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SUMMARY 

We develop a sampling theory for genes sampled from a population evolving with deterministically 
varying size. We use a coalescent approach to provide recursions for the probabilities of particular 
sample configurations, and describe a Monte Carlo method by which the solutions to such recursions 
can be approximated. We focus on infinite-alleles, infinite-sites and finite-sites models. This approach 
may be used to find maximum likelihood estimates of parameters of genetic interest, and to test 
hypotheses about the varying environment. The methods are illustrated with data from the mitochon- 
drial control region sampled from a North American Indian tribe. 

1. INTRODUCTION 

Much of the inferential machinery for stochastic models 
in population genetics has been developed under the 
assumption of approximately constant population size. 
Perhaps the best known is the Ewens sampling formula 
(Ewens 1972), which gives the stationary distribution of 
the allelic partition of a sample evolving under the 
infinite-alleles assumption. Recent advances in DNA 
sequencing technology have markedly increased the 
availability of molecular data, particularly from human 
populations. In this context, the assumption of constant 
population size is often unwarranted. 

There are several approaches to varying population 
size in the literature. Models based on branching 
processes with infinite-alleles mutation structure are 
discussed by Griffiths & Pakes (1988) and Taib (1992). 
In the more classical population genetics setting, there is 
an extensive literature on the varying environments 
models, those with deterministic variation in population 
size. The effects of bottlenecks are a popular focus. 
References include Nei et al. (1975), Chakraborty & Nei 
(1977), and Watterson (1984, 1989). Chakraborty 
(1977) and, more recently, Slatkin & Hudson (1991), 
Rogers & Harpending (1992) and Marjoram & 
Donnelly (1994a,b) discuss the infinite-sites model. A 
discussion of random environments models, those in 
which the variation in population size is random 
through time, appears in Donnelly (1986). Pollak 
( 1984) studies the infinite-alleles process. 

In this article we develop a sampling theory for 
populations evolving in a varying environment. We 
use a coalescent approach to provide recursions for 
the probabilities of particular sample configurations, 
and describe a Monte Carlo method by which the 
solutions to such recursions can be approximated. 
Applications of our method include maximum like- 
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lihood estimation of parameters of genetic interest, 
and a framework within which hypotheses about the 
varying environment might be tested. 

In  $ 2  we discuss the structure of the coalescent 
(Kingman 1982a) in a deterministically varying 
environment. Section 3 derives the appropriate 
sampling equations for the infinite-alleles and infi- 
nite-sites processes, and $4 outlines our Monte Carlo 
likelihood approach. In $5, we apply the methods to 
Ward et al.’s (1991) sample of mitochondrial DNA 
from a group of native North American Indians. In  
$ 6 we discuss other application of these methods, and 
describe computer software that is available. 

2. THE COALESCENT IN A VARYING 
ENVIRONMENT 

Imagine a haploid population evolving according to 
the Wright-Fisher model in a deterministically 
varying environment. Think of time going back into 
the past from now, which is labeled generation 0. 
Suppose there are Mo = N individuals now, M1 in 
generation 1, Mz in generation 2, and so on. The 
reproductive mechanism is equivalent to each of the 
Mr individuals in generation r choosing their parents 
uniformly and at random from the M,+l individuals 
in generation T + 1, independently of the choices in 
generations 0,1, . . ., r - 1. Define the relative size 
function V N  by 

t t + l  _ -  - G x -  t = 0 , 1 ,  . . .  . 
N ’  N N ’  

We are interested in the behaviour of the process 
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when the size of each generation is large, and we shall 
suppose that 
lim v N ( x )  = v ( x ) ,  

N - c c  

exists and is strictly positive for all x > 0. By way of 
example, if M,  = (1 - s)'Mo, we have a geometric 
decrease of population size going back into the past 
(corresponding of course to geometric growth in the 
usual direction of time). If s = P / N ,  and time is 
measured in units of N generations then 

In the case of approximately constant population size, 
we have v ( x )  1 for all x ,  and for a bottleneck 
occurring at time to, we might take u ( x )  = 1, 

From now on we study the evolution of the genetic 
structure of a sample of individuals having population 
size function v ,  arising as the limit as N + 00 of the 
Wright-Fisher model with time measured in units of N 
generations. The same approximating process can be 
used when the offspring distributions in each generation 
are exchangeable (Kingman 19826). Suppose that in 
generation r the number of offspring born to a typical 
individual has variance c?(r), and define 
T",x) = a( LNxJ). If time is measured in units of N 
generations, and we suppose that limN,, T",= T ~ ( x ) ,  
then v ( x )  is replaced by v ( x ) T - ~ ( x ) .  There are cases in 
which variable population size processes are better 
studied in their original, discrete timescale, particularly 
those which have very small population sizes for many 
generations. Although we do not explicitly examine such 
cases in this paper, the methods developed here can be 
exploited in that setting too. 

