006), Qin (2006), Lau and Green (2007),
Green (2010)] assume independence across items and across time points a priori.
Both Fraley and Raftery (2006) and McNicholas and Murphy (2010) take a matrix
decomposition approach and consider various models for the covariance matrix by
constraining no or some decomposed terms to be identical across clusters. How-
ever, whereas Fraley and Raftery (2006) apply eigenvalue decomposition, which
is applicable also to data types other than time-course data, McNicholas and Mur-
phy (2010) use a modified Cholesky decomposition, which has connections with
autoregressive models and is thus specifically designed for time-course data. An-
other common approach to modeling the covariance structure is random-effects
models, which account for variability arising from different sources [Celeux, Mar-
tin and Lavergne (2005), Ma et al. (2006), Booth, Casella and Hobert (2008)]. We
take this approach in our clustering method. Indeed, with a random-effects mixture
model, we demonstrate that specific modeling of the temporal structure may not
be essential for clustering replicated time-course data.

Estimating the number of clusters, or mixture components, under a model-based
framework, has been a difficult problem. Several approaches exist, largely falling
into two categories: optimization for a single “best” partition and a fully Bayesian
approach that weights the partitions by their probabilities given the data. In the
optimization category, the penalised likelihood approach, using criteria such as the
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and
so on, has been used by Fraley and Raftery (2002), Celeux, Martin and Lavergne
(2005), Schliep et al. (2005), Ma et al. (2006) and McNicholas and Murphy (2010).
Heard, Holmes and Stephens (2006) in their program SplineCluster and Booth,
Casella and Hobert (2008) maximise the posterior probability of partitions given
the data. Arguing that the maximal posterior probability of partitions may be dif-
ficult to compute reliably and may not be representative, Lau and Green (2007)
suggest maximizing posterior loss, an approach followed in Green (2010). How-
ever, the main drawback with the optimization approach is that competing par-
titions with similar (penalised) likelihoods are simply ignored. Methods based
on optimization may also suffer from numeric instability, as our experience with
MCLUST [Fraley and Raftery (2002)] suggests (explained in Section 5). When
clustering is used as an exploratory data analysis tool to understand the heterogene-
ity in the data, it is often desirable and realistic to explore more than one partition
and to understand how and why the data support multiple competing partitions.
We therefore find the fully Bayesian approach more appealing with this rationale.
In this category, Zhou and Wakefield (2006) implemented the Birth-Death Markov
Chain Monte Carlo (BDMCMC) scheme initially developed by Stephens (2000a),
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which designs a birth-death process to generate new components and eliminate ex-
isting ones. Medvedovic and Sivaganesan (2002), Medvedovic, Yeung and Burn-
garner (2004), Beal and Krishnamurthy (2006), Qin (2006), Booth, Casella and
Hobert (2008) and Rasmussen et al. (2009) developed Markov Chain Monte Carlo
(MCMC) schemes under a Dirichlet-process prior. The Dirichlet-process prior,
a popular tool in nonparametric Bayesian statistics, can induce sparse partitions
among items [Ferguson (1973), Antoniak (1974)] and has been widely used in
analyses such as nonparametric density estimation [Escobar and West (1995), Fox
(2009)]. Here, we take the fully Bayesian approach and use a Dirichlet-process
prior to induce a prior distribution on partitions, which helps us to explore dif-
ferent numbers of clusters and to sample from partitions under each number. The
clustering obtained from the Bayesian approach is essentially an average of all
possible solutions weighted by their posterior probabilities.

However, two major challenges remain in the clustering methods under
the Dirichlet-process priors. One is efficient sampling. Many MCMC meth-
ods have been developed under Dirichlet-process priors for conjugate priors of
the parameters [such as those reviewed in Neal (2000)], restricting the choices
of priors. Alternative sampling methods have been developed, such as Gibbs
samplers designed for nonconjugate priors [MacEachern and Müller (1998)],
several Metropolis–Hastings (MH) samplers under the Chinese-restaurant rep-
resentation [Neal (2000)], split-merge sampling [Jain and Neal (2004), Jain
and Neal (2007)], another two-stage MH procedure under an implicit Dirichlet-
process prior [Booth, Casella and Hobert (2008)], retrospective sampling
[Papaspiliopoulos and Roberts (2008)] and slice sampling [Walker (2007), Kalli,
Griffin and Walker (2011)], both of which are developed under the stick-breaking
process representation. Several of these and related methods are reviewed recently
in Griffin and Holmes (2010). Here, we develop a novel MH sampler under the
Chinese-restaurant representation. Our MH sampler does not introduce additional
(auxiliary or latent) variables or tuning parameters. It also does not require separate
split and merge steps, but rather allows for dimension changes in a single step. In
addition, it is based on standard MH calculations and is therefore straightforward
to understand and easy to implement.

The other major challenge is posterior inference. Existing approaches
[Medvedovic and Sivaganesan (2002), Medvedovic, Yeung and Burngarner
(2004), Beal and Krishnamurthy (2006), Rasmussen et al. (2009), Dhavala et al.
(2010)] attempt to make use of the posterior “similarity” matrix, whose entries are
the posterior probability of allocating two items to the same cluster, by applying
linkage-based clustering algorithms to this matrix. Focusing on this matrix in effect
converts the original clustering problem into another one, while discarding other
valuable information in the MCMC samples. We propose a two-step posterior in-
ference procedure that involves resampling and relabeling to estimate the posterior
allocation probability matrix, which may be used more directly in forming clusters
and other inference.
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In this paper, we present our method DIRECT, the Dirichlet process-based
random-effects model as a clustering tool. We describe the random-effects mix-
ture model in Section 2 and the Bayesian inference in Section 3, which includes
a novel MH MCMC algorithm for sampling partitions under the Dirichlet-process
prior, as well as the two-step posterior inference procedure. We examine the per-
formance of our method through simulation studies in Section 4. We apply our
method to the time-course microarray gene expression from the Notch experiment
in Section 5. Compared with SplineCluster [Heard, Holmes and Stephens (2006)]
and MCLUST [Fraley and Raftery (2002), Fraley and Raftery (2006)], our method
appears to be more accurate and sensitive to subtle differences in different clusters,
in both simulation studies and the real application. In addition, the analysis of the
real data reveals several novel insights into the transcriptional dynamics after the
pulse of Notch activation. We summarise and discuss the features of our method
in Section 6.

