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1 Introduction
Technological advances in molecular biology have made it possible to survey
DNA sequence variation in natural populations. These data include restriction
fragment length polymorphisms, microsatellite repeats, single nucleotide poly-
morphisms and complete DNA sequences of particular loci; cf. Chapter 2 of
Hartl and Jones (2001). The analysis and interpretation of the patterns of varia-
tion seen in such data is complicated by the fact that the sampled chromosomes
share a common ancestry, thus making the data highly dependent, for exam-
ple a mutation appearing in an ancestor is carried by all descendants of that
ancestor. To make matters worse, the nature of this common ancestry is not
known precisely and therefore needs to be modeled. Since the pioneering work
of Kingman (1982), Tajima (1983) and Hudson (1983), population geneticists
have used coalescent models as a stochastic description of the ancestry of a sam-
ple of chromosomes, and there is now an extensive literature on theory and
inference for such models. See for example Hudson (1990), Donnelly and Tavaré
(1995), Nordborg (2001) and Stephens (2001).

One aspect of the theory that has received a lot of attention concerns the
age of mutations. For historical overviews, see Watterson (1996) and Slatkin
and Rannala (2000). The ages of mutations are of interest to human geneticists
trying to map disease mutations using linkage disequilibrium methods. More
on this aspect can be found in Nordborg and Tavaré (2002). Kimura and Ohta
(1973) studied the age of a mutation known to have a certain frequency in a
population using diffusion methods, and these results were recast in the coales-
cent framework by Griffiths and Tavaré (1998, 1999), Wiuf and Donnelly (1999),
Stephens (2000) and Wiuf (2002). These authors also studied the age of a mu-
tation observed to have a given frequency in a sample of chromosomes. Slatkin
and Rannala (1997) addressed the problem of estimating the age of a muta-
tion when given not just its frequency in a sample but also an estimate of the
number of mutations occurring in a completely linked region of DNA. Their ap-
proach models the age of the mutation as a parameter, and so differs from the
coalescent-based approach in which the age is an unobservable random variable;
the natural quantity to report is the conditional distribution of the age, given
the available data.

In this paper we study aspects of the age of a mutation from the coalescent
perspective. After a brief introduction to the general coalescent tree (in which
coalescence times can have any given continuous distribution), we describe in
Section 2 an urn model that can be used to study the combinatorics of coa-
lescent trees having a mutation of a given frequency. Section 3 describes the
infinitely-many-sites model of mutation. Sections 4–6 give various properties of
the age of a mutation having a given frequency in a sample. Section 7 discusses
simulation algorithms and illustrates them by studying Slatkin and Rannala’s
(1997) problem as well as the distribution of Tajima’s D in a subtree. Section
8 studies the coalescent subtree of that part of the population known to carry
a given mutation, and Section 9 exploits these results to study the age of a
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mutation in a sample taken at random from chromosomes carrying a given mu-
tation (the disease registry model), or together with data from chromosomes not
carrying that mutation (the case-control model).

Figure 1 illustrates a coalescent tree of a sample of ten genes with mutations
occurring in the ancestry of the sample. Our interest focuses on the descendants
of one single given mutation. For example, the mutation on the far right of the
tree subtends five descendants.

Figure 1. Coalescent tree with mutations.

1.1 Coalescent trees

In the absence of recombination, the ancestry of a sample of n genes from a
large population can be described by a coalescent tree (Kingman 1982). Let
Tn, Tn−1, . . . , T2 denote the lengths of time for which the sample has n, n−1, . . . , 2
distinct ancestors back in time to its most recent common ancestor (MRCA).
In the usual coalescent process, corresponding to a constant population size,
the number of distinct ancestors An(t) time t ago is a time-homogeneous death
process with death rate µj from state j given by

µj =
(

j

2

)
, j = n, n− 1, . . . , 2. (1.1)

The times Tj are therefore distributed as independent exponential random vari-
ables with means µ−1

j . This paper discusses results about the structure of coa-
lescent trees under a general joint distribution for the times (Tn, . . . , T2). As in
Griffiths and Tavaré (1998) we assume that:

(A1) Tn, . . . , T2 are continuous random variables.
(A2) The ancestral tree is binary, and such that when there are k ancestral lines

each pair has probability
(
k
2

)−1
of being the next pair to coalesce.
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In this paper we use coalescent time units. In the population genetics set-
ting, these may be converted to generations by letting one coalescent time unit
correspond to 2N generations, appropriate for the coalescent approximation of
a population of size N diploid individuals at the time of sampling.

1.2 Variable population size

The motivation for considering a general tree comes from a coalescent model
with variable population size, and from other models such as the birth-and-death
process generated forward in time.

The coalescent for a population undergoing deterministic population size fluc-
tuations is described in Slatkin and Hudson (1991) and Griffiths and Tavaré
(1994). For the Wright-Fisher model, let λ(t) denote the ratio of the popu-
lation size time t ago and the population size at the time of sampling. Let
{An(t), t ≥ 0} be the death process described by (1.1), and let {Aλ

n(t), t ≥ 0}
denote the corresponding process in the variable population size case. Then

Aλ
n

(
t
)

= An

(∫ t

0

λ(u)−1du

)
, t ≥ 0. (1.2)

A formula for the distribution of An(t) in the constant population size case
is well known (Tavaré 1984, Griffiths 1980), and it follows from (1.2) that

IP(Aλ
n(t) = k) =

n∑

j=k

ρj(t)
(−1)j−k(2j − 1)k(j−1)n[j]

k!(j − k)!n(j)
, k = 1, . . . , n, (1.3)

where ρj(t) = exp
(
−(

j
2

) ∫ t

0
λ(u)−1du

)
and

a(0) = 1, a(j) = a(a + 1) · · · (a + j − 1), j ≥ 1; (1.4)
a[0] = 1, a[j] = a(a− 1) · · · (a− j + 1), j ≥ 1. (1.5)

The mean waiting time in state j is given by

IE(Tj) =
∫ ∞

0

IP(Aλ
n(t) = j)dt , j = 2, . . . , n.