It is convenient to define the population-size 
intensity function A by 

0 < x < to;= p , x  2 to. 

(3) 

We assume that d(00) = 00, so that each pair of 
individuals, and the sample, may be traced back to a 
common ancestor with probability one. The density h 
of A is given by 

(4) 

The structure of the coalescent in a varying 
environment may be described as follows. Consider a 
sample of n individuals taken at time 0, and let 
{ A , ( t ) ,  t 2 0) be the stochastic process that gives the 
number ofdistinct ancestors of the sample a time t in the 
past. A,( . )  is a non-homogeneous Markov death process 
that starts from A,(O) = n, and moves down in steps of 1 
until reaching 1, at which point the sample has been 
traced back to a common ancestor. The transition 
probabilities of the process are determined by 

Let T,,, T,,-L~, . . ., T2 be the lengths of time the 
ancestral process spends in states ' n, n - 1, . . ., 2 
respectively. The joint density of (T,, . . ., 7'2)  is 

d t n ,  . - 1  t 2 )  = 

for 0 < t,,, . . ., t2 < 00, where s,+1 = 0, s, = t,, s, = 
$ +  ...+ t,, j = 2  ,..., n -  1. 

The coalescent may be thought of as a tree with 
nodes at the common ancestors of the sample, a n d j  
branches of length r J ,  j = 2,3, . . ., n. Mutations are 
superimposed on the coalescent tree by supposing that 
they occur independently on each branch according 
to Poisson processes of rate 8/2, where 
8 =  limN,,2Nu and u is the probability of a I 

mutation in a given gene in a given generation. 
Our model can also be described as one in which 

the population size remains constant over time and 
mutations arise according to a non-homogeneous 
Poisson process. The formulation we have chosen 
seems more natural, as there is little evidence that 
substitution rates change dramatically over time. 

The effects of mutations may be modeled in many 
different ways, depending on the type of data at hand. 
We concern ourselves with the infinite-alleles and 
infinite-sites models, and mention briefly in the 
discussion how the methods developed here might be 
modified to account for more complex DNA sequence 
data. 

a 

3. SAMPLING EQUATIONS 

In this section, we derive some integral equations 
satisfied by the sampling probabilities of the infinite- 
alleles and infinite-sites models. Viewed as functions of 
unknown population parameters, these can be 
thought of as likelihoods. One aim is to develop a 
method for solving such integral equations, and 
therefore of approximating likelihoods. 

(a) InJinite-alleles models 

Under the infinite-alleles mutation scheme, each 
mutation produces a type that has never before been 
seen in the population. This model is often used to 
describe data in which differences between alleles can 
be detected, but more specific details of each allele are 
not available. Allozyme frequency data provide an 
example. One consequence of this assumption is that a 
sample of size n may be represented as a configuration 
a= ( a l ,  . . ., an) ,  where 
ai = number of alleles represented i times 

and (a( al + 2a2 + . . . + nu, = n. I t  is convenient to 
think of the configuration b of samples of size j < n as 
being an n-vector with coordinates ( b I , b 2 ,  . . ., b,, 
0, . . ., 0), and we assume this in the remainder of 
this section. We also define ei = (O,O, . . ., 0, 1, 
0, . . ., 0), the ith unit vector. 