2. Random-effects mixture model. Consider N genes measured at J time
points in each of the R replicates. Let Mijr , i = 1, . . . ,N , j = 1, . . . , J , r =
1, . . . ,R, be the measurement for the ith gene at the j th time point from the r th
replicate. The J time points may be unevenly distributed. We assume that there are
no missing data. We use a random-effects mixture model to describe the hetero-
geneity in replicated time-course data, and explain the details of the model below.

Following the standard mixture model formulation with a known number of
mixture components, K , we assume that data vectors

Mi = (Mi11, . . . ,Mi1R, . . . ,MiJ1, . . . ,MiJR)T

are independent and identically distributed realizations drawn from a mixture dis-
tribution with K components and a set of mixing proportions wk , k = 1, . . . ,K .
The superscript T represents “transpose” and ensures that Mi is a column vector.
The probability density function of Mi , denoted by f , can be written as a weighted
average:

f (Mi |�,�) =
K∑

k=1

wkgk

(
Mi |�k,�k),

where gk is the probability density function of the kth mixture component, and
� = (�1, . . . ,�K) and � = (�1, . . . ,�K) are parameters of the mixture dis-
tribution, with component-wise mean vector �k and covariance matrix �k , k =
1, . . . ,K . Whereas it is possible to define a cluster by more than one mixture com-
ponent, for presentation purposes we consider here the case where one mixture
component defines a cluster and use “mixture component” and “cluster” inter-
changeably. Let Zi denote the cluster membership for the ith gene. Then,

Pr(Zi = k|w,�,�) = wk,
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where w is the set of mixing proportions. Following the notation in Stephens
(2000a) and denoting the data by M = (M1, . . . ,MN), we define the posterior
allocation probabilities as Pr(Zi = k|M), i = 1, . . . ,N and k = 1, . . . ,K , which
form the posterior allocation probability matrix P of dimension N ×K . We aim to
estimate P as part of the inference and to form clusters based on the estimated P,
using, for instance, the most likely allocation.

Inspired by variance components approaches [Searle, Casella and McCul-
loch (2006)] and random-effects models frequently used in longitudinal stud-
ies [Dunson (2010)], we constrain the covariance matrix of each mixture compo-
nent, �k , by attributing the total variability to three sources: clustering, sampling
across multiple time points (or more broadly speaking, multiple experimental con-
ditions), and sampling a limited number of replicates. Whereas the first source of
variability is due to “grouping” of the genes, the latter two are defined by the de-
sign of the time-course experiment. If the ith gene is sampled from the kth mixture
component (i.e., Zi = k), the random-effects model can be written as follows:

Mijr |{Zi = k} = �k
j + φk

i + τ k
ij + εk

ijr ,(2.1)

where

E
(
Mijr |{Zi = k}) = �k

j ,

φk
i |

{
Zi = k,λk

φ

} ∼i.i.d. N
(
0, λk

φ

)
,

τ k
ij |

{
Zi = k,λk

τ

} ∼i.i.d. N
(
0, λk

τ

)
,

εk
ij |

{
Zi = k,λk

ε

} ∼i.i.d. N
(
0, λk

ε

)
.

In this formulation, �k
j represents the “true” value (fixed effect) at the j th time

point, φk
i the within-cluster random effect, τ k

ij the cross-experimental-condition

random effect and εk
ijr the replicate random effect. Here, the experimental con-

ditions are time points. We assume that random effects φk
i , τ k

ij and εk
ijr are inde-

pendent across clusters and of each other. Each of the three random effects has a
corresponding variability term: λk

φ is the within-cluster variability, λk
τ the cross-

experimental-condition variability, and λk
ε the residual variability. The three types

of variability are all component specific.
Given cluster membership Zi = k, replicated measurements of the ith gene, Mi ,

follow a multivariate normal distribution:

Mi |{Zi = k,�k, λk
φ, λk

τ , λ
k
ε

} ∼ind NJR

(
�k

agg,�
k
agg

)
,

which has aggregated mean vector �k
agg = (�kT

, . . . ,�kT
)T, where �k repeats R

times, and aggregated covariance matrix �k
agg whose entry is

Cov(Mijr ,Mij ′r ′) = λk
φ + λk

τ 1
(
j = j ′) + λk

ε1
(
j = j ′, r = r ′),(2.2)
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where 1(A) is the indicator function that takes value 1 if condition A is satisfied
and 0 otherwise. In addition, Mi and Mj , where i �= j , are independent of each
other.

Parameters of interest under this random-effects mixture model include the
number of mixture components, K , component-specific parameters �k , λk

φ , λk
τ

and λk
ε , where k = 1, . . . ,K , and posterior allocation probability matrix P of di-

mension N × K .

3. Bayesian inference.

3.1. The Dirichlet-process prior. As mentioned in Section 1, Dirichlet pro-
cesses help to partition the parameter space without prior knowledge of the num-
ber of partitions, K , and thus provide a coherent framework for directly estimating
K from data and for sampling in a parameter space of variable dimensions. Denote
the parameter of interest for each gene by γ i , which, in our case, may include a
mean vector �i and three terms of variability, namely, λφi , λτ i and λεi , such that

γ i = {�i , λφi, λτ i, λεi},
Mi ∼ F(γ i ), i = 1, . . . ,N,

where F represents a distribution, which is a multivariate normal distribution in
our case. We assume that γ is follow a random distribution G, which is in turn a
random draw from a (compound) Dirichlet process, denoted as follows:

γ i ∼ G,(3.1)

G ∼ DP(α,G0), α ≥ 0,(3.2)

with base distribution G0 (continuous in our case), which describes how values
in the space are generated, and concentration parameter α, which is nonnegative.
Note that γ is are identically distributed, but not necessarily independent. The de-
pendence among them under the Dirichlet process specifically refers to their values
being clustered, that is, some γ is may take on identical value.

Indeed, the Dirichlet process describes a mechanism by which clustered param-
eters γ i may be simulated. We can generate a realization for one of them, say, γ 1,
from G0. The value of γ 2 may be identical to γ 1, with probability 1/(1 + α), or
an independent realization also from G0 and different from γ 1, with probability
α/(1 + α). Generally, having generated n realizations, the value of the n + 1st
realization follows the following distribution [Antoniak (1974)]:

Pr(γ n+1 = γ |γ 1, . . . ,γ n,α)
(3.3)

=

⎧⎪⎪⎨
⎪⎪⎩

∑n
i=1 1(γ i = γ )

n + α
, γ ∈ {γ 1, . . . ,γ n},

α

n + α
, γ /∈ {γ 1, . . . ,γ n}.
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In other words, the probability of γ n+1 being identical to one of the existing values
is proportional to the number of times this value has already shown up. This sam-
pling process is also known as the Chinese restaurant process [reviewed in Pitman
(2006)], a useful representation for Neal (2000) to derive the Metropolis–Hastings
sampling procedures, which are explained in the next section.