2 The relationship between coalescent trees and urn mod-
els

In the classical Pólya urn model, an urn contains balls of k distinct colours. At
discrete time instants a ball is chosen at random from the urn and replaced with
an additional ball of the same colour. If the initial configuration of colours is
c = (c1, . . . , ck), then after r draws the probability of a configuration r + c =
(r1 + c1, . . . , rk + ck) is

IP(r + c) =
(

r

r

)
(c1)(r1) · · · (ck)(rk)

(c1 + · · ·+ ck)(r)
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=
(

c1 + · · ·+ ck + r − 1
r

)−1 k∏

j=1

(
cj + rj − 1

rj

)
, (2.1)

where r = r1 + · · ·+ rk and c(r) is defined by (1.5); cf. Feller (1968, Chapter V).
This distribution is the Multinomial-Dirichlet distribution:

IP(r + c) =
∫ (

r

r

)
xr1

1 · · ·xrk

k f(x1, . . . , xk)dx, (2.2)

where f(x1, . . . , xk) is a Dirichlet(c1, . . . , ck) density defined by

f(x1, . . . , xk) =
Γ(c1 + · · ·+ ck)
Γ(c1) · · ·Γ(ck)

xc1−1
1 · · ·xck−1

k , (x1, . . . , xk) ∈ ∆,

with ∆ = {(x1, . . . , xk) ∈ IRk
+ : x1 + · · · + xk = 1}. As n → ∞, the limit

distribution of the relative proportions of the balls has this Dirichlet distribution.
For j ≥ 1, let uj be an indicator vector whose lth component is 1 if the jth draw
is colour l. Then uj , j ≥ 1 are exchangeable random vectors, and the density
f above is de Finetti’s representing measure of the sequence; cf. Feller (1971,
Chapter VII).

A coalescent tree can be generated either forward in time or backward in
time. In forward time an edge of the tree is chosen at random to branch to
increase the number of ancestors, corresponding to coalescence decreasing the
number of ancestors backwards in time. The descendants of edges in a general
coalescent tree generated forward in time can be identified with this classical
urn model. Consider a cross section of a coalescent tree at a particular time in
the past when there are k edges, and give each a distinct colour. Then at each
branch point in forward time an additional edge is added, analogous to the urn
model with c1 = · · · = ck = 1. The probability of getting n1, . . . , nk descendants
of edges 1, 2, . . . , k in a sample of size n is

(
n− 1
k − 1

)−1

(2.3)

for n1 + · · · + nk = n. This follows from (2.1) by setting ri = ni − 1, 1 ≤ i ≤ k
and r = n − k, and shows that the distribution is uniform on the collection of
ordered non-empty k-subsets of a set with n elements. This result is derived in
a different way in Kingman (1982).

2.1 The number of descendants of an edge

The probability pnk(b) that a particular edge among k ancestors subtends b
particular descendants in a sample of n also follows from (2.1) by setting k =
2, c1 = 1, c2 = k − 1, r1 = b− 1, r2 = n− b− k + 1:

pnk(b) =
(

n− b− 1
k − 2

)(
n− 1
k − 1

)−1

, 1 ≤ b ≤ n− k + 1, (2.4)
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the number of ways the n − b descendants can be assigned to k − 1 ancestors,
divided by the total number of ways the n descendants can be assigned to their
k ancestors.

2.2 Coalescence times in a subtree

A b-subtree of an n-tree is the subtree formed by the ancestral tree of a particular
b genes from the sample of n. In an exchangeable model all b-subtrees are
identically distributed. The coalescence times in a b-subtree are

T#
i = TMi

+ · · ·+ TMi−1+1,

where for i = 1, 2, . . . , b− 1, Mi is the number of edges in the n-tree at the time
the b-subtree first has i edges (and we define Mb ≡ n). From Theorem 2 of
Saunders et al. (1984), we have

φ(k, i;n, b)
:= IP(b−subtree has i edges when the n−tree has k edges)

=
(n− b)!(n− k)!b!(b− 1)!k!(k − 1)!(n + i− 1)!

(b− i)!(k − i)!n!(n− 1)!i!(i− 1)!(k + b− 1)!(n + i− k − b)!
(2.5)

The limit as n →∞ is

φ(k, i;∞, b) =

(
k
i

)(
b−1
i−1

)
(
k+b−1

k−1

) . (2.6)

Since Tk is included in the sum defining T#
i if, and only if, there are i edges in

the b-subtree when the n-tree has k edges, it follows that, for n finite or infinite,

IE
(
T#

i

)
=

n∑

k=i

φ(k, i; n, b)IE(Tk). (2.7)

The reverse Markov chain {Mi, i = b−1, . . . , 1} can be simulated from Mb = n
by noting that the transition probabilities are, for i− 1 ≤ ` < k,

IP(Mi−1 = ` | Mi = k) =
(
1− i(i− 1)

k(k − 1)

)
· · ·

(
1− i(i− 1)

(` + 2)(` + 1)

)
· i(i− 1)
(` + 1)`

. (2.8)

As n →∞, the limiting marginal distribution of Mi is

IP(Mi = k) =
b!(b− 1)!k!(k − 1)!