We derive an equation satisfied by the sampling 
probabilities 9(t,a), la1 > 1 defined by 
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q(t,u) = B(samp1e of size la1 

taken at time t has configuration a), ( 6 )  
with q(t,el) = 1 for all t 2 0. Suppose then that the 
configuration at time t is a. In common with most 
coalescent arguments, we look at  the configuration of 
the sample at the first event before time t .  Here, the 'first 
event' is one that changes the configuration of the 
sample. If the event prior to t was a coalescence, then 
necessarily the configuration changed. If the event prior 
to t was a mutation, the configuration changes only if 
the mutation does not occur to one of the al individuals 
who are singleton types (for then a1 --+ a1). Using 
independence of the events involved, we see that the 
time S, of the first event prior to t satisfies, for s > t ,  
B(St > 4 
= B(no event that changes the 

configuration u in time ( t , ~ ) ) ,  

= exp (- /: (i) r \ o d u )  exp (- 5 (1 - :) (s - t ) )  , 

where 

y ( u , u ) =  (;)qu)+$(1-:). (7) 

Given that the first event occurs at time s, the 
probability that the event is a coalescence is 

and the probability of a mutation is 

f l ( 1  2 - ?)/y(s, u). 

It remains to record the effects of each of these 
possibilities. If the coalescence occurred, then at time s 
the sample must have had configuration u + e j  - ej+l,  
and an individual in one of aj + 1 allelic classes of size 
j had an offspring, reducing the number o f j  classes to 
a., and increasing the number of ( j  + 1) classes to uj+1. 
This event has probability j ( u j  + I ) / (n  - l ) ,  j = 1, 
. . ., n - 1. If a mutation occurred, the configuration 
could have been a - 2el +e2, and a mutation 
occurred to an individual in the 2 class (probability 
2(u2 + l)/(n - q)), or u - el - ej-1 + e j  and the 
mutation occurred to an individual in a j class, 
producing a singleton mutant and a new ( j  - 1) class 
(probability j ( u j  + l ) / ( n  - ul)). Combining these 
possibilities, we define 

with the convention that q(s,u) = 0 if any a; < 0. In  
particular, 

(9) 

Averaging over the time to the first event before t ,  we 
see that the sampling probabilities satisfy the integro- 
recurrence equation 

Cq(s, u)y(s, u) exp 

When the population has constant size, so that 
h(s)  1, the integral equation in (10) reduces to a 
recursion given by Karlin & McGregor (1972); see also 
Pollak (1984) and TavarC (1994). In  that case, the 
sampling probability q(t,  a) is independent of t ,  and is 
given by the Ewens sampling formula (Ewens 1972). Of 
particular interest is the sampling probability 
q(u) = q(0, u) for a sample of size 1.1 taken at time 0. 

(b)  Infinite-sites models 

We turn now to the analogous development for the 
infinite-sites model. In  this case, each mutation occurs 
at a DNA site that has not mutated previously, and so 
introduces a new segregating site into the sample. If 
distinct sequences are labelled as alleles, then the 
allele frequencies behave just like the infinite-alleles 
model. Our presentation leans heavily on the results 
described in Griffiths & TavarC (19946), to which the 
reader is encouraged to turn for much greater detail 
than space permits us here. 

The mutational structure in the infinite-sites process 
is such that each gene in the sample can be thought of 
as an infinitely long sequence of completely linked 
sites, each of which is a 0 or a 1 .  A 0 denotes the 
ancestral type, a 1 the mutant type. Each mutation 
results in a new segregating site in the sample, and 
changes the 0 to a 1 at that site. Ethier & Griffiths 
(1987) and Griffiths (1987) show how each set of 
sequences corresponds to a rooted genealogical tree, 
and show how this tree is represented by writing each 
sequence in the sample as a vectory = (y io ,y ; l , .  . .) of 
integers. For example, the sequences 

gene 1 ... 1 0  1 0  0 0 1 0  1 ... 
gene 2 . . . 1 0 1 0 0 0 0 0 0 . . . 
gene 3 . . . 1 0 0  1 0  1 0 0 0  ... 
gene 4 ... 1 0 0 1 0 1 0 1 0 ... 
gene 5 ... 1 0  0 1 0  1 0  1 0 ... 
gene 6 ... 0 1 0  0 1 0  0 0 0 ... 
may be represented as 

gene 1 (9,7,3,1,0) 
gene 2 (3,1,0) 
gene 3 (6,4,1,0) 
gene 4 (8,6,4,1,0) 
gene 5 (8,6,4,1,0) 
gene 6 (5,2,0) 

The rooted genealogical tree is given in figure 1. 
Griffiths (1989) shows how to compute the 

probability of the tree in the constant population- 
size model. When the ancestral labelling is unknown, 
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0 

1 2 3  4 5  6 

Figure 1. Rooted genealogical tree. 

the sequences may be represented as an unrooted tree 
in which the vertices represent genes and the number 
of mutations between sequences are represented as 
numbers along the edges. The unrooted tree corre- 
sponding to the example sequences is given in figure 2, 
with the vertices labelled as to which gene they 
represent. The unlabelled vertex corresponds to an 
inferred sequence in the history of the sample. The 
relationship between rooted and unrooted trees is 
explained in more detail in Griffiths & TavarC 
( 19946). 