The sampling distribution above induces a distribution on the partition of the N

values, γ 1, . . . ,γ N , with a random number of partitions, K . Specifically, the par-
tition distribution is with respect to the cluster memberships Zi , i = 1, . . . ,N , as
well as K [Antoniak (1974)]:

Pr(Z1, . . . ,ZN,K|α > 0) = �(α)

�(α + N)
αK

K∏
l=1

(Nl − 1)!,(3.4)

where Nl is the size of the lth cluster, and

Pr(Z1 = · · · = ZN,K = 1|α = 0) = 1.(3.5)

We use this distribution as the prior in our Bayesian inference.
As a measure of “concentration,” very small α leads to a small probability of

taking on a new value in the Dirichlet process, as equation (3.3) suggests, and
hence to the probability mass being concentrated on a few distinct values, as equa-
tions (3.4) and (3.5) suggest. As α → 0, γ is are identical, which corresponds to
a single draw from the base distribution G0. On the other hand, large α leads
to a large probability of taking on new values in the Dirichlet process of equa-
tion (3.3) and an appreciable probability for having a range of distinct values in
equation (3.4). As α → ∞, γ is are all different and form an independent and iden-
tically distributed sample from G0. Therefore, α effectively controls the sparsity
of partitioning (or clustering).

We note that equations (3.3)–(3.5) characterise the canonical Dirichlet process
with parameter α, denoted DP(α), for an arbitrary space, as Antoniak (1974) de-
fined it. The representation in expression (3.2), which we consider a compound
Dirichlet process, includes the additional information on how the elements of the
space arise: they are realizations of the base distribution G0.

3.2. A Metropolis–Hastings sampler for cluster memberships. The key step in
the MCMC algorithm is sampling partitions, specifically, cluster memberships Zi ,
under the Dirichlet-process prior. We develop a Metropolis–Hastings sampler that
allows nonconjugate priors for parameters and efficient mixing.

Similar to Neal (2000), we design the MH procedure to sample each Zi during
an MCMC update. Let the current value of Zi be z′, which, together with all the
other Zj , gives the current number of clusters as K = k′. We propose a new value
z∗ for Zi , which gives rise to the proposed value k∗ for K . Let ξ be the parameter
vector of interest for the random-effects mixture model under the Dirichlet-process
prior, such that

ξ = {
K,�1, . . . ,�K,λ1

φ, . . . , λK
φ ,λ1

τ , . . . , λ
K
τ , λ1

ε, . . . , λ
K
ε ,Z1, . . . ,ZN,α

}
.
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We accept the proposal with probability min(1,H), where H is the Hastings ratio
computed as follows:

H = π(Zi = z∗)
π(Zi = z′)

g(Zi = z′|Zi = z∗)
g(Zi = z∗|Zi = z′)

= Pr(Mi |Zi = z∗, ·)Pr(z1, . . . , z
∗, . . . , zN , k∗|α)

Pr(Mi |Zi = z′, ·)Pr(z1, . . . , z′, . . . , zN , k′|α)

g(z′|z∗)
g(z∗|z′)

(3.6)

= Pr(Mi |z∗, ·)
Pr(Mi |z′, ·)

Pr(z∗, k∗|z−i , α)

Pr(z′, k′|z−i , α)

g(z′|z∗)
g(z∗|z′)

,

where · refers to current estimates of parameters in ξ other than Zi and z−i denotes
the cluster memberships of all genes except for the ith one, which do not change
when we update Zi .

Under the Dirichlet-process prior, we can compute the conditional probability
Pr(z′, k′|z−i , α) as in Proposition 1:

PROPOSITION 1. Consider N values drawn from a Dirichlet process with
concentration parameter α ≥ 0. These values can be partitioned into K clusters,
where K is a random variable, with Zi , i = 1, . . . ,N , indicating the cluster mem-
bership. Then the following conditional probability holds:

Pr(Zi = z,K = k|Z−i = z−i , α)
(3.7)

=

⎧⎪⎪⎨
⎪⎪⎩

Nz − 1

N − 1 + α
, Zi is not in a singleton cluster,

α

N − 1 + α
, Zi is in a singleton cluster,

where Z−i with value z−i denotes the cluster memberships, excluding the ith gene,
and Nz is the size of the zth cluster.

PROOF. See the Appendix. �

Neal (2000) then proposed an MH procedure, using the conditional probability
in equation (3.7) as the proposal distribution g, which led to a simplified Hastings
ratio:

H = Pr(Mi |z∗, ·)
Pr(Mi |z′, ·) .(3.8)

The main problem with this MH sampler is slow mixing: because the probabil-
ity of a move is proportional to the size of the cluster, the Markov chain can be
easily stuck, especially when there exist one or a few large clusters. For example,
consider N = 200 and current clusters 1–3 of size 185, 10 and 5, respectively.
A gene currently allocated to cluster 1 may be much more similar to cluster 3,
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TABLE 1
Hastings ratio for four cases under the proposed Metropolis–Hastings sampler for cluster

membership Zi with current value z′ and proposed value z∗. k∗ and k′ are the number of clusters
after and before the proposed move, respectively

Current cluster Proposal
a singleton an existing label k∗ − k′ Hastings ratio

1 Yes Yes −1 Pr(Mi |z∗,·)
Pr(Mi |z′,·)

Nz∗
α

k′
k′−1

2 Yes No 0 Pr(Mi |z∗,·)
Pr(Mi |z′,·)

3 No Yes 0 Pr(Mi |z∗,·)
Pr(Mi |z′,·)

Nz∗
Nz′−1

4 No No 1 Pr(Mi |z∗,·)
Pr(Mi |z′,·)

α
Nz′−1

k′
k′+1

implying a high likelihood ratio as in the simplified Hastings ratio (3.8). However,
the probability of proposing such a favorable move from cluster 1 to cluster 3 is
only 5/(199+α), where α is usually small to induce a parsimonious partition. The
probability of moving a gene to a previously nonexistent cluster is α/(199 + α),
which can be even smaller.