(b− i− 1)!(k − i)!i!(i− 1)!(b + k)!

=
(

k − 1
i− 1

)
IE

{
ρi(1− ρ)k−i

}
, k ≥ i, (2.9)

where ρ has a Beta(b− i, i + 1) distribution. Thus Mi has a Negative Binomial–
Beta mixture distribution. This is useful for simulating the {Mi}: generate Mb−1

with a Negative Binomial–Beta(1, b) mixture, then use the transition probabili-
ties (2.8) to simulate {Mi, b− 1 > i ≥ 1}. See Saunders et al. (1994) for details
of (2.8) and (2.9).
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2.3 Branches in the subtree below a mutation

Later on we study the subtree of a general coalescent tree formed by consider-
ing the individuals who carry a particular mutation that arises just once in the
history of the sample. If there are b copies of the mutation in the sample and
the mutation arose while there were J0 = j ancestors, then the subtree describ-
ing the ancestry of the individuals carrying the mutation has b − 1 coalescence
events. The first of these results in Jb−1 ≤ n − 1 ancestors of the sample, the
second in Jb−2 ancestors, and so on until the most recent common ancestor of
the individuals carrying the mutation occurs when the sample has J1 ≥ j ances-
tors. Notice that individuals not carrying the mutation cannot share common
ancestors with those that do until the mutant individuals have coalesced to their
most recent common ancestor. Wiuf and Donnelly (1999) study properties of
the coalescent conditional on having this property. Here we use the urn model
to derive the basic results we need.

Consider the urn model starting from j − 1 red balls and one black ball. For
k = j, . . . , n − 1, let Uk be the indicator function of the event that a black ball
is added when there are k balls in the urn. According to the de Finetti urn
representation, the {Uk} are conditionally independent Bernoulli trials, given
success probability Z having a Beta(1, j−1) distribution with density (j−1)(1−
z)j−2, 0 < z < 1. There will be b black balls in the urn when there are n balls
altogether if Uj+· · ·+Un−1 = b−1. It follows that conditioning the urn on having
b black balls out of n is equivalent to conditioning on Uj + · · ·+ Un−1 = b− 1.

For i = 1, 2, . . . , b− 1 let Ji be the number of balls already in the urn when
the ith additional black ball is added. Given that there are b black balls in
the urn containing n balls, we obtain the joint distribution of (J1, . . . , Jb−1) by
exchangeability:

IP(J1 = j1, . . . , Jb−1 = jb−1 | J0 = j0) =

IP


Uj1 = 1, . . . , Ujb−1 = 1 |

n−1∑

l=j

Ul = b− 1


 =

(
n− j

b− 1

)−1

, (j1, . . . , jb−1) ∈ I(j, n), (2.10)

where I(j, n) = {(j1, . . . , jb−1) : j ≤ j1 < j2 · · · < jb−1 ≤ n− 1}.
We can identify Ji as the number of ancestors of the sample at the time the

subtree of size b has i distinct ancestors, for i = b− 1, b− 2, . . . , 1. The result in
(2.10) says that, conditional on J0 = j0, J1, . . . , Jb−1 are uniformly distributed
over I(j, n).

3 Mutations in the tree
We are interested in the effects of mutation on general coalescent trees. We
assume that for some θ ∈ (0,∞),
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(A3) Conditional on the edge lengths of the tree, mutations occur according to
independent Poisson processes of rate θ/2 along the edges of the tree.

In the population genetics setting, the compound parameter θ is given by
θ = 4Nu, where u is the mutation rate per sequence per generation. To model the
effects of each mutation, we use the infinitely-many-sites model (cf. Watterson
1975), under which a new mutation in the population is assumed to occur at a
site in an infinitely-long DNA sequence where there has never previously been
a mutation. Thus in this model the number of mutations in the ancestral tree
of n sample genes is the number of segregating sites in these n sequences, that
is, sites which contain two distinct types of base. A mutation on an edge of the
tree at a site occurs at that site in all leaves subtended by that edge, while other
leaves contain the ancestral base. Note that each mutation that has arisen in the
history of the sample back to its most recent common ancestor is represented
in that sample. In a finite-sites model of mutation there is a fixed number of
sites in a gene and mutation at the same site more than once is possible. The
infinitely-many-sites model can be obtained as a limit from the finite-sites model
as the number of sites tends to infinity and the mutation rate per gene is kept
fixed.

It is often convenient to think of the DNA sequences as being represented by
unit intervals, and to label the locations of new mutations that arise in the sample
using a sequence of independent and identically distributed random variables
having an arbitrary distribution on (0,1). Thus for any set M ⊂ (0, 1), mutations
with locations in M arise in a branch of the coalescent tree at rate θλ(M)/2 where
λ(M) is the probability of M under the mutation distribution. When mutation
is uniform in (0,1) λ(M) = |M |, and non-uniform choices for λ correspond to
mutational hotspots.