They also show how the probability of unrooted 
trees may be computed in the constant population- 
size setting. The aim here is to extend this to the 
variable population size case. 

To this end, suppose that in a sample of n genes 
there are d distinct sequences X I ,  . . ., xd, grouped 
according to their multiplicities n = (nl, . . ., nd). 
Write the data in the form ( T , n )  E (x , .  . ., z d , n ) ,  
where T denotes a rooted tree and n the multiplicities 
of the leaves. Denote the size of the sample by 
In1 = nl + . . . + n d ,  and let p ( t ,  ( T ,  n))  be the prob- 
ability that a particular ordered sample taken at time 
t has configuration ( T ,  n).  Let 

be the probability of the corresponding unordered 
sample. In the spirit of (7) and (8), we derive a 
recurrence satisfied by these sampling probabilities. 

First note that if the sample is ( T ,  n) at time t ,  with 
In1 = n, the time S, of the first event that changes the 
structure of the sample has distribution determined by 

(11)  

(4b&L@ (8) 

Figure 2. Unrooted genealogical tree corresponding to 
figure 1. 

where 

Looking back at the effects of either coalescences or 
mutations shows that the analogue of (8) is 

@O(s, ( T ,  n ) )  = 

xm distinct 

where S is the shift operator that deletes the first 
coordinate of a sequence, SkT deletes the first 
coordinate of the kth sequence of T ,  and 'xM 
distinct' means that XM)  # x;j for all ( X I ,  . . .,xd) 
and (i , j)  # (k,O). The boundary condition is 
po(t ,  ( T , e l ) )  = 1. Analogous to ( lo) ,  we now have 

P"4 ( T ,  n>> = 

This recursion can be used to find the corresponding 
probability q o ( t ,  (Q, n)) that the sample taken at time t 
has labelled, unrooted genealogical tree Q with multi- 
plicities n. From Griffiths & TavarC (19946), 

where C( Q) is the class of distinct labelled rooted trees 
constructed from Q. Finally, the probability 
q*(t,  (Q,n))  of the unlabelled, unrooted tree may be 
found by dividing the probability in (15) by the 
combinatorial quanitity a(&, n) defined in Griffiths & 
Tavart (19946). This quantity is not a function of the 
unknown parameters of the model, and as such plays 
no role in the use of the likelihood to find the 
maximum likelihood estimates of parameters. We can 
therefore base our estimation on qo(O, (Q, n)) .  

4. MONTE CARLO LIKELIHOODS 

Except in the case of constant population size, the 
recursions in (10) and (14) are difficult to solve, either 
explicitly or numerically, when the sample size is at all 
large. With this difficulty in mind, we describe a 
Markov chain Monte Carlo method that proves useful 
in approximating the solutions we are looking for. The 
methods are based on a generalization of a technique 
exploited for constant population size models in 
Griffiths & TavarC (1994a,b). 

The recursions in (10) and (14) have a common 
form, and they may be written 

Y JC 
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where r ( s ; x , y )  2 0 and g( t , x ; s )  is the density of the where 
time of the first interesting event after time t ;  

Define 

Y 

and rewrite (16) as 

d t ,  x )  = Jrnf(s; x )  P(s; x ,  y)q(s,  y)g(t ,  x;  4d.J. (19) 
Y 

We associate a non-homogeneous Markov chain 
{ X ( t ) , t  2 0) with (19) as follows: Given that 
X ( t )  = x,  the time of the next transition has density 
g( t , x ; s ) ,  and given that a change of state occurs at 
time s, the probability that the next state is y is 
P(s; x ,  y). This construction can be continued, result- 
ing in a Markov process with a set of absorbing states. 
These absorbing states correspond to x for which 
q(.,x) can be computed easily, either explicitly, or by 
conventional numerical methods. We use the process 
X ( . )  to give a probabilistic representation of q(t, x ) .  
Let 7 1  < 7 2 . .  . < ~k = T be the jump times of X ( . ) ,  
satisfying TO E t < T ~ ,  where T is the time to hit the 
absorbing states. Then 

k 

q(t ,  E(t,x)q(T, ~ ( 7 ) )  n f ( T j ;  X(Tj-1>>, (20) 
j=l 

where denotes expectation with respect to 
X ( t )  = x. A useful modification of (20) is obtained 
by choosing 7 to be any finite stopping time for 