We develop a novel MH MCMC strategy to deal with poor mixing of Neal’s MH
sampler. Our proposal distribution for a cluster membership is discrete uniform on
the integer set from 1 to k′ + 1, excluding the current cluster the gene belongs
to, where k′ is the number of existing clusters. This proposal distribution forces
the proposed cluster membership always to be different from the current one, and
makes the Markov chain move to a new or small cluster more easily. Whether
to accept the proposal or not depends on the Hastings ratio, which needs to be
recalculated as in Proposition 2.

PROPOSITION 2. For cluster membership Zi with current value z′, if proposal
z∗ is generated from a discrete uniform distribution over the integer set {1, . . . , z′−
1, z′ + 1, . . . , k′ + 1}, where k′ is the current number of clusters, then the Hastings
ratio takes on values as listed in Table 1, where four cases, including a generation
of a new cluster and elimination of an existing cluster, are considered.

PROOF. The proof of this proposition can be found in Section 1 of the supple-
mental material [Fu et al. (2013)]. �

3.3. Other prior distributions. The base distribution G0 specifies the prior on
the cluster mean vector �k , each of the three types of variability λk

φ , λk
τ and λk

ε , for
all k. We use a uniform distribution on [0, u] as the prior for the λs, and experiment
with different values of the upper bound u. Values of u are guided by the data.
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We experiment with three options for �k : (i) a zero vector of length J , where J

is the number of time points. This is a natural choice for our data considering that
the relative gene expression level on the log2 scale is not much different from 0;
(ii) a realization generated from an Ornstein–Uhlenbeck (OU) process [Merton
(1971)]. An OU process has four parameters: the starting value, the mean and
variation of the process, and the mean-reverting rate. We therefore specify the nor-
mal distribution of the starting value, and the normal distribution of the process
mean, the uniform distribution of the process variation, and the gamma distribu-
tion for the mean-reverting rate; and (iii) a realization generated from a Brownian
motion with drift. This process has three parameters: the starting value, the mean
and the variation [Taylor and Karlin (1998)]. Similarly, we specify the normal dis-
tribution of the starting value, and the normal distribution of the process mean, and
the uniform distribution of the process variation. Values of the parameters in these
distributions are again guided by the summary statistics of the data.

For the concentration parameter α, we experiment with two options: (i)
a Gamma prior with the shape and rate parameters, which can be updated by a
Gibbs sampler, as described in Escobar and West (1995); and (ii) a uniform prior
on [0, u′], where u′ can be different values, which is updated by an MH sampler
[see Section 2 of the supplemental material; Fu et al. (2013)].

3.4. The MCMC algorithm for ξ . The complete MCMC algorithm for sam-
pling ξ consists of two major steps in each iteration:

Step 1. For each i from 1 to N , update Zi using the MH sampler described
above;

Step 2. Given the partition from Step 1, update other parameters in ξ using
Gibbs or MH samplers. Details of this step are in Section 2 of the supplemental
material [Fu et al. (2013)].

If the total number of MCMC iterations is S, then the time complexity of this
MCMC algorithm is roughly O(SJR(4N + K)), where 4 comes from the steps
required in the MH sampler described above, such as generating a proposal, com-
puting the likelihoods and the Hastings ratio.

3.5. Two-step posterior inference under the Dirichlet-process prior. For prob-
abilistic clustering, we would like to estimate the posterior allocation probability
matrix P of dimension N × K with entries pik = Pr(Zi = k|M), each of which
is the probability of the ith gene belonging to the kth cluster given the data. This
matrix is not part of the parameter vector ξ and is therefore not sampled during
MCMC. Below, we propose resampling followed by relabeling to estimate P from
H MCMC samples of ξ , while dealing with label-switching [Stephens (2000b)]:

1. Resampling: Let Q(h) of dimension N × K(h), whose entries are q
(h)
ik , h =

1, . . . ,H , be the posterior allocation probability matrix from the hth MCMC sam-
ple with arbitrary labeling. The resampling step builds upon an alternative repre-
sentation of the Dirichlet process as an infinite mixture model [Neal (2000), Green
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(2010)]. Specifically, for a Dirichlet process defined in equations (3.1) and (3.2)
with concentration parameter α and base distribution G0, an infinite mixture model
representation corresponds to taking the limit in the finite mixture model below,
letting K → ∞ and α∗ → 0, such that α∗K → α [Green (2010)]:

γ ∗
k ∼ G0, k = 1, . . . ,K,

(w1, . . . ,wK) ∼ DirichletK
(
α∗, . . . , α∗)

,

Pr
(
γ i = γ ∗

k

) = Pr(Zi = k) = wk.

Conditional on the hth MCMC sample, the mixture model for the data becomes
finite:

(
w

(h)
1 , . . . ,w

(h)

K(h)

) ∼ DirichletK(h)

(
α(h), . . . , α(h)),

Pr
(
Z

(h)
i = k|w(h)) = w

(h)
k ,

Mi |{Z(h)
i = k,�

(h)
k ,�

(h)
k

} ∼ NJR

(
�

(h)
k ,�

(h)
k

)
.

Then, the posterior probability q
(h)
ik can be sampled from the following distribution

using the hth MCMC sample ξ (h):

q
(h)
ik = Pr

(
Z

(h)
i = k|M, ξ (h))

∝ NJR

(
Mi |�(h)

k ,�
(h)
k

)
w

(h)
k

∝ NJR

(
Mi |�(h)

k ,�
(h)
k

)
DirichletK(h)