3.1 The distribution of the number of segregating sites

Let Sn be the number of segregating sites in a sample of n sequences under
the infinitely-many-sites model. Since mutations occur as a Poisson process
on the edges of the tree, Sn has a compound Poisson distribution with mean
θ
∑n

j=2 jTj/2, and it follows immediately that

IE(Sn) =
θ

2

n∑

j=2

jIE(Tj), var(Sn) =
θ2

4
var




n∑

j=2

jTj


 +

θ

2

n∑

j=2

jIE(Tj).

Watterson (1975) showed that in the standard coalescent process IE(Sn) =
θ
∑n−1

j=1 j−1, var(Sn) =
∑n−1

j=1

(
j−2θ2 + j−1θ

)
, and suggested the now com-

monly used moment estimator of θ given by Sn/
∑n−1

j=1 j−1.

3.2 The distribution of pairwise differences

Let Πn be the average number of pairwise differences between the
(
n
2

)
sequences

in a sample of n sequences in a general coalescent tree. If the coalescence time
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for two randomly chosen genes is T ′n2, then IE(Πn) = θIE(T ′n2). Letting ηn be
the number of ancestral lines in the coalescent when the two genes coalesce, we
see that

IP(ηn ≤ k) =
n∏

j=k+1

(
1−

(
j

2

)−1)
=

(n + 1)(k − 1)
(n− 1)(k + 1)

.

Since

T ′n2 =
n∑

j=ηn

Tj ,

it follows that

IE(T ′n2) =
n∑

k=2

IP(ηn ≤ k)IE(Tk) =
(n + 1)
(n− 1)

n∑

k=2

(k − 1)
(k + 1)

IE(Tk). (3.1)

Note that if there is a set of coalescent trees for n = 2, 3, . . . with coalescence
times {Tnj , j = n, . . . , 2} on the same probability space such that, for 2 ≤ k ≤ n,
{Tnj , j = k, . . . , 2} is distributed as {Tkj , j = k, . . . , 2}, then T ′n2 is distributed as
T22. This is true for a coalescent process modeling constant or varying population
size, but not necessarily true for a general coalescent tree.

3.3 Tajima’s D

An important problem in the interpretation of genomic polymorphism data is
the detection of regions of a chromosome that have undergone selection. One of
the statistics most widely used for this purpose is Tajima’s D, a standardized
version of Sscaled − Πscaled (Tajima, 1989), where Sn and Πn are scaled to be
unbiassed estimates of θ. Departures from the assumptions of the usual neutral
coalescent model of Kingman can be detected using the null distribution of D.

In the general coalescent tree

Sscaled = Sn/

n∑

j=2

1
2
jIE(Tj), Πscaled = Πn/IE(T ′n2). (3.2)

In the usual coalescent process Πn is an unbiased estimate of θ because IE(T ′n2) =
IE(T2) = 1, so ΠScaled = Πn. The analogue of D in the general coalescent tree,
derived from equation (3.2), is Sscaled−Πscaled. The distribution of D is discussed
later in the paper.

4 Frequency spectra
The distribution of the number of mutant genes arising from a single mutation
in an ancestor is of considerable interest. We assume that the mutation is seg-
regating in the sample, so that it arose between the present and the time of the
most recent common ancestor of the sample. Here we derive this distribution
under the general conditions (A1), (A2) and (A3).
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Let T denote the sequence of waiting times T2, . . . , Tn in the coalescent tree
of the sample. Consider a mutation arising at rate µ/2, and let C denote the
event that this mutation arises just once. Let Cb ⊆ C denote the event that
this mutation has b copies in the sample, and let Ik denote the event that the
mutation arises when the sample has k ancestors. First we calculate IP(Cb ∩ Ik)
using the Poisson nature of the mutation process.

IP(Cb ∩ Ik|T ) = pn,k(b)
(
kTk

µ

2
e−kTkµ/2 × e−(Ln−kTk)µ/2

)
,

where Ln =
∑

k jTj is the length of the tree. Averaging over the distribution of
T gives

IP(Cb ∩ Ik) = kpn,k(b)IE
(
Tk

µ

2
e−Lnµ/2

)
. (4.1)

Summing (4.1) over b = 1, . . . , n− 1, k = 2, . . . , n− b + 1 gives

IP(C) =
n∑

k=2

kIE
(
Tk

µ

2
e−Lnµ/2

)
. (4.2)

Dividing (4.1) by (4.2) shows that

IP(Cb ∩ Ik | C) =: qn,b;k =
kpn,k(b)IE

(
Tke−Lnµ/2

)
∑n

k=2 kIE
(
Tke−Lnµ/2

) , (4.3)

for 0 < b < n, k = 2, . . . , n− b + 1. Letting µ → 0 we obtain

qn,b;k =
kpn,k(b)IE(Tk)∑n

k=2 kIE(Tk)
, 0 < b < n, k = 2, . . . , n− b + 1. (4.4)

The frequency spectrum is the probability distribution qn,b, b = 1, . . . , n − 1
of the number of times the mutation is represented in the sample. Since qn,b =∑n−b+1

k=2 qn,b;k, we see that

qn,b =
∑n−b+1

k=2 kpn,k(b)IE(Tk)∑n
k=2 kIE(Tk)

, 0 < b < n. (4.5)

as given in Griffiths and Tavaré (1998). Equation (4.4) provides the frequency
spectrum for a particular segregating site in the infinitely-many-sites model. In
the case of a constant population size, we see that

∑n−b+1
k=2 kpnk(b)IE(Tk) = 2/b,

so that

qnb =
1
b

(
n−1∑

k=1

1
k

)−1

.