One application of the representation in (20) 
provides a means to approximate q(x)  E q(0,x) .  
Simulate many independent copies of the process 
{ X ( t ) ,  t 2 0) starting from X ( 0 )  = x ,  and compute 
the observed value of the functional under the 
expectation sign in (20) for each of them. The 
average of these numbers is an unbiased estimate of 
q ( x ) ,  and we may use conventional theory to see how 
accurately q(x)  has been estimated. If it is known how 
to calculate q ( T , X ( T ) )  for a suitable stopping rule T ,  

then this can be used to reduce simulation time and 
the variance of the estimate of q(x). 

The probability q(t,  x )  is usually a function of some 
unknown parameters, which we denote here by r; we 
write qr(t ,x)  to emphasize the dependence on r. A 
version of importance sampling may be used to 
construct a single process X ( . )  with parameters To, 
from which estimates of qr ( t , x )  may be found for 
other values of r. We have 

{ X ( t ) ,  t 2 0). 

and fr(s; x )  and Pr(s; x ,  y) and defined in (18). The 
representation analogous to (20) is 

qr ( t , x )  = 
k 

l ~ ( ! , x ) q ( 7 ,  ~ ( 7 ) )  n Jr,ro(Tj-l, ~ ( ~ j - 1 ) ;  Tj’ X ( T j ) ) ,  
j=l  

( 2 2 )  
from which estimates of q r ( t , x )  may be simulated as 
described above. In practice, several different values 
of the generating parameters ro are used, and the 
results combined to form a single estimate of qr ( t , x )  
for several different values of r. In the next two 
sections, we specialize this description to the infinite- 
alleles and infinite-sites models. 

(a) Infinite-alleles models 

In this case, the state space consists of points x of the 
form a,  and the Markov chain X ( . )  is denoted by a(.). 
For JaJ  = n > 1, define 

= ( n  - l)h(s), a = e,. 

The functionsf and P of (18) are given by 

and 

P(s;a, b )  = 

with the convention that P(s; a ,  b )  = 0 for any state b 
which has any bj < 0. In particular, 

P(s; e,, e,-1) = 1, 
The initial conditions are q(t,el) = 1 for all t 

time 

T = inf{t : la(t)l < 2 ) .  

Defining 

p ( ~ )  = 1; eCeuX(T + u) exp(-(/l(.r + u) - /l(T)))du, 

we see that 

n 2 2. 
0. 

Alternatively suppose T is chosen to be the stopping 

4.1 = e2, 
1 -p(.), a(.) = 2el. Q(T,a(T)) = 
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5. MITOCHONDRIAL DATA 

Ward et al. (1991) sequenced the first 360 base pairs of 
the mitochondrial control region (D-loop) of 63 North 
American native Indians from the Nuu-Chah-Nulth of 
Vancouver Island. The region has no transversions, and 
so each site in the sequences is binary: either purine 
(A,G) or pyrimidine (C, T). The 201 pyrimidine sites 
have been analysed extensively (Lundstrom et al. 1992); 
we focus on the 159 purine sites. The data exhibit five 
segregating sites, defining seven different alleles. The 
data are presented in table 1. 

There is a simple diagnostic for assessing whether a 
collection of sites is consistent with the infinite-sites 
model. In the present setting, the condition is that in 
any pair of sites not all of the patterns GG, AA, AG, 
and GA are observed. Clearly, sites 2 and 4 violate 
this condition. Inconsistencies are usually due to back- 
substitutions, and suggest that a more detailed model 
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(6) Infinite-sites models 

From (1 2) and (14), we may define 

h(s; ( T , n ) )  = n(nk - l )h(s )  + Om, (23) 
k n k  2 2 

where n = In( and m is given by 

k n k = l ,  Xk.0 distinct knk=l j:sxk=x, 
Sx,#x, forallj xk,0 distinct 

The functions f and P of (18) are therefore 

and 

The second type of move is possible for those k 
satisfying nk = 1, xk,O distinct, and sxk # xj for all j .  
The third type of move can occur for those j and k for 
which nk = 1, xk,O distinct and SXI, = x,. The process is 
absorbed into (TO,el), where TO is a tree with a 
singleton vertex. 