(
w

(h)
k |α(h), . . . , α(h)),

where mixing proportion w
(h)
k is generated from a (conditionally) finite Dirichlet

distribution. The time complexity of this step is roughly O(H(NJR + K)).
2. Relabeling: Labels in Q(h), h = 1, . . . ,H , of dimension N × K(h), are ar-

bitrary: for example, cluster #2 in Q(s) does not necessarily correspond to cluster
#2 in Q(t), where s �= t . To deal with arbitrary labeling (also known as “label-
switching”), we apply the relabeling algorithm from Stephens (2000b) (Algo-
rithm 2 in that paper) to matrices Q to “match” the labels across MCMC sam-
ples. The dimension of Qs are set to be N × Kmax, where Kmax is the maximum
number of clusters from all recorded MCMC samples. We fill in matrices of lower
dimensions with 0s such that all Qs have the same dimension. Stephens’ relabeling
algorithm then finds a set of permutations, one for the columns of each Q, and the
resulting matrix P, such that the Kullback–Leibler distance between P and column-
permuted Qs is minimised. Details of our application, which also implements the
Hungarian algorithm [aka Munkres assignment algorithm; Kuhn (1955), Munkres
(1957)] for minimisation can be found in Section 3 of the supplemental material
[Fu et al. (2013)]. If L is the number of iterations for the relabeling step to achieve
convergence, then the time complexity of this step is roughly O(LH(NJR+K3)),
as the time complexity of the Hungarian algorithm is O(K3) [Munkres (1957)].
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4. Simulations. We investigate the performance of our MH MCMC algorithm
and compare the clustering performance of our method with MCLUST [Fraley and
Raftery (2006)] and SplineCluster [Heard, Holmes and Stephens (2006)] on data
sets simulated from multiple settings, each with different values of variabilities.
The size of each data set is comparable to the number of differentially expressed
genes we identify from the real time-course data, which we introduced in Section 1
and will describe in detail in Section 5: the number of items N is between 100
and 200, the number of experimental conditions (time points) J is 18, and the
number of replicates R is 4. The last two values are identical to those of the real
data. However, to keep track of the parameters for individual clusters, we consider
only 6 clusters instead of the 14 or 19 clusters our method infers for the real data
(Section 5).

For each cluster, we simulated data from a multivariate normal distribution.
Specifically, we generated the mean vector from an Ornstein–Uhlenbeck (OU)
process with three parameters, which are the initial value, the overall mean and the
mean-reverting rate. We constructed the covariance matrix as specified in equa-
tion (2.2) with true values of the three types of variability (Table 2). In simu-
lations #1 and #2, all three types of variability are nonzero, with simulation #2
having more extreme within-cluster variability in some clusters. In particular, the
level of different types of variability in simulation # 1 is largely comparable to that
of 6 of the 14 clusters our method infers for the real time-course data (Section 5).
In simulations #3 and #4, only the residual variability is nonzero, with simulation
#4 having high variability in some clusters. The simplified covariance structure
in the latter two simulations has been adopted in SplineCluster and other meth-
ods [Medvedovic and Sivaganesan (2002), Medvedovic, Yeung and Burngarner
(2004), Qin (2006)]. Since SplineCluster and MCLUST allow only one replicate
per item, we average over the replicates in simulated data and use these sample
means as input for SplineCluster and MCLUST, and use default settings in both
programs. Also note that neither DIRECT nor MCLUST assumes temporal depen-
dence, whereas SplineCluster does.

Table 3 summarises the performance of DIRECT and compares it to that of
SplineCluster and MCLUST. Correctly inferring the number of clusters is key to
the overall performance: when the inferred number of clusters is close to the truth,
all three methods manage to allocate most of the items to the right clusters and
thus achieve a high corrected Rand Index, and vice versa (Tables 3 and 4). Below
we discuss the performance of each method in turn.

DIRECT recovers the true clustering consistently well in all the simulations, ob-
taining high accuracy of cluster assignments of individual items, which is reflected
in the high corrected Rand Index (Table 3). Accuracy and consistency come from
recovering the true number of (nonsingleton) clusters, as indicated in Table 4. This
good performance persists even when the data were simulated under the “wrong”
model (simulations #3 and #4). However, DIRECT tends to produce singleton clus-
ters, when those singletons are simulated from clusters of high variation (Table 4).
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TABLE 2
Key parameter values used in four sets of simulations. Ten data sets were simulated under each

setting. The true number of clusters is 6. True standard deviations of the three types of variability
(within-cluster variability, cross-experimental-condition variability and residual variability) are
given. Size refers to the number of items simulated for each cluster. Standard deviations used in

simulation #1 are close to some of the clusters inferred for the real time-course data

Standard deviation

Within-cluster Expt. cond. Resid.
Simulations (reps) K

√
λφ

√
λτ

√
λε Size

#1 (10) 6 0.05 0.01 0.2 80
0.1 0.05 0.2 20
0.1 0.05 0.2 10
0.1 0.05 0.1 10
0.2 0.1 0.2 70
0.5 0.1 0.6 10

#2 (10) 6 0.01 0.5 0.5 20
0.1 0.5 0.5 20
0.1 0.5 0.5 20
0.5 0.5 0.5 20
0.5 0.5 0.5 20
1 0.5 0.5 20

#3 (10) 6 0 0 0.26 80
0 0 0.35 20
0 0 0.35 10
0 0 0.25 10
0 0 0.50 70
0 0 1.20 10

#4 (10) 6 0 0 1.01 20
0 0 1.1 20
0 0 1.1 20
0 0 1.5 20
0 0 1.5 20
0 0 2.0 20

MCLUST achieves high accuracy in three out of the four simulations. However,
its performance is much worse than DIRECT and SplineCluster in simulation #1:
MCLUST tends to infer a higher number of clusters with large variability (Table 4).

In contrast, SplineCluster tends to infer fewer clusters for more heterogeneous
data. The dependence structure in simulations #3 and #4 is in fact employed in
SplineCluster. However, while SplineCluster infers the number of clusters cor-
rectly and allocates the items correctly in simulation #3, it infers a much lower
number of clusters in simulation #4, which leads to a much lower corrected Rand
Index (Tables 3 and 4). The heterogeneity in simulation #4 (as well as in simula-
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TABLE 3
Comparison of methods on simulated data in terms of the corrected Rand Index [Hubert and Arabie
(1985)] to assess clustering accuracy: the higher the corrected Rand Index, the closer the inferred

clustering is to the truth. Each cell displays the mean (standard deviation in parentheses) of the
Rand Index over the 10 data sets simulated under each setting. Highest values (accounting for

variability) in each scenario are highlighted

Simulations True K DIRECT SplineCluster MCLUST

#1 6 0.99 (0.01) 0.84 (0.02) 0.60 (0.13)
#2 6 0.69 (0.08) 0.47 (0.10) 0.71 (0.06)
#3 6 0.99 (0.01) 1.00 (0.00) 1.00 (0.00)
#4 6 0.95 (0.04) 0.47 (0.00) 0.97 (0.03)

tion #2) is too high for SplineCluster to distinguish different clusters, it therefore
settles on a more parsimonious clustering than the truth.