Stephens (2000) derived the result analogous to (4.5) for arbitrary µ. We note
that this is a particular case of (4.5) obtained by modifying the distribution of
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T to T ′ such that the Laplace transform of T ′ is

IE
(
e−snT ′n−···−s2T ′2

)
=

IE
(
e−snTn−···−s2T2e−

1
2 µLn

)

IE
(
e−

1
2 µLn

) .

Therefore

IE (T ′k) =
IE

(
Tke−

1
2 µLn

)

IE
(
e−

1
2 µLn

) ,

which evaluates to
IE (T ′k) =

2
k(k − 1 + µ)

in the coalescent process with constant population size.

5 Distribution of the age of a mutation
Let ξn,b denote the age of a mutant having b copies in a sample of size n, for
0 < b < n. Griffiths and Tavaré (1998) showed that the density of ξn,b is given
by

gn,b(t) =
∑n

k=2 kpn,k(b)IP(An(t) = k)∑n
k=2 kpn,k(b)IE(Tk)

, t > 0, (5.1)

where An(t) denotes the number of ancestors of the sample of n time t ago.
Furthermore, the moments of ξn,b are given by

IE(ξj
n,b) =

∑n
k=2 k(k − 1)

(
n−k
b−1

)
1

j+1 IE
(
W j+1

k −W j+1
k+1

)

∑n
k=2 k(k − 1)

(
n−k
b−1

)
IE(Tk)

, j = 1, 2 . . . , (5.2)

where for k = n, n− 1, . . . , 2,

Wk = Tn + · · ·+ Tk (5.3)

is the time taken to reach state k − 1, with Wn+1 ≡ 0. The mean and variance
of ξn,b can be derived from (5.2).

The population versions of (5.1) and (5.2) were also studied in Griffiths and
Tavaré (1998). If we assume that {An(t), t ≥ 0} converges in distribution to a
process {A(t), t ≥ 0} as n → ∞, and that the time taken for A(·) to reach 1 is
finite with probability one, then as n →∞, and b/n → x, 0 < x < 1, we obtain
the density of the age ξx as

gx(t) =
∑∞

k=2 k(k − 1)(1− x)k−2IP(A(t) = k)∑∞
k=2 k(k − 1)(1− x)k−2IE(Tk)

, (5.4)

and the moments of ξx are given by

IE(ξj
x) =

∑∞
k=2 k(k − 1)(1− x)k−2 1

j+1 IE
(
W j+1

k −W j+1
k+1

)
∑∞

k=2 k(k − 1)(1− x)k−2IE(Tk)
, j = 1, 2 . . . . (5.5)

Related results appear in Wiuf and Donnelly (1999).
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6 Coalescence times in a subtree
In this section, we study properties of the subtree that relates a sample of chromo-
somal regions carrying a particular mutation. In the b-subtree under a mutation
in an n-tree, the coalescence times are

T ′i = TJi−1+1 + · · ·+ TJi
= WJi−1+1 −WJi+1 , i = 2, . . . , b, (6.1)

where Wk is defined in (5.3) and we define Jb ≡ n. Note that W ′
i := T ′b+· · ·+T ′i =

WJi−1+1.
We can use the results of Section 4 to find the distribution of J0, the number

of ancestors at the time the mutation arose. ¿From (4.4) and (4.5) we have

IP(J0 = j) =
qn,b;j

qn,b
=

jpnj(b)IE(Tj)∑n−b+1
l=2 lpnl(b)IE(Tl)

, j = 2, . . . , n− b + 1. (6.2)

Conditional on J0 = j, we saw in (2.10) that J1, . . . , Jb−1 are uniform in I(j, n) =
{j ≤ j1 < j2 < . . . < jb−1 ≤ n − 1}. By considering the k − j available indices
less than k for J1, . . . , Ji−1 and the n−k− 1 available indices for Ji+1, . . . , Jb−1,
it follows that

IP(Ji = k | J0 = j) =

(
k−j
i−1

)(
n−k−1
b−i−1

)
(
n−j
b−1

) , k = j + i− 1, . . . , n− b + i. (6.3)

The unconditional mean waiting times may be computed from the formula

IE(W ′
i ) =

∑n−b+1
j=2 jpnj(b)

∑n−b+i
k=j+i−1 IE(WkTj)IP

(
Ji−1 + 1 = k | J0 = j

)

∑n−b+1
j=2 jpnj(b)IE(Tj)

(6.4)

and IE(T ′i ) = IE(W ′
i )− IE(W ′

i+1).
The length of the subtree is Lnb =

∑b
l=2 lT ′l , and its mean can be computed

from (6.4) and the fact that

IE
b∑

l=2

lT ′l =
b∑

l=2

lIE(W ′
l −W ′

l+1) = IEW ′
2 +

b∑

l=2

IEW ′
l .

However, we can also exploit the urn representation from Section 2.3.
Suppose the mutation occurs when there are J0 = j ancestors of the sample.