If T is the stopping time when first In(t)l = 2, and 
n ( ~ )  = ( I l  l ) ,  then 

where i and j are the numbers of mutant sites on 
the two edges of T(T) .  If n ( ~ )  = (2), then 
PO(T (T(T)ln(T>>> = P(T)* 

of sequence evolution should be used. One approach is 
mentioned in the discussion. 

There are several ways in which subsets of the data 
that are consistent may be chosen. One is to select a 
maximally consistent subset of the sites, for example 
{1,3,4,5} or {1,2,3,5}. An alternative is to choose a 
subset of genes (or individuals) that form a consistent 
set. For these data, removing the five individuals with 
allele C produces a consistent subset of individuals. 
From now on, we use the resulting sample of 58 genes, 
which are linked by the unrooted tree shown in 
figure 3. 

Under the assumption of constant population size, 
the maximum likelihood estimator of 8 under the 
infinite-alleles model is 8 = 1.48, with an estimated 
variance of 0.55. The corresponding estimator of 8 
under the infinite-many-sites model may be found 
using the method described above with v(x) 1, 
giving 8 = 1.19 with an estimated variance of 0.35. As 
is typical for such data, the precision of the estimate is 
not high. 

T o  look for the effects of expanding populations, 
we fitted the varying environments model with 
v(x) = e#, and estimated the expansion parameter 
j3 first using just the allelic configuration of the data, 
a1 = 2, a3 = 1, a7 = 1, a19 = 1, a27 = 1. An estimate 
of the likelihood surface of this configuration with 
respect to j3 for 8 = 1.5 using 60 000 runs gave a 
monotonic decreasing likelihood. The maximum 
likelihood estimate of j3 is zero, or close to zero. 
Fixing j3 for small values and simulating likelihood 
surfaces for 0 gave maximum likelihood estimates of 
approximately 6 = 1.5. The data in table 1 provide 
little evidence that j3 > 0, possibly because of two 
alleles having a high frequency. 

We analysed the more detailed sequence structure 
using the likelihood qo given in (15). For fixed 8, the 
Monte Carlo approximant to the likelihood surface as 
a function of j3 was found using the surface simulation 
method described in $4, equations (21) and (22). For 
e = 1.5,, we generated three such curves using 
generating parameters j30 = 0.1, 1.0, 2.0. These 
curves are combined into a single approximant by 
weighting the estimated values inversely proportional 
to their variances. The estimated log-likelihood curve 
as a function of the expansion parameter fl is given in 
figure 4. 

= 1.54, 
corresponding to a log-likelihood of log qo = - 13.70. 
When j3 = 0, the corresponding log-likelihood is 

The maximum likelihood estimate of j3 is 

Table 1. Variable purine sites in the control region 

allele 
allele sequence frequency 

A GGGGA 27 
B GGAGA 3 
C GAGGA 5 
D GAGAA 1 
E GGGAA 19 
F GGGAG 1 
G AGGAA 7 
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logqo = -14.21. This gives a value of 1.02 for the 
likelihood ratio statistic, and suggests that there is little 
evidence in these data for population expansion of the 
exponential type. To  take account of the variability in 
our estimate of 8, we performed similar analyses for 
8 = 0.5 and 8 = 1.0. For 8 = 1.0, the maximum 
likelihood estimate ofp is /? = 0.50 with a log-likelihood 
of - 14.04, in comparison to the log-likelihood when 
/3 = 0 of -14.14. When 0 = 0.5, the maximum like- 
lihood estimate of p is ,9 = 0.07 with a log-likelihood of 
- 15.3 1, in comparison to the log-likelihood when p = 0 
of - 15.32. These results support the observation of no 
exponential population expansion. 

We also investigated the sensitivity of the surface 
simulation method in estimating 8 for fixed values of 
8. For each value of 8, we generated three likelihood 
curves in 8 corresponding to generating parameters 
80 = 0.5,1.0, 1.5 and combined them as above. The 
maximum Alikelihood estimates of^ 8 are 8 = 1.67 
( p  = 1.5), 8 = 1.53 ( p  = 1.0) and 8 = 1.37(/3 = 0.5). 
These values are consistent with the value 8 = 1.19 
found when /3 = 0.0. 