5. Application to time-course gene expression data.

5.1. Experimental design and data preprocessing. As explained in the Intro-
duction, gene expression data were collected using two-colour microarrays from
four independent biological replicates of Drosophila adult muscle cells at 18
unevenly-spaced time points (in minutes): 0, 5, 10, 15, 20, 25, 30, 35, 40, 50,
60, 70, 80, 90, 100, 110, 120, 150, where 0 is the start of a 5-minute treatment of
Notch activation [Housden (2011)]. Similar to other gene expression data, the ex-
pression measured here is in fact the relative expression of treated cells to control
cells, evaluated as the log2 fold change. The two colours of the microarray were
used to distinguish treated and control cells. We applied quantile normalization to
the distributions of spot intensities of the two colours across all 18 × 4 = 72 ar-
rays. Mapping of the oligonucleotide probes on the microarray to the Drosophila

TABLE 4
Comparison of methods on simulated data in terms of the number of nonsingleton (NS) clusters and

the number of singleton (S) clusters inferred under each method. Each cell displays the mean
(standard deviation in parentheses) number of clusters over the 10 data sets simulated under each

setting. The NS number closest to the truth (i.e., 6) in each scenario is highlighted

DIRECT SplineCluster MCLUST

Simulations True K NS S NS S NS S

#1 6 6.2 (0.4) 1.7 (1.1) 7.3 (0.5) 0.0 (0.0) 12.0 (2.2) 0.0 (0.0)
#2 6 7.5 (1.4) 19.6 (7.2) 3.8 (0.6) 0.2 (0.4) 7.7 (1.1) 0.1 (0.3)
#3 6 6.2 (0.6) 0.6 (0.5) 6.0 (0.0) 0.0 (0.0) 6.0 (0.0) 0.0 (0.0)
#4 6 6.1 (0.3) 2.8 (2.2) 3.0 (0.0) 0.0 (0.0) 6.0 (0.0) 0.0 (0.0)
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genome followed FlyBase release 4 and earlier for Drosophila melanogaster. Af-
ter the initial quality screen we retained 7467 expressed genes, that is, the absolute
expression levels of genes in the treated and control cells are detectable by the
microarray. These retained genes are about half of the Drosophila genome. We
further imputed missing values in the temporal profiles of these genes [see Sec-
tion 4 of the supplemental material; Fu et al. (2013)]. These data were challenging
to analyse, as the (relative) expression levels of most of these genes were close
to 0. To identify differentially expressed (DE) genes over the time course, we ap-
plied EDGE [Storey et al. (2005)] to identify 163 such genes at a false discovery
rate (FDR) of 10% and 270 genes at an FDR of 25%. However, even among the
163 DE genes, the (relative) expression levels are generally very low (Figure 1).

5.2. Results from DIRECT. We ran DIRECT multiple times on both data sets
with different initial values. Each run consisted of 10,800 iterations, including 20%
burn-in. MCMC samples were recorded every 54th iteration. These runs each took
about 8 hours for 163 genes and 12 hours for 270 genes on 2.3 GHz CPUs, includ-
ing approximately 1 hour for resampling and a few minutes for relabeling. Since
the results were consistent across runs, we report below the results from only one
run for each data set, averaging the inferred posterior allocation probability matrix
across MCMC iterations and defining clusters in terms of the most likely alloca-
tions a posteriori.

Our DIRECT method identified 14 clusters for the 163 genes. Clusters differ
in both the mean vectors (Figure 2) and the three types of variability (Figure 3).
The cluster means differ in the magnitude and timing of the maximal or minimal
expression. Because more genes than those allocated to a cluster may have been
used for inference of the mean vector, the inferred mean vectors (represented by
the coloured curves) are not necessarily located amid the profiles of the genes in
that cluster (e.g., cluster # 10, which shows a rather extreme example). In terms
of variability, the inferred clusters are homogeneous visually and numerically: the
within-cluster variability is small for most inferred clusters, whereas in all clusters
the majority of the variability left unexplained by the mixture model is the residual
variability, which is the variability between replicates (Figure 3). In several clus-
ters, such as #9, #12 and #14, the estimated within-cluster variability in Figure 3
may seem higher than the clustered mean profiles would indicate (Figure 2). This is
because, as mentioned earlier, our probabilistic clustering method estimated these
variability terms using more genes than those assigned to the corresponding clus-
ter based on the highest posterior allocation probability. Including these additional
genes may increase the within-cluster variability.

Whereas the mean profile plot (Figure 2) and the variability plot (Figure 3) visu-
alise different features of inferred clusters, they do not display the uncertainty and
complexity in inferred clustering. For example, gene CG6018, inferred to belong
to cluster #3 (with peak expression appearing around 100 min; very late response)
with probability 0.51, also has a substantial probability of 0.46 to be associated
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FIG. 2. Mean profiles (gray and black lines) of individual genes in clusters inferred under our
DIRECT method for the 163 significantly expressed genes. Each pair of plots, starting from the top
left panel, display the same range on the vertical axis. Each coloured line is the posterior mean
estimate of the cluster-specific mean vector. Because more genes than those allocated to a cluster
may have been used for inference of the mean vector, the coloured curves (inferred mean vectors)
are not necessarily located amid the profiles of the genes in that cluster (e.g., cluster #10, which
shows a rather extreme example). Genes with black lines are analysed in more detail and presented
in Figure 4. In particular, the three genes with black lines in cluster #11 are also allocated to cluster
#10 or cluster #5 with a similar posterior probability (see Figure 4).

with cluster #7 (with peak expression appearing between 50 and 100 min; late re-
sponse); see Figure 4. Indeed, the replicated profiles of this gene show similarity to
the cluster mean profiles of both clusters. Our inference indicates that the temporal
profile of CG6018 is better described by a two-component mixture distribution,
sharing features with both clusters. In contrast, the profiles of genes Cecropin C
(or CecC) and pebbled (or peb) can be adequately represented by one multivariate
normal component (Figure 4). Three genes, CG10080, CG12014 and CG17508,
are better described by a three-component mixture distribution, that is, their ex-
pression profiles share features with three clusters (Figure 4).