Let Uk, k = j, . . . , n− 1 be the indicator of the event that the subtree branches
while the sample has k ancestors. We saw earlier that conditioning on b descen-
dants in the subtree is equivalent to conditioning on

∑n−1
i=j Ui = b − 1, and we

define J1 to be the number of ancestors of the sample when the subtree reaches
its most recent common ancestor. In terms of {Ui}, we have

Lnb =
n∑

k=J1+1

(
1 +

k−1∑

i=J1

Ui

)
Tk,
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with Ui = 0, j ≤ i ≤ J1 − 1 and UJ1 = 1. Consider the conditional distribution
of Lnb given J1 = j1,

∑n−1
i=j1+1 Ui = b − 2. By exchangeability, the conditional

distribution of {Ui, j1 +1 ≤ i ≤ n−1} is uniform on
(
n−j1−1

b−2

)
positions for which

b− 2 of the indicator variables are 1.
It follows from this approach after some algebra that the mean edge length,

conditional on a mutation subtending b descendants is

IE(Lnb) =

∑n−b+1
j=2 jpnj(b)

∑n
k=j+1 cjkIE(TjTk)

∑n−b+1
j=2 jpnj(b)IE(Tj)

, (6.5)

where

cjk = b− (b− 1)
n− k

n− j
− (n− k)!(n− j − b + 1)!

(n− j)!(n− k − b + 1)!
.

In the usual constant-size coalescent, (6.2) reduces to

IP(J0 = j) =

(
n−j
b−1

)
(
n−1

b

) , (6.6)

and it follows that

IE(Lnb) =
(

n− 1
b

)−1 n−b+1∑

j=2

(
n− j

b− 1

) n∑

k=j+1

2
k(k − 1)

cjk. (6.7)

7 Further mutations in subtrees
In the remainder of this paper, we discuss the theoretical issues relating to fre-
quency spectra and properties of ages of mutations. To this end, recall that
the number of additional mutations falling in the subtree determined by the
given mutation has, under an infinitely-many-sites assumption for these addi-
tional mutations, a Compound Poisson(θLnb/2) distribution, where Lnb is the
total edge length of the subtree up to its MRCA and θ is the mutation parameter
appropriate for the additional mutations. In particular, the expected number of
segregating sites in the subtree is just θIE(Lnb)/2, which can be found from (6.5).

7.1 A simulation algorithm

While a number of explicit results are available for properties of subtrees, it is
useful to have a simulation algorithm that produces them. Here we focus on
subtrees arising below a mutation having frequency b in a sample of size n. One
approach is provided by Wiuf and Donnelly (1999). Another method is:

(B1) Choose j0 according to the distribution of J0 in (6.2).
(B2) Choose j1 < · · · < jb−1 from the conditional distribution of J1, . . . , Jb−1

given J0 = j0; this is uniform over I(j0, n), as in (2.10).
(B3) Join edges at random to form the subtree.
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If, in addition, coalescence times T ′i , i = b, b − 1, . . . , 2 in the subtree are
required, we need only add:

(B4) Simulate an observation from the joint distribution of Tn, . . . , Tj0+1.

(B5) Compute the times T ′i via (6.1).

This allows us to calculate summary statistics about the subtree, such as its
height (that is, the time to the MRCA of the subtree), and its length Lnb.

7.2 The age of the mutation

To simulate from the age of the mutation, we add:

(B6) Conditional on the results of (B4), simulate from the random variable Z
having the size-biased distribution of Tj0 and set T ∗ = UZ, where U is an
independent U(0,1) random variable.

The time A = Tn + · · ·+Tj0+1 +T ∗ is the required age of the mutation. Note
that the random variable Z has density proportional to xf(x), where f is the
density of Tj0 . Hence if Tj0 has an exponential distribution with parameter τ ,
then so too does UZ.

If one wants to simulate observations from the posterior distribution of trees
and times conditional on the number k of segregating sites appearing in the b
individuals carrying the mutation in a region completely linked to the mutation,
then one can add a rejection step (cf. Tavaré et al. 1997):

(B7) Accept the results of (B1) – (B6) with probability Po(θLnb/2){k}/Po(k){k}
where θ is the mutation parameter appropriate for the linked region, Lnb

is the subtree length, and we use the notation Po(µ){k} = µke−µ/k!. Oth-
erwise, go to (B1).

Note that in this case step (B3) is not needed.
Slatkin and Rannala (1997) discussed the problem of estimating the age of

a mutation given its frequency in the sample together with (an estimate of) the
number of mutations that had arisen in a completely linked region among the
chromosomes carrying the mutation. Under an infinitely-many-sites model for
these extra mutations, the algorithm in (B7) provides one approach to Slatkin
and Rannala’s problem in the coalescent setting. An example appears in the
next section. When the additional data are complete DNA sequences from the
linked region, this algorithm no longer works, essentially because the acceptance
probability is far too small. In this case, a Markov chain Monte Carlo approach
can be implemented, as in Markovtsova et al. (2000).

7.3 An example of simulation of ages

The distribution of the age of a mutation and the height of the subtree were
simulated using 50,000 runs of algorithm (B7) for the case n = 200, b = 30, θ =
4.0 and 5 segregating sites. The mean age was 1.01 with standard deviation
0.91, while the mean subtree height was 0.40 with a standard deviation of 0.25.
Percentiles of the distributions are given below, together with the estimated
densities.
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2.5% 25% 50% 75% 97.5%
age 0.156 0.412 0.721 1.289 3.544
subtree height 0.099 0.218 0.334 0.514 1.056

age
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Figure 2. Density of age of mutation.

height
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Figure 3. Density of height of subtree.

7.4 Simulation of Tajima’s D in a subtree

The formula (6.5) can be used together with (3.1) and (3.2) to find the expected
number of segregating sites and the expected pairwise difference in a subtree,
and to study the analogue of Tajima’s D in the subtree. This last provides a way
to test for neutrality of the region around the mutation of interest; see Innan and
Tajima (1997) for related material. It is straightforward to use the simulation
algorithm outlined above to simulate from the distribution of Sscaled − Πscaled:
use steps (B1) – (B3) to produce the subtree, and then simulate mutations (with
parameter θ) on that tree. Once done, the observed values of Sn and Πn can be
recovered.