To understand something about our ability to 
detect expansion based on allele counts alone, 
genealogical trees were simulated for a sample size 
of 50 for 8 = 1.5, and /3 = 0.0,0.5, 1.0,2.0,5.0, with 20 
trees for each value of 8. As /I increases with 8 fixed, 
the time to the most recent common ancestor 
decreases (in the timescale used here), the number 
of alleles decreases, the most recent common ancestor 
is in the sample with a high frequency, and the shape 
of the tree changes to a star phylogeny. In  the 
simulated trees the star effect is evident for some trees 
when /3 = 1.0, and is clearly shown for trees with 

= 2.0, 5.0. A typical tree, generated with p = 5.0, 
shows this shape: 

44: (0) 
2: ( 1 ,O) 
2:(2,0) 
1:(3,0) 
1: (4,O). 

This particular tree has a simulated likelihood at 
8 = 1.5, ,9 = 0.0 of 0.000523 (standard error 

9 
' I  

-13.8 tv 
-14 

v -14.2 

I 
0 0.5 1 1.5 2 25 3 

expansion rate 

Figure 4. Estimated log-likelihood curve as a function of the 
expansion parameter /3. 

0.000004), and at 8 = 1.5, p = 5.0 of 0.0026 
(standard error 0.00003). The likelihood ratio 
statistic is 7.8, suggesting strongly that /3 > 0. The 
likelihood function is quite flat around p = 5.0. 
The allelic configuration of these data is 
al = 2, a2 = 2, a 4  = 1. The probability of this con- 
figuration with 8 = 1.5, ,9 = 0.0 is 0.0013 (exact) and 
with /I = 5.0 is 0.0039 (simulated with standard error 
0.00005). The likelihood ratio statistic is 2.19, hinting 
weakly that p > 0. The ability to detect p > 0 from 
just the allele configuration does not seem high. 

6. DISCUSSION 

The sampling theory of population genetics processes in 
a varying environment is, somewhat surprisingly, still in 
its infancy. The Monte Carlo likelihood technique we 
have illustrated here provides one approach to estima- 
tion and inference for such processes. One appealing 
feature is that the method can readily be modified to 
cover other problems of interest. For example, we can 
study the distribution of other summary statistics such as 
the number of alleles or the number of segregating sites 
seen in a sample. For applications to other human 
population data, it may also be important to assess the 
effects of population subdivision. Nath & Griffiths 
(1993) have shown how these techniques may be used 
to study the sampling distribution of an island model 
with equal population sizes. Ancestral inference is 
another important application: we can use this 
approach to study the distribution of the time to the 
most recent common ancestor of a sample, conditional 
on the observed data. It is also possible to derive a 
corresponding sampling theory for the finite-sites model, 
a process that is perhaps more useful for the analysis of 
DNA sequence data. Suppose then that there are d 
possible alleles, and that the probability of a mutation 
from type i to typej  is pij, 1 < i, j < d. The state space 
comprises d-dimensional vectors x = n = ( n l ,  . . ., nd) ,  
where ni is the number of times the allele i is observed in 
the sample. The jump time intensity y in (1 7) for a state 
n satisfying nl + . . . + nd = n > 1 is given by 

Figure 3. Unrooted tree from the purine sites. 
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and the non-zero entries of the kernel r in (16) are 
e 

r (s ;n ,m)  = - 2y(s, n) hi + llPij7 

m = n + ej - ej, 1 < i , j  < d ,  nj > 0,  i # j  

m = n - e j ,  1 < j < d ,  n j > O .  

The initial conditions are q(t,  ei) = ni, the initial 
frequency of allele i. We shall report on this in more 
detail elsewhere. 

The computational tools outlined here are available 
on request in portable C code. There are two 
programs, ALLELES and PTREESIM. The first covers 
data analysis for the infinite-alleles model, the second 
for the infinite-sites model. Both allow for varying 
environments, as illustrated for the mitochondrial 
data by an exponential population size function 
h(s) = esx, and the limiting case /? = 0 of constant 
population size. In  both cases, surface simulation to 
estimate 13 for fixed 8, or /? for fixed 8 is provided. Of 
course, many other forms of expansion might be 
appropriate and these can be handled by precisely the 
same techniques. We are currently adding other types 
of population expansion to the programs. 
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