We apply principal components analysis (PCA) to the posterior allocation prob-
ability matrix to visualise the uncertainty and complexity in clustering. Figure 5
shows the scores of the probability matrix based on the first two principal com-
ponents. Since each row of the probability matrix represents the distribution of
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FIG. 3. Posterior median estimates of standard deviations from our DIRECT program for the three
types of variability in each inferred mixture component for the 163 significantly expressed genes.
Colours and numbering match those in Figure 2.

cluster allocation for an individual gene, the PCA plot displays the positions of in-
dividual genes relative to their allocated clusters and to other clusters. Genes with
similar posterior allocation probabilities are located next to each other. Specifi-
cally, most of the genes are allocated to a single cluster with probability above 0.8
and stay close to each other in the same cluster on the PCA plot. On the other hand,
genes associated with multiple clusters each with a substantial probability are lo-
cated in between those clusters. For example, the aforementioned gene CG6018 is
positioned between clusters #3 and #7 on this plot.

To examine the sensitivity of our method to specification of the priors, we ex-
perimented with different options regarding the priors described in Section 3.3.
Specifically, we considered values of 1 and 2 for the upper bound u in the uni-
form prior for the variability parameters λs, considering that the overall standard
deviation in the data is 0.5. We tried all the three options for generating the mean
vectors. We computed summary statistics from the data to use as the parameters
in the OU process and Brownian motion. For example, we used the sample mean
and standard deviation of the data at 0 min as the mean and standard deviation,
respectively, of the normal distribution we assume for the starting values of the
OU process or the Brownian motion. We also compared the Gibbs and the MH
samplers for the concentration parameter α. These different choices turned out not
to have much impact on the results.
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FIG. 4. Replicated and mean temporal profiles, as well as posterior allocation probabilities, of six
genes from the 163 gene set. These genes correspond to the black lines in Figure 2. For each gene, the
top plot shows the replicated (coloured) and mean (black) temporal profiles. Colouring here indicates
replicates rather than clustering. The bottom plot shows the inferred posterior probabilities (vertical
lines) of allocating the corresponding gene to a cluster (or mixture component). The lengths of the
vertical lines sum up to 1 in each of these three plots.

To examine the sensitivity of our method to changes in the data, we applied
DIRECT also to the larger data set of 270 genes, identified at an FDR of 25% by
EDGE. DIRECT identified 19 clusters for this larger data set [Figures 1–3 in the
supplemental material; Fu et al. (2013)]. The cluster allocation is similar to that
for the 163 genes, with the additional 107 genes allocated to most of the clusters
identified for the 163 genes [Figures 1–3 in the supplemental material; Fu et al.
(2013)].

5.3. Biological implications. The inferred clustering suggests roughly three
stages of gene expression in response to a pulse of Notch activation (Figure 2): be-
fore 50 min (early response), between 50 and 100 min (late response), and around
and after 100 min (very late response). Clusters 9 and 12 showing early transcrip-
tional responses contain most of the known target genes, that is, Notch has a direct
impact on the transcriptional changes of these genes. Cluster 7 showing late re-
sponses also contains 3–5 known targets [Krejci et al. (2009)], but approximately
10 other genes in this cluster may also be Notch targets. Genes in other late or very
late response clusters may be Notch targets as well. Together with our collabora-
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FIG. 5. PCA plot of the posterior allocation probability matrix for 163 genes. These colours match
those in Figures 2 and 3. Six arrows point to the six genes also highlighted in Figure 2 and examined
in Figure 4.

tors, we analysed data from additional experiments to examine whether this is the
case [Housden et al. (2013)]. Furthermore, it is known that Notch generally pro-
motes transcription rather than represses it, and that the early-upregulated genes in
cluster 9 are strong repressors. Our clustering therefore suggests unknown, com-
plex regulation mechanisms involving interactions between different clusters of
genes. With additional experiments, Housden et al. (2013) investigated possible
transcriptional regulation mechanisms and identified a feed-forward regulation re-
lationship among clusters 9, 6 and 7.

5.4. Results from SplineCluster and MCLUST. For comparison, we ran
SplineCluster and MCLUST on the two real data sets, using the average profiles
and the default settings (Table 5). SplineCluster inferred only 7 clusters for both
data sets, with the inferred clusters exhibiting a much higher level of heterogene-
ity than under our DIRECT method [Figures 4–5 in the supplemental material;
Fu et al. (2013)]. This result is consistent with its performance on simulated data:
SplineCluster also tends to infer a lower number of clusters in case of high het-
erogeneity (Section 4 and Table 4). MCLUST inferred 15 clusters for 163 genes,
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TABLE 5
Numbers of clusters estimated by three clustering methods: DIRECT,

SplineCluster and MCLUST for genes identified by EDGE [Storey
et al. (2005)] to be differentially expressed over the time course

No. of inferred clusters

163 Genes 270 Genes
(FDR 10%) (FDR 25%)

DIRECT 14 19
SplineCluster 7 7
MCLUST 15 2

which is comparable to our DIRECT method [Figures 6 and 8 in the supplemen-
tal material; Fu et al. (2013)]. However, it inferred only 2 clusters for 270 genes
and a different covariance model [Figures 7 and 9 in the supplemental material;
Fu et al. (2013)]. This sensitivity of clustering to the relatively minor change in
the data may have arisen from MCLUST trying to simultaneously select the num-
ber of clusters and the covariance model. Selection of the covariance model adds
another layer of complexity to the problem of clustering, particularly when none
of the different covariance models considered by MCLUST is compatible with
the experimental design. The uncertainty in the covariance model selection may
also explain the particularly high variability in the inferred number of clusters for
simulated data in simulation #1 (Table 4).

6. Discussion. In this paper we developed DIRECT, a model-based Bayesian
clustering method for noisy, short and replicated time-course data. We imple-
mented this method in the R package DIRECT, which may be downloaded from
CRAN (http://cran.r-project.org/web/packages/). We also applied this method to
analyse the time-course microarray gene expression levels following Notch acti-
vation in Drosophlia adult muscle cells. Our analysis identified 14 clusters in 163
differentially expressed genes and assigned probabilities of cluster membership for
each gene. The clustering results indicate three time periods during which genes
attain peak up- or down-regulation, which was previously unknown, and suggest
possibilities for the underlying mechanisms of transcription regulation that may
involve interactions between genes in different clusters. Hypotheses on the biolog-
ical mechanisms are further investigated in Housden et al. (2013). Here we discuss
several additional aspects of the clustering method.