We used this approach to simulate 50000 observations for the case n =
200, b = 30, θ = 4.0. The mean of Sscaled = 4.0143 and the mean of Πscaled =
4.0243. The percentage points of Sscaled−Πscaled are given in the following table:

2.5% 5.0% 10.0% 25.0% 50.0% 75.0% 90.0% 95.0% 97.5%
-5.3 -4.0 -2.4 -0.8 0.0 1.4 2.3 2.9 3.8

In a situation such as this the percentage points can be used to test for
departures from neutrality for a subsample of b genes under a mutation. For
example, if genes with the mutation were under positive selection Sscaled−Πscaled

would have a heavier distribution on the negative side.

8 Sampling under a mutation in the population
Consider a mutation which has frequency x ∈ (0, 1) in the population. Our inter-
est is in characteristics of a sample taken from this proportion of the population.
To obtain the distribution of coalescence times under the mutation suppose, as
previously in the paper, that a sample of n has b copies of a mutation and then
let n → ∞, b → ∞ in such a way that b/n → x. Recall that conditional on
J0 = j0, J1, . . . , Jb−1 have a uniform distribution on I(j0, n). The joint condi-
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tional distribution of J1 < J2 < · · · < Ji is thus

IP(j1, . . . , ji) =

(
n−1−ji

b−i−1

)
(
n−j0
b−1

) , j1 < · · · < ji. (8.1)

The limit distribution of (8.1) as n →∞, b/n → x is

IP(j1, . . . , ji) = xi(1− x)ji−i−j0+1, j1 < · · · < ji. (8.2)

We denote the limit random variables by Jx
0 , Jx

1 , . . . Informally, in this limit,
when the whole tree branches there is probability x that the branch is in the
subtree, since the subtree has a total proportion x of the branching points.
Jx

1 < Jx
2 < · · · are thus distributed, from (8.2), as success epochs in a sequence

of Bernoulli trials, shifted by J0. If G is a geometric random variable with
distribution

x(1− x)g, g = 0, 1, . . .

then Qi = Jx
i − Jx

i−1, i = 1, 2, . . ., are independent random variables with Q1

distributed as G, and Qi, i > 1 distributed as G + 1. Li = Jx
i − Jx

0 − i + 1 has
a negative binomial distribution

(
` + i− 1

i− 1

)
xi(1− x)`, ` = 0, 1, . . .

The distribution of Jx
0 depends on the coalescence times in the population. As-

suming convergence of {Tnj} to a proper collection of coalescence times {Tj},
with the means also converging, the distribution of Jx

0 converges to

j(j − 1)(1− x)j−2IE(Tj)∑∞
i=2 i(i− 1)(1− x)i−2IE(Ti)

, j ≥ 2, (8.3)

and the population then has coalescence times

T x
i = TJx

i−1+1 + · · ·+ TJx
i
, i = 2, 3, . . . (8.4)

The collection of coalescence times {T x
i } can then be used in formulae for charac-

teristics of samples under the mutation in the population for general coalescent
trees. It is straightforward to simulate {T x

i } by simulation of Jx
0 from the dis-

tribution (8.3), {Jx
i ; i ≥ 1} from their geometric structure, and {T x

i } from (8.4).

8.1 Results for the standard coalescent

In the usual coalescent process it is possible to find explicit formulae for the
means and second moments of the coalescence times {T x

j } and then use these in
applications. In particular,

IP(Jx
0 = j) = x(1− x)j−2, j ≥ 2.
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It follows that

IE(T x
i ) = 2

∫ 1

0

z−1f i
(
1− f

)
dz, (8.5)

and

IE
(
W x

i

)
= 2

∫ 1

0

z−1f idz,

IE
(
(W x

i )2
)

= 8
∫ 1

0

z−1f i
(
(− log z)(1− z)−1 − 1

)
dz. (8.6)

where
f(z; x) = zx(1− z(1− x))−1

is the pgf of a geometric random variable shifted by 1. It follows from (8.6) the
mean time to coalescence of the subtree under the mutation is

IE(W x
2 ) = 2x(1− x)−2(x log(x)− x + 1). (8.7)

Substituting into (5.5) with j = 1 and simplifying, we see that the mean age
of another mutation occurring in the subtree under the mutation which subtends
a frequency 0 < y < 1 (relative to x) is given by

A(x, y) = −4xy
(
(1 + xy) log(xy)− 2xy + 2

)

2xy log(xy)− x2y2 + 1
. (8.8)

Note that A(x, y) is a function of xy, the proportion of the second mutant in the
total population.

Alternative forms for integrals in this section can be found by changing the
variable of integration from z to f , noting that 0 ≤ f ≤ 1, and that

dz

df
= x−1

(
1 +

1− x

x
f
)−2

.