Our method has four main features. First, the random-effects mixture model de-
composes the total variability in the data into three types of variability that arise
from clustering (λφ), from sampling across multiple experimental conditions (λτ ),
and from sampling a limited number of replicates (λε). This variance decompo-
sition regularises the covariance matrix with constraints that are consistent with

http://cran.r-project.org/web/packages/
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the experimental design. It is simultaneously parsimonious and identifiable for the
replicated data: the replicated profiles at multiple time points of a single gene are
already informative for λτ and λε , and having at least 2 genes in a cluster makes λφ

estimable. Second, our method uses the Dirichlet-process prior to induce a prior
distribution on clustering as well as the number of clusters, making it possible to
estimate directly both unknowns from the data. Third, we have developed a novel
Metropolis–Hastings MCMC algorithm for sampling under the Dirichlet-process
prior. Our MH algorithm allows the use of nonconjugate priors. It is also effi-
cient and accurate, as simulation studies demonstrate. Fourth, our method infers
the posterior allocation probability matrix through resampling and relabeling of
the MCMC samples. This probability matrix can then be used directly in forming
clusters and making probabilistic cluster allocations. Simulation studies and ap-
plication to real data show that DIRECT is sensitive enough to variability in the
data to identify homogeneous clusters, but not too sensitive to minor changes in
the data.

Several other model-based clustering methods construct their models along
similar lines [Celeux, Martin and Lavergne (2005), Ma et al. (2006), Zhou and
Wakefield (2006), Booth, Casella and Hobert (2008)]. In fact, our model in equa-
tion (2.1) coincides with the random-effects model E3 in Celeux, Martin and
Lavergne (2005). However, those authors decided to focus on a slightly simpler
model, which is similar to equation (2.1) but without the within-component ran-
dom effects φk

i . They based their decision on the nearly identical likelihoods of the
two models for simulated data. Ma et al. (2006) and Zhou and Wakefield (2006)
did not deal with replicated data and included in their model only two types of
variability: the within-cluster variability and the variability due to multiple time
points. Similar to us, Booth, Casella and Hobert (2008) worked with replicated
time-course data and used random effects to account for different types of noise,
but their partition of the total variability is not based on the experimental design
and is therefore much less straightforward. Specifically, they allowed for depen-
dence among different items in the same cluster but did not explicitly account for
the random effect due to time (or experimental condition).

Note that our DIRECT method does not account for the temporal structure,
but rather focuses on modeling the covariance matrix. This approach is similar to
MCLUST, which applies eigenvalue decomposition to the covariance matrix and
considers various constraints on the decomposed covariance matrix (i.e., whether
the shape, orientation or volume of the covariance matrix is identical across mix-
ture components), although the constraints considered in MCLUST are not based
on any experimental design. The good performance of our method on both sim-
ulated and real data, and of MCLUST in several cases, suggests that accounting
for the temporal structure in the mean vectors, such as via splines functions as in
SplineCluster or via Gaussian processes as in Zhou and Wakefield (2006) and oth-
ers, may not be necessary. We also followed the approach in Zhou and Wakefield
(2006) and modeled the mean vector of each mixture component as a Brownian
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motion (with drift) and, extending this idea, as an Ornstein–Uhlenbeck process.
The clustering results such as the inferred number of clusters and allocation of in-
dividual genes did not change much, because these approaches impose the tempo-
ral structure on the mean vector: conditioning on the correct clustering, the data are
directly informative of the cluster mean, a main parameter of interest. Incidentally,
DIRECT is applicable also in more general cases of multiple experimental condi-
tions, where dependence among conditions is nonexistent, unclear or unknown.

Similar to other MCMC methods, our DIRECT method does not aim to optimise
the runtime. Whereas MCLUST and SplineCluster, both non-MCMC methods,
took only seconds or at most minutes to run on the simulated and real data here,
we ran DIRECT for hours to ensure the consistency in results across different runs,
which indicated that the Markov chain had mixed well.

We have used only the one-parameter Dirichlet-process prior in our method.
The concentration parameter in the Dirichlet-process prior simultaneously con-
trols the number of clusters as well as the size of each individual cluster. The prior
has the tendency of creating clusters of very different sizes. The posterior infer-
ence to generate the posterior allocation probability matrix is therefore critical to
balance out the unevenness: although certain clusters may be very small or very
big in a single iteration, items allocated to these tiny clusters are likely allocated
to other, possibly larger, clusters over a sufficient number of MCMC iterations.
Nonetheless, as pointed out by the Associate Editor and an anonymous reviewer,
other exchangeable priors, such as the two-parameter Dirichlet process [aka the
Pitman-Yor process; Pitman and Yor (1997)] and many other extensions of the
Dirichlet process reviewed in Hjort et al. (2010), may also be adopted under our
framework. Indeed, these other exchangeable priors may offer more flexibility and
suggest an important direction to extend our current work.

Under our and Neal (2000)’s MH MCMC algorithms, the Markov chain is con-
structed for the cluster memberships of individual items. Generation of a new
cluster and elimination of an existing cluster are implied rather than enforced.
In contrast, reversible-jump MCMC [Richardson and Green (1997)] and birth-
death MCMC [Stephens (2000a)] enforce changes in dimensions by designing
the MCMC moves around the number of clusters. Their strategy may not be ef-
ficient for clustering multivariate data, because even a fixed number of clusters
may correspond to a large number of possible partitions and a large space of the
cluster-specific parameter values. For clustering it seems more sensible for the
Markov chain to move to the neighbourhood of the “correct” number of clusters
and to fully explore the parameter space in this neighbourhood, as under Neal’s
approaches and under our method.

APPENDIX: PROOF OF PROPOSITION 1

We use the joint distribution of clustering and the number of clusters given in
equation (3.4) for derivation. Let K−i be the number of clusters when the ith gene
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is excluded. Then,

Pr(Zi = z,K = k|Z−i = z−i , α)

= Pr(Z = z,K = k|α)

Pr(Z−i = z−i ,K−i = k−i |α)

= �(α)/�(α + N)αk ∏k
l=1(Nl − 1)!

�(α)/�(α + N − 1)αk−i
∏k−i

s=1(Ns − 1)!

=

⎧⎪⎪⎨
⎪⎪⎩

Nz − 1

N − 1 + α
, Zi is not in a singleton cluster,

α

N − 1 + α
, Zi is in a singleton cluster.

Alternatively, Neal (2000) derived the above result first under the finite mixture
model, treating K as a constant, and then letting K → ∞.
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