9 Other sampling schemes
In this section, we develop the theory required for studying two different sam-
pling schemes. Motivated by the problem of sampling from a disease registry, we
study the genealogy of a random sample from the population carrying a partic-
ular mutation known to have frequency x in the whole population. For related
material see Wiuf (2000). The second scheme we address is motivated by the
case-control design, in which one considers in addition a sample of the same size
from that part of the population not carrying the mutation. We note that the
results (9.2), (9.4)–(9.5) and (9.7) apply to the standard coalescent.
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9.1 Sampling from the disease population

Suppose then that a random sample of n genes is taken from a mutant class
whose frequency is x in the population. The coalescence times in the sample are
distributed as {T#

i } of Section 2.2, where

T#
i = T x

Mi
+ · · ·+ T x

Mi−1+1, i = n, . . . , 2. (9.1)

Thus the subpopulation of mutant genes of frequency x plays the role of the
population, with {T#

i } the population coalescence times. The formula (2.7) for

IE
(
T#

i

)
holds with n there set equal to ∞, and substituting we obtain

IE
(
T#

i

)
=

∞∑

k=i

(
k
i

)(
n−1
i−1

)
(
k+n−1

k−1

) IE
(
T x

k

)
=

2n

(
n− 1
i− 1

) ∫ 1

0

∫ 1

0

z−1f iwi−1(1− fw)−(i+1)(1− w)n−1(1− f)dwdz, (9.2)

where f ≡ f(z; x).
The site frequency spectrum in a random sample of size n under a mutation

of frequency x in the population is, from (4.5),

qn,j =
(n− j − 1)!(j − 1)!

∑n
k=2 k(k − 1)

(
n−k
j−1

)
IE(T#

k )

(n− 1)!
∑n

k=2 kIE(T#
k )

(9.3)

The properties of Tajima’s D in this setting may be studied using the follow-
ing results. From Section 3.1, the mean number of mutations in a sample of n
is

IE(Sn) =
θ

2

n∑

i=2

iIE
(
T#

i

)

= nθ

∫ 1

0

∫ 1

0

z−1(1− w)n−1f(1− f)(1− fw)−2

· ((1 + φ)n−1 + (n− 1)φ(1 + φ)n−2 − 1
)
dwdz, (9.4)

where φ = fw/(1 − fw). From Section 3.2, the expected number of pairwise
differences between two of the n sequences is

IE(Πn) = θIE(T#
2 ) = θ

∞∑

k=2

k − 1
k + 1

IE(T x
k )

= 2θ

∫ 1

0

xf−1(x + (1− x)f)−1
(
2− f +

2(1− f) log(1− f)
f

)
df.(9.5)

because a random sample of two genes from a random sample of n is distributed
as a random sample of two from under the subtree. Tabulated below are mean
coalescence times for a sample of two from the subtree.
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x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IE(T#
2 ) 0.00 0.09 0.16 0.22 0.28 0.34 0.39 0.44 0.49 0.53 0.58

Further properties are perhaps most simply studied by a simulation approach.
First, simulate {T#

i } and the coalescence pattern in the tree, and add mutations
along the edges according to a Poisson process of rate θ/2. Simulation of {T#

i }
involves simulation of {Jx

i }, {T x
j }, {Mi}, {T#

i } in order. It is of interest to
consider simulated percentage points of Tajima’s D analogue Sscaled−Πscaled for a
test of the standard neutral model under a mutation, against various alternatives
such as selection or growth.

9.2 Case-control sampling

In a case-control model a sample is taken from chromosomes carrying a particular
mutation and another sample taken from genes without that mutation. Denote
the coalescence times in the population of genes without the mutation as {T 1−x

k }
and the number of ancestors of the population when the subtree branches as
{J1−x

i }. If Jx
0 = j, then the two coalescent trees under and not under the

mutation are coupled, with branching occurring in the respective trees with
probabilities x and 1− x while there are greater than or equal to j ancestors of
the total population. Let H be a geometric random variable with distribution
(1−x)xh, h = 0, 1, . . . Then {J1−x

j+r −J1−x
j+r−1, r = 0, 2, . . . .} are independent with

J1−x
j − j is distributed as H, and J1−x

j+r − J1−x
j+r−1 distributed as H + 1, r ≥ 1.

Coalescence times are

T 1−x
k =

{
Tk, k < j − 1
TJ1−x

k−1+1 + · · ·+ TJ1−x
k

, k ≥ j − 1. (9.6)

It can be shown that the mean coalescence time in the subtree is

IE(W 1−x
2 ) = (1− x)−3(1− 2x)−1

(
2x2(x4 − 6x3 + 15x2 − 12x + 3) log(x)

−2x(1− x)5 log(1− x) + (1− x)(1− 2x)(x4 − x3 − 4x2 + 2)
)

(9.7)

The table below gives the mean coalescence times in the two subtrees by
numerically evaluating (8.7) and (9.7).

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
IE(W x

2 ) 0.00 0.17 0.30 0.41 0.52 0.61 0.70 0.78 0.86 0.93 1.00
IE(W 1−x

2 ) 2.00 2.29 2.48 2.63 2.77 2.90 3.05 3.20 3.36 3.52 3.67

There is no doubt that coalescent methods have revolutionized the way in
which molecular variation data are studied. They provide a way to model the
ancestral relationships among gene regions, which in turn provides the basis for
inference and estimation for such data. There have been two basic applications of
the coalescent approach: “forward” methods that are used to study the properties
of typical samples, and “backward” methods that are used to infer the features of
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a coalescent consistent with a given set of data. Ancestral inference, an example
of the second type, has provided some challenging statistical problems, some
of which are discussed here. As more genome-wide data are collected, these
inference questions become more challenging. For example, it should be possible
to use genome-wide data to understand better the fluctuations that have occurred
in population sizes through time. Weiss (2002) provides an illustrative example
in this volume.